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Abstract After a brief introduction to Euclidean Jordan algebra, we present a new
corrector–predictor path-following interior-point algorithm for convex, quadratic, and
symmetric cone optimization. In each iteration, the algorithm involves two kind of
steps: a predictor (affine-scaling) step and a full Nesterov and Todd (centring) step.
Moreover, we derive the complexity for the algorithm, and we obtain the best-known
iteration bound for the small-update method.
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1 Introduction

This paper aims at introducing a corrector–predictor path-following interior-point
method (IPM) for a convex and quadratic optimization (CQO) problem over symmetric
cones underlying Euclidean Jordan algebra.

This problem includes the symmetric cone optimization (SCO) problems as a spe-
cial case. In particular, it includes CQO and semidefinite optimization (SDO) prob-
lems as special cases. Li and Toh [1] presented an inexact primal–dual infeasible
path-following algorithm for convex, quadratic, and symmetric cone programming
(CQSCO). Nesterov and Todd [2] provided a theoretical foundation for efficient
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primal–dual IPMs on a special class of convex optimization, where the associated
cone was self-scaled. Schmieta and Alizadeh [3,4] studied primal–dual IPMs for SCO
extensively under the framework of Euclidean Jordan algebra. Darvay [5] proposed a
full-Newton step primal–dual path-following interior-point algorithm for linear opti-
mization (LO). The search direction of his algorithm is introduced by using an alge-
braic equivalent transformation of the centring equation, which define the central path
and then applying Newton’s method for the new system of equations. Recently, Wang
and Bai [6] and Bai and Zhang [7] extended Darvay’s algorithm for LO to SCO and
CQSCO by using Euclidean Jordan algebras, respectively. The first predictor–corrector
interior-point algorithms based on Darvay’s directions are introduced in [8,9].

By using a high order corrector–predictor approach, Liu and Potra [10] introduced
an interior-point algorithm for solving sufficient horizontal linear complementarity
problems acting in a wide neighborhood of the central path that does not depend on
the handicap of the problem, and has the best known iteration complexity for sufficient
LCP. The algorithm reduces the duality gap both in the corrector and the predictor
steps, and hence it is more efficient. Potra [11] presented two corrector–predictor
interior-point algorithms for solving monotone linear complementarity problems. The
algorithms produce a sequence of iterations in the wide neighborhood of the central
path, and the complexity is reduced by the use of higher order information. The latter
approach ensures superlinear convergence even in the absence of strict complemen-
tarity. Mizuno et al. [12] presented a predictor–corrector interior-point algorithm for
LO in which each predictor step is followed by a single corrector step and whose
iteration complexity is the best known in LO literature. This algorithm is sometimes
referred to MTY predictor–corrector algorithm. The MTY predictor–corrector algo-
rithm extended for sufficient LCP in 1995 by Miao [13]. This class extensively studied
in the 1991 monograph by Kojima et al. [14], where it provided a unified framework
for studying IPMs. Recently, Kheirfam [15] presented a predictor–corrector interior-
point algorithm for horizontal linear complementarity problems based on Darvay’s
technique. Gurtuna et al. [16] presented a corrector–predictor method for solving suf-
ficient linear complementarity problems that do not depend on the handicap of the
matrix, so that it can be applied for any sufficient LCP. The algorithm is quadratically
convergent for problems having a strictly complementary solution and has the same
computational complexity as Miao’s algorithm for sufficient LCP. Using higher order
predictors, the authors extended a class of corrector–predictor methods that are super-
linearly convergent even in the absence of strict complementarity, and the algorithms
of this class are globally convergent for general positive starting points.

Motivated by their work, we propose a corrector–predictor path-following algo-
rithm for solving CQSCO based on the new search directions. Our algorithm follows
the central path by predictor step (which moves along the central path to the optimal
solution) and a corrector step (which moves back toward the central path from the
predicted point). The algorithm in the predictor step uses the full Newton-step, while
it operates one damped Newton step in the corrector step. We analyze the algorithm
and obtain the complexity bound.

The paper is organized as follows: In Sect. 2, we briefly provide the theory of
the Euclidean Jordan algebra and their associated symmetric cones. In Sect. 3, we
propose the new search directions. In Sect. 4, the corrector–predictor algorithm based
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on the new directions is presented. In Sect. 5, we analyze the algorithm and derive the
iteration bound. Finally, we give some conclusions in Sect. 6.

2 Euclidean Jordan Algebra

Here, we outline some needed main results on Euclidean Jordan algebra and symmetric
cones. For a comprehensive study, the reader is referred to [17–19].

A Euclidean Jordan algebra J is a finite dimensional vector space endowed with a
bilinear map◦ : J ×J → J iff, for all x, y ∈ J , x◦y = y◦x , x◦(x2◦y) = x2◦(x◦y),
where x2 = x ◦ x, and there exists an inner product such that 〈x ◦ y, z〉 = 〈x, y ◦ z〉.
A Jordan algebra has an identity element, if there exists a unique element e ∈ J such
that x ◦ e = e ◦ x = x , for all x ∈ J . The set K(J ) := {x2 : x ∈ J } is called the
cone of squares of Euclidean Jordan algebra (J , ◦, 〈·, ·〉). A cone is symmetric if and
only if it is the cone of squares of a Euclidean Jordan algebra [17].

An element c ∈ J is said to be idempotent iff c �= 0 and c ◦ c = c. Two elements x
and y are orthogonal if x◦y = 0. An idempotent c is primitive if it is nonzero and cannot
be expressed by sum of two other nonzero idempotents. A set of primitive idempotents
{c1, c2, . . . , ck} is called a Jordan frame iff ci ◦ c j = 0, for any i �= j ∈ {1, 2, . . . , k}
and

∑k
i=1 ci = e. For any x ∈ J , let r be the smallest positive integer such that

{e, x, x2, . . . , xr } is linearly dependent; r is called the degree of x and denoted by
deg(x). The rank of J , denoted by rank(J ), is defined as the maximum of deg(x)

over all x ∈ J .

Theorem 2.1 (Theorem III.1.2 in [17]) Let (J , ◦, 〈·, ·〉) be a Euclidean Jordan
algebra with rank(J ) = r . Then, for any x ∈ J , there exists a Jordan
frame {c1, c2, . . . , cr } and real numbers λ1(x), λ2(x), . . . , λr (x) such that x =∑r

i=1 λi (x)ci .

Everyλi (x) is called an eigenvalue of x . We denoteλmin(x)(λmax(x)) as the minimal

(maximal) eigenvalue of x . We can define the following: the square root, x
1
2 :=∑r

i=1
√

λi (x)ci , wherever all λi ≥ 0, the inverse, x−1 := ∑r
i=1 λi (x)−1ci , wherever

all λi �= 0, the square x2 := ∑r
i=1 λi (x)2ci ; and the trace Tr(x) := ∑r

i=1 λi (x).
Since “◦” is bilinear map, for every x ∈ J , there exists a linear operator L(x) such

that for every y ∈ J , x ◦ y := L(x)y. In particular, L(x)e = x and L(x)x = x2. For
each x ∈ J , we define

P(x) := 2L(x)2 − L(x2),

where L(x)2 := L(x)L(x). The map P(x) is called the quadratic representation of
J . For any x, y ∈ J , x , and y are said to be operator commutable iff L(x) and L(y)

commute, i.e., L(x)L(y) = L(y)L(x). In other words, x and y operator commutable
iff, for all z ∈ J , x ◦ (y ◦ z) = y ◦ (x ◦ z) (see [4]). For any x, y ∈ J , the inner
product is defined as 〈x, y〉 := T r(x ◦ y), and the Frobenius norm of x as follows:

‖x‖F := √
Tr(x2) =

√∑r
i=1 λ2

i (x). Observe that ‖e‖F = √
r , since identity element

e has eigenvalue 1.
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We say that two elements x and y in J are similar, and briefly denoted as x ∼ y,
if and only if x and y share the same set of eigenvalues. Let intK denotes the interior
of the symmetric cone K. We say x ∈ K if and only if λi ≥ 0, and x ∈ intK if and
only if λi > 0, for all i = 1, 2, . . . , r . We also say x is positive semidefinite (positive
definite) iff x ∈ K (x ∈ intK).

Lemma 2.1 (Proposition 21 in [4]) Let x, s, u ∈ intK. Then

(i) P
(

x
1
2

)
s ∼ P

(
s

1
2

)
x.

(ii) P
(
(P(u)x)

1
2

)
P(u−1)s ∼ P

(
x

1
2

)
s.

Lemma 2.2 (Proposition 3.2.4 in [19]) Let x, s ∈ intK, and w be the scaling point of
x and s. Then

(
P

(
x

1
2

)
s
) 1

2 ∼ P
(
w

1
2

)
s.

Lemma 2.3 (Lemma 14 in [4]) Let x, s ∈ J . Then

λmin(x + s) ≥ λmin(x) − ‖s‖F .

Lemma 2.4 (Lemma 30 in [4]) Let x, s ∈ intK. Then

‖P(x)
1
2 s − e‖F ≤ ‖x ◦ s − e‖F .

Lemma 2.5 (Theorem 4 in [20]) Let x, s ∈ intK. Then

λmin

(
P(x)

1
2 s

)
≥ λmin(x ◦ s).

Lemma 2.6 (Lemma 2.11 in [6]) Let t > 0 and v ∈ K. Then

‖te − v‖F ≤ 1

t + λmin(v)
‖t2e − v ◦ v‖F .

Lemma 2.7 (Lemma 4.1 in [6]) Let x(α) := x +α�x, s(α) := s +α�s for 0 ≤ α ≤
1. Let x, s ∈ intK, and x(α) ◦ s(α) ∈ intK for 0 ≤ α ≤ ᾱ. Then x(ᾱ), s(ᾱ) ∈ intK.

3 The New Search Directions

Consider the CQSCO problem as

min

{

〈c, x〉 + 1

2
〈x, Qx〉 : Ax = b, x ∈ K

}

, (P)
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along with its dual problem as

max

{

bT y − 1

2
〈x, Qx〉 : AT y + s − Qx = c, s ∈ K

}

, (D)

where c and the rows ai of A lie in J , and b, y ∈ Rm , 〈x, s〉 = Tr(x ◦ s) stands for
the trace inner product in J . Q : J −→ J is a symmetric linear operator with the
property 〈x, Qx〉 ≥ 0, x ∈ J . Furthermore, Ax = b and AT y + s − Qx = c mean
that

〈ai , x〉 = bi , i = 1, 2, . . . , m, and
m∑

i=1

yi ai + s − Qx = c,

respectively. Throughout the paper, we assume that (P) and (D) satisfy the interior-
point condition (IPC), i.e., there exists (x0, y0, s0) such that

Ax0 = b, AT y0 + s0 − Qx0 = c, x0, s0 ∈ intK

and the matrix A is of rank m. Under the IPC, finding an optimal solution of (P) and
(D) is equivalent to solving the following system

Ax = b, AT y + s − Qx = c, x ◦ s = 0, x, s ∈ K. (1)

The basic idea of primal–dual IPMs is to replace the third equation in (1), the so-called
complementarity condition for (P) and (D), by the parameterized equation x ◦ s = μe
with μ > 0. The system (1) can be written as

Ax = b, AT y + s − Qx = c, x ◦ s = μe. (2)

For each μ > 0, the perturbed system (2) has a unique solution (x(μ), y(μ), s(μ)), and
we call x(μ) and (y(μ), s(μ)) the μ-centers of problem (P) and (D), respectively. The
set of μ-centers gives a homotopy path, which is called the central path. If μ → 0, then
the limit of the central path exists, and since the limit points satisfy the complementarity
condition, the limit yields an ε-approximate solution for (P) and (D) [18].

Lemma 3.1 (Lemma 28 in [3]) Let x, s, and w be in some Euclidean Jordan algebra

J , x, s ∈ intK and w invertible. Then x ◦ s = μe iff P(w− 1
2 )x ◦ P(w

1
2 )s = μe.

Suppose that the iterate (x, y, s) is primal–dual feasible solution, and we may write

the relaxed complementarity condition x ◦ s = μe as P(w− 1
2 )x ◦ P(w

1
2 )s = μe.

Therefore, applying Newton’s method to the resulting system leads us to the linear
system

A�x = 0, AT �y + �s − Q�x = 0,

P
(
w− 1

2

)
�x ◦ P

(
w

1
2

)
s + P

(
w− 1

2

)
x ◦ P

(
w

1
2

)
�s

= μe − P
(
w− 1

2

)
x ◦ P

(
w

1
2

)
s.

(3)
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For the choice of

w = P
(

x
1
2

) (
P

(
x

1
2

)
s
)− 1

2 = P
(

s− 1
2

) (
P

(
s

1
2

)
x
) 1

2
,

we have P
(
w− 1

2

)
x = P

(
w

1
2

)
s, which gives the Nesterov–Todd (NT) direction

[2,21]. Define

v := P(w− 1
2 )x√

μ
= P(w

1
2 )s√
μ

=
(

P(w− 1
2 )x ◦ P(w

1
2 )s

μ

) 1
2

. (4)

Note that x ◦ s = μe if and only if v = e (Proposition 5.7.2 in [19]). Therefore, we
have μv = μe. Combining the last equation with the system (3), we have

A�x = 0, AT �y + �s − Q�x = 0,

P
(
w− 1

2

)
�x ◦ P

(
w

1
2

)
s + P

(
w− 1

2

)
x ◦ P

(
w

1
2

)
�s

= μv − P
(
w− 1

2

)
x ◦ P

(
w

1
2

)
s.

(5)

Let us denote

Ā := √
μAP

(
w

1
2

)
, dx := P(w− 1

2 )�x√
μ

, ds := P(w
1
2 )�s√
μ

. (6)

Consequently, the system (5) can be written in the following form

Ādx = 0, ĀT �y

μ
+ ds − Q̄dx = 0, dx + ds = e − v, (7)

where Q̄ := P(w
1
2 )Q P(w− 1

2 ). For the analysis of the algorithm, we define a norm-
based proximity measure σ(x, s;μ) as follows:

σ(v) := σ(x, s;μ) := ‖e − v‖F , (8)

where v is defined as (4). Due to the first two equations of the system (7), we have

〈dx , ds〉 =
〈

dx ,− ĀT �y

μ
+ Q̄dx

〉

=
〈

dx ,− ĀT �y

μ

〉

+ 〈
dx , Q̄dx

〉 = 〈
dx , Q̄dx

〉 ≥ 0.

(9)
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4 The Corrector–Predictor Algorithm

Here, we propose a corrector–predictor algorithm based on the modified NT-search
directions, which uses these directions in the both corrector and predictor steps. Firstly,
we define the τ -neighborhood of the central path as follows:

N (τ, μ) :=
{
(x, s) : Ax = b, AT y + s − Qx = c, x, s ∈ intK, y ∈ Rm, σ (x, s;μ) ≤ τ

}
.

The algorithm starts with (x, y, s) in the τ -neighborhood, which certainly holds at
(x0, y0, s0) since σ(x0, s0;μ0) = 0. If for the current iterate (x, y, s), rμ > ε, then
the algorithm performs corrector and predictor steps. In corrector steps, by solving the
system (7), for the scaled-directions (dx ,�y, ds), that is,

Ādx = 0, ĀT �y

μ
+ ds − Q̄dx = 0, dx + ds = e − v, (10)

and using (6) for (�x,�s), we obtain

x := x + �x, y := y + �y, s := s + �s.

In the predictor (affine-scaling) steps, starting at the iterate (x, y, s) and targeting at the
μ-centers, the search directions (�px,�p y,�ps) are the damped Newton directions,
defined by

Ād p
x = 0, ĀT �p y

μ
+ d p

s − Q̄d p
x = 0, d p

x + d p
s = −v, (11)

where

d p
x := P(w− 1

2 )�px√
μ

, d p
s := P(w

1
2 )�ps√
μ

. (12)

We denote the iterates after a predictor step by

x p := x + θ�px, y p := y + θ�p y, s p := s + θ�ps, μp := (1 − θ)μ,

where θ ∈]0, 1[. The iterate (x p, y p, s p) will be in the τ -neighborhood again. The
algorithm repeats until the duality gap is less than the accuracy parameter ε. A formal
description of the algorithm is given in Fig. 1.

5 Analysis

In this Section, we deal with the analysis of the previous algorithm. At the analysis of
the affine-scaling step, we will give sufficient conditions for strict feasibility and the
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Fig. 1 The algorithm

effect on the proximity measure if the proximity measure does not exceed the prox-
imity parameter. At the corrector step, we obtain the relation between the proximity
parameters. The following lemmas are essential for analysis of the algorithm.

Lemma 5.1 (Lemma 8 in [22]) Let x, s ∈ J with Tr(x ◦ s) ≥ 0. Then

‖x ◦ s‖F ≤ 1

2
√

2
‖x + s‖2

F .

Lemma 5.2 (Lemma 9 in [22]) Let x, s ∈ intK and μ > 0. Assume that σ := σ(v).
Then, 1 − σ ≤ λi (v) ≤ 1 + σ, for i = 1, 2, . . . , r.
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5.1 The Affine-Scaling Step

The next lemma gives a sufficient condition for yielding strict feasibility after an
affine-scaling step.

Lemma 5.3 Let x, s ∈ intK and μ > 0 such that σ := σ(x, s;μ) < 1. Furthermore,
let 0 < θ < 1. Let x p = x + θ�px and s p = s + θ�ps denote the iterates after an
affine-scaling step. Then x p, s p ∈ intK if K (σ, θ, r) > 0, where

K (σ, θ, r) = (1 − σ)2 −
√

2rθ2(1 + σ)2

4(1 − θ)
.

Proof Let us introduce

x p(α) := x + αθ�px, s p(α) := s + αθ�ps,

for α ∈ [0, 1]. Using (4) and (12), we have

x p(α) = √
μP

(
w

1
2

) (
v + αθd p

x
)
, s p(α) = √

μP
(
w− 1

2

) (
v + αθd p

s
)
. (13)

Since P(w
1
2 ) and P(w− 1

2 ) are automorphisms of intK (Theorem III.2.1 in [17]), by
(13), x p and s p belong to intK if and only if v + θd p

x and v + θd p
s belong to intK.

Therefore, using the third equation of (11), we obtain

v
p
x (α) ◦ v

p
s (α) = (v + αθd p

x ) ◦ (v + αθd p
s )=v2+αθv ◦ (d p

x + d p
s )+α2θ2d p

x ◦ d p
s

= v2 + αθv ◦ (−v) + α2θ2d p
x ◦ d p

s = (1 − αθ)v2 + α2θ2d p
x ◦ d p

s .

(14)

From the above relation and Lemma 2.3, we obtain

λmin

(
v

p
x (α) ◦ v

p
s (α)

1 − αθ

)

= λmin

(
v2 + α2θ2

1 − αθ
d p

x ◦ d p
s

)

≥ λmin

(
v2

)
− α2θ2

1 − αθ

∥
∥d p

x ◦ d p
s
∥
∥

F ≥ λmin

(
v2

)
− θ2

1 − θ
‖d p

x ◦ d p
s ‖F , (15)

the last inequality follows by f (α) = α2θ2

1−αθ
for 0 ≤ α ≤ 1, and each fixed 0 < θ < 1

is strictly increasing. From Lemma 5.1, the third equation of (11) and Lemma 5.2 we
get

λmin

(
v

p
x (α) ◦ v

p
s (α)

1 − αθ

)

≥ (1 − σ)2 −
√

2rθ2(1 + σ)2

4(1 − θ)
= K (σ, θ, r) > 0. (16)

This implies that det
(
v

p
x (α) ◦ v

p
s (α)

)
> 0 for 0 ≤ α ≤ 1. From Lemma 2.7, we have

v + θd p
x ∈ intK and v + θd p

s ∈ intK for α = 1. This proves the lemma. �
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By following (4), we define

v p := P(w p)
1
2 s p

√
μp

, (17)

where w p is the scaling point of x p and s p. Using (13) with α = 1, (17) and Lemmas
2.1 and 2.2, we have

(v p)2 ∼ P(x p)
1
2 s p

μp
=

μ
(

P(P(w)
1
2 (v + θd p

x ))
1
2 P(w)− 1

2 (v + θd p
s )

)

μ(1 − θ)

∼ P(v + θd p
x )

1
2 (v + θd p

s )

1 − θ
. (18)

Using Lemma 2.5 and (16) with α = 1, we obtain

λmin((v
p)2) = λmin

⎛

⎝P

(
v + θd p

x√
1 − θ

) 1
2
(

v + θd p
s√

1 − θ

)
⎞

⎠

≥ λmin

((
v + θd p

x√
1 − θ

)

◦
(

v + θd p
s√

1 − θ

))

≥ K (σ, θ, r). (19)

In the following lemma, we investigate the effect on the proximity measure of an
affine-scaling step followed by an update of the parameter μ.

Lemma 5.4 Let σ := σ(x, s;μ) < 1, μp = (1 − θ)μ, where 0 < θ < 1,
K (σ, θ, r) > 0 and let x p, s p denote the iterates after an affine-scaling step, i.e.,
x p = x + θ�px and s p = s + θ�ps. Then

σ p := σ
(
x p, s p;μp) ≤ 1 + 2σ 2 − K (σ, θ, r)

1 + √
K (σ, θ, r)

.

Proof From Lemma 5.3 we deduce that the affine-scaling step is strictly feasible.
Using (18), (19), (14) with α = 1 and Lemma 2.4, we obtain

σ p := σ(x p, s p;μp) =
∥
∥
∥
(

e − (
v p)2

) (
e + v p)−1

∥
∥
∥

F
≤ 1

1 + λmin(v p)

∥
∥
∥e − (

v p)2
∥
∥
∥

F

≤ 1

1 + λmin(v p)

∥
∥
∥
∥
∥
∥

e − P

(
v + θd p

x√
1 − θ

) 1
2
(

v + θd p
s√

1 − θ

)
∥
∥
∥
∥
∥
∥

F

≤ 1

1 + λmin(v p)

∥
∥
∥
∥e −

(
v + θd p

x√
1 − θ

)

◦
(

v + θd p
s√

1 − θ

)∥
∥
∥
∥

F

≤ 1

1 + √
K (σ, θ, r)

∥
∥
∥
∥e − v2 − θ2

1 − θ
d p

x ◦ d p
s

∥
∥
∥
∥

F
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≤ 1

1 + √
K (σ, θ, r)

(∥
∥
∥e − v2

∥
∥
∥

F
+ θ2

1 − θ

∥
∥d p

x ◦ d p
s
∥
∥

F

)

.

On the other hand, by Lemma 5.2, we have

∥
∥
∥e − v2

∥
∥
∥

F
=

∥
∥
∥e − v + v − v2

∥
∥
∥

F
≤ σ + λmax(v)‖e − v‖F = σ 2 + 2σ. (20)

Finally, we get

σ p ≤ σ 2 + 2σ +
√

2θ2

4(1−θ)
r(1 + σ)2

1 + √
K (σ, θ, r)

,

which completes the proof. �

5.2 The Corrector Step

The following lemma gives a condition for strict feasibility of full NT-step. Its proof
is similar to the proof of Lemma 11 in [22].

Lemma 5.5 Let σ(v) be defined as (8), and (x, s) ∈ intK×intK. If σ(v) < 2

1+
√

1+√
2

,

then the full-NT step for CQSCO is strictly feasible.

The next lemma is devoted to the proximity measure of the iterates obtained by a full
NT-step.

Lemma 5.6 Let x+ = x + �x and s+ = s + �s and σ(v) < 2

1+
√

1+√
2

. Then

σ(x+, s+;μ) ≤
σ(v) + 1

2
√

2
σ(v)2

1 +
√

1 − σ(v) − 1
2
√

2
σ(v)2

.

Proof Let v+ = P(w+)
1
2 s+√

μ
then, similar to (18) and (19), we respectively have

(
v+)2 ∼ P(v + dx )

1
2 (v + ds), λmin

((
v+)2

)
≥ λmin

(
v + dx ◦ ds

) ≥ 1 − σ − 1

2
√

2
σ 2.

Using the above relations, Lemma 2.6 with t = 1 and Lemma 2.4, we have

σ
(
x+, s+;μ

) =
∥
∥
∥
∥
∥

e − P(w+)
1
2 s+

√
μ

∥
∥
∥
∥
∥

F

= ∥
∥e − v+∥

∥
F

≤ 1

1 + λmin(v+)

∥
∥
∥e − P(v + dx )

1
2 (v + ds)

∥
∥
∥

F
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≤ 1

1 + λmin(v+)
‖e − v − dx ◦ ds‖F ≤

σ(v) + 1
2
√

2
σ(v)2

1 +
√

1 − σ(v) − 1
2
√

2
σ(v)2

.

This completes the proof. �

The next lemma gives the effect of full NT-step on duality gap. Its proof is similar to
the proof of Lemma 12 in [22].

Lemma 5.7 If σ(v) < 2

1+
√

1+√
2

, then

Tr
(
x+ ◦ s+)

< 2μr

(
3 +

√
1 + √

2

1 +
√

1 + √
2

)

.

5.3 The Effect on Duality Gap After a Main Iteration

The following lemma gives an upper bound of the duality gap after a main iteration.

Lemma 5.8 Let x, s ∈ intK, μ > 0 such that σ := σ(x, s;μ) < 1, and 0 < θ ≤ 1.
If x p and s p are the iterates obtained after the affine-scaling step of the algorithm,
then

Tr
(
x p ◦ s p) ≤ 4rμp

1 − θ
.

Proof Letting α = 1 in (13) and (14), we obtain

Tr
(
x p ◦ s p) = Tr

(√
μP(w)

1
2
(
v + θd p

x
) ◦ √

μP(w)−
1
2
(
v + θd p

s
))

= μTr
((

v + θd p
x
) ◦ (

v + θd p
s
)) = μTr

(
(1 − θ)v2 + θ2d p

x ◦ d p
s

)

≤ μ

(

1 − θ + 1

2
θ2

)

Tr
(
v2

)
≤

(

1 − 1

2
θ

)

Tr(x ◦ s). (21)

The first inequality follows from the third equation of (11). Since x and s are obtained
by a full NT-step of the algorithm, by Lemma 5.7, we have

Tr
(
x p ◦ s p) ≤ 2

(

1 − 1

2
θ

)

r

(
3 +

√
1 + √

2

1 +
√

1 + √
2

)
μp

1 − θ
≤ 4rμp

1 − θ
.

The proof is complete. �

5.4 Fixing the Parameter

In the following, we want to fix the parameters τ and θ , which guarantee that after a
main iteration, the proximity measure will not exceed the proximity parameter before.
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Let (x, y, s) be the iterate at the start of a main iteration with x ∈ intK and s ∈ intK
such that σ(x, s;μ) ≤ τ . After a corrector step, by Lemma 5.6, one has

σ
(
x+, s+;μ

) ≤
σ(v) + 1

2
√

2
σ(v)2

1 +
√

1 − σ(v) − 1
2
√

2
σ(v)2

.

It can be easily verified that the right-hand side of the above inequality is monotonically
increasing with respect to σ , which implies that

σ
(
x+, s+;μ

) ≤
τ + 1

2
√

2
τ 2

1 +
√

1 − τ − 1
2
√

2
τ 2

= w(τ).

Following the affine-scaling step and a μ-update, by Lemma 5.4, one has

σ p = σ
(
x p, s p;μp) ≤ 1 + 2σ 2 − K (σ, θ, r)

1 + √
K (σ, θ, r)

, (22)

where K (σ, θ, r) is defined as Lemma 5.3. It can be easily verified that the right-hand
side of (22) is monotonically increasing with respect to σ , which means that

1 + 2σ 2 − K (σ, θ, r)

1 + √
K (σ, θ, r)

≤ 1 + 2w(τ)2 − K (w(τ), θ, r)

1 + √
K (w(τ), θ, r)

.

To keep σ p ≤ τ , it suffices that

1 + 2w(τ)2 − K (w(τ), θ, r)

1 + √
K (w(τ), θ, r)

≤ τ.

At this stage, for a fixed threshold τ = 5
11 and update parameter θ = 1

4
√

2r
, after some

simple calculation, we obtain σ p ≤ 0.4468 < τ = 0.4545. Thus, the algorithm is
well defined. Moreover, K (σ, θ, r) ≥ 0.4493. This implies, by Lemma 5.3, that the
predictor step is strictly feasible.

5.5 Complexity Bound

The following lemma gives an upper bound for the number of iterations produced by
our algorithm.

Lemma 5.9 Let x0 and s0 be strictly feasible, μ0 = Tr(x0◦s0)
r and σ(x0, s0;μ0) < τ .

Moreover, let xk and sk be the iterates obtained after k iterations. Then Tr(xk ◦sk) ≤ ε,

for k ≥ 1 +
⌈

1
θ

log 4Tr(x0◦s0)
ε

⌉
.
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Proof It follows from Lemma 5.8 that

Tr
(

xk ◦ sk
)

<
4rμk

1 − θ
= 4r(1 − θ)k−1μ0 = 4(1 − θ)k−1Tr

(
x0 ◦ s0

)
.

Then the inequality Tr(xk ◦ sk) ≤ ε holds if 4(1 − θ)k−1Tr(x0 ◦ s0) ≤ ε. Taking
logarithms and using log(1 + θ) ≤ θ, θ ≥ −1, we observe that the above inequality
holds if −θ(k − 1) + log 4Tr(x0 ◦ s0) ≤ log ε. This implies the result. �

Theorem 5.1 Let τ = 5
11 and θ = 1

4
√

2r
. Then the algorithm is well defined and the

algorithm requires at most

O

(√
r log

Tr
(
x0 ◦ s0

)

ε

)

iterations. The output is a primal–dual pair (x, s) satisfying Tr(x ◦ s) ≤ ε.

Proof Let τ = 5
11 and θ = 1

4
√

2r
, the desired result follows immediately from Lemma

5.9. �

6 Conclusions

We presented a corrector–predictor algorithm and its derived complexity for solving
CQO over symmetric cones. The complexity results show that the proposed algorithm
enjoys the best known complexity bound for interior point methods. An interesting
topic for further research may be the development of the analysis to the Cartesian
P∗(κ) linear complementarity problems over symmetric cones.
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