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Abstract In this paper, we study some properties of quasiconvex nonlinear comple-
mentarity functions. However, we prove that a nonlinear complementarity function
cannot be pseudoconvex. As a consequence of this, we show that every convex non-
linear complementarity function is nondifferentiable. Furthermore, some properties
of homogeneous nonlinear complementarity functions are proved.
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1 Introduction

The concept of a nonlinear complementarity function (NCP function, in short) was
originally introduced by Mangasarian [1], and it has proved to be useful in com-
putational optimization (see, e.g., [2,3]). In the last few decades, a variety of NCP
functions have been studied (see [4] and the references therein). In [5], Kanzow et al.
proposed new NCP functions for the nonlinear complementarity problem and proved
several properties of these functions. The nonlinear complementarity problem has a
large number of important applications, and we refer the interested reader to the sur-
vey paper by Ferris and Pang [6]. In [4] and [7], some elementary properties of NCP
functions have been studied. In particular, Galántai [4] developed several new methods
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for the construction of NCP functions. In the present paper, we focus on generalized
convexity of NCP functions. We prove that, there is no pseudoconvex NCP function.
Also, we prove that an NCP function cannot be both convex and differentiable. In
addition, some properties of the homogeneous NCP functions are proved.

The organization of the paper is as follows. In Sect. 2, we deal with preliminaries.
In Sect. 3, we prove that an NCP function cannot be pseudoconvex. In Sect. 4, we
study the differentiability of homogeneous NCP functions. In Sect. 5, we investigate
quasiconvex NCP functions. The paper is closed by conclusions in Sect. 6.

2 Preliminaries

In this section, we recall some definitions that will be used in the paper.

Definition 2.1 A function ϕ : R
2 → R is called an NCP function iff it satisfies

ϕ(a, b) = 0 ⇐⇒ a � 0, b � 0, ab = 0. (1)

Definition 2.2 Let F : R
n → R

n be continuously differentiable. The nonlinear com-
plementarity problem consists in finding a vector x ∈ R

n such that

x � 0, F(x) � 0, 〈x, F(x)〉 = 0. (2)

One of the most popular approaches for solving the nonlinear complementarity prob-
lem, is to reformulate this problem as a system of nonlinear equations (see [1,8]). For
any NCP function ϕ, (2) is equivalent with the equation

�(x) := [ϕ(x1, F1(x)), . . . , ϕ(xn, Fn(x))]T = 0,

where Fi (x) and xi denote the i th components of F(x) and x, respectively. Many NCP
functions have been proposed in the literature. We list below some well-known NCP
functions and their sources:

ϕmin(a, b) = min{a, b} (Pang [9]),

ϕF B(a, b) = √
a2 + b2 − (a + b) (Fischer [10]),

ϕW (a, b) = (a − b)+ − a (Wierzbicki [11]),

ϕM S(a, b) = ab + 1
2λ

{[
(a − λb)+

]2 − a2 +
[
(b − λa)+

]2 − b2
}

(λ > 1)

(Mangasarian and Solodov [12]),

ϕp(a, b) = ||(a, b)||p − (a + b) (p > 1) (Chen and Pan [13]),

ϕY F B(a, b) = ϕ2
F B(a, b) (Yamashita [14]),

ϕθp(a, b) = p
√

θ(|a|p + |b|p) + (1 − θ)|a − b|p − (a + b) (θ ∈]0, 1], p > 1)
(Hu, Huang and Chen [15]),

ϕSW (a, b) =
{

ϕ2
F B(a, b) a � 0, b � 0

(a−)2 + (b−)2 otherwise
(Sun and Womersley [16]),
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where x+ = max{x, 0} and x− = min{x, 0} for any real number x , and ||.||p denotes
the p-norm on R

2.

Remark 2.1 Note that ϕF B is a special case of ϕp with p = 2, and ϕp is a special case
of ϕθp with θ = 1.

Remark 2.2 From Definition 2.1, it is clear that if ϕ is an NCP function, then cϕ is
also an NCP function for each c ∈ R\{0}, and ϕk is an NCP function for any k ∈ N.

3 Nonexistence of Pseudoconvex NCP Functions

Pseudoconvexity is a desirable property in various areas of mathematical program-
ming. In this section we prove that, unfortunately, there is no pseudoconvex NCP
function.

Definition 3.1 Let f : R
n → R be differentiable on R

n . The function f is said to be
pseudoconvex iff, for each x, y ∈ R

n with f (x) < f (y), we have ∇ f (y)T (x−y) < 0.

In order to reach our goals in this section, we need the following lemma.

Lemma 3.1 Let ϕ be an NCP function. If the first order partial derivatives of ϕ exist
at the origin, then ∇ϕ(0, 0) = (0, 0)T .

Proof Since ϕ is an NCP function, we have ϕ(a, 0) = 0 for each a � 0. Therefore,

∂ϕ

∂a
(0, 0) = lim

a→0+
ϕ(a, 0) − ϕ(0, 0)

a − 0
= 0.

Similarly, it can be seen that ∂ϕ
∂b (0, 0) = 0. 
�

Theorem 3.1 There is no pseudoconvex NCP function.

Proof Assume by contradiction that ϕ is a pseudoconvex NCP function. Let c > 0,
by definition we know that ϕ(c, c) �= 0. If ϕ(c, c) < 0, then we have ϕ(c, c) <

ϕ(0, 0). So, by pseudoconvexity of ϕ we obtain that ∇ϕ(0, 0)T
(

c
c

)
< 0. But this is

a contradiction, because differentiability of ϕ, together with Lemma 3.1 implies that

∇ϕ(0, 0) =
(

0
0

)
. Therefore, 0 < ϕ(c, c). Now, since ϕ(2c, 0) = 0 < ϕ(c, c), from

pseudoconvexity of ϕ, we have

∇ϕ(c, c)T
(

c
−c

)
< 0. (3)

On the other hand, because ϕ(0, 2c) = 0 < ϕ(c, c), then by pseudoconvexity of ϕ

we obtain that ∇ϕ(c, c)T
(

c
−c

)
> 0. This is a contradiction with (3), and the proof

is completed. 
�
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As a direct consequence of Theorem 3.1, the following corollary shows that an NCP
function cannot be both convex and differentiable.

Corollary 3.1 Every convex NCP function is nondifferentiable.

Proof It follows from Theorem 3.1 and the fact that every differentiable convex func-
tion is pseudoconvex. 
�
Example 3.1 ϕW and ϕθp are two examples of convex NCP functions [11,15]. It is easy
to see that these NCP functions are not differentiable, as predicted by Corollary 3.1.
On the other hand ϕM S , ϕY F B and ϕSW are differentiable [12,14,16], so Corollary 3.1
implies that these NCP functions are not convex.

4 Differentiability of Homogeneous NCP Functions

Most of the well-known NCP functions are homogeneous. In this section, we study
the differentiability of homogeneous NCP functions.

Definition 4.1 Let C be a cone in R
n . A function f : C → R is said to be homoge-

neous of degree α ∈ R iff, it satisfies f (tx) = tα f (x), for each x ∈ C and each t > 0.
In particular, a function f is said to be linearly homogeneous iff, it is homogeneous
of degree one.

To prove our theorems in this section, we shall need the following two lemmas. The
first lemma relates the homogeneity of a function to the homogeneity of its partial
derivatives.

Lemma 4.1 Let C be an open cone in R
n. Suppose that f : C → R is continuously

differentiable and homogeneous of degree α. Then its first order partial derivatives
are homogeneous of degree α − 1.

Proof See [17]. 
�
Lemma 4.2 Suppose that NCP function ϕ is homogeneous of degree α. Then, the first
order partial derivatives of ϕ exist at the origin if and only if α > 1.

Proof We have

∂ϕ

∂a− (0, 0) = lim
a→0−

ϕ(a, 0) − ϕ(0, 0)

a − 0
= lim

a→0−
ϕ(a, 0)

a
= lim

a→0−
(−a)αϕ(−1, 0)

a

= −ϕ(−1, 0) lim
a→0− (−a)α−1. (4)

Since ϕ(−1, 0) �= 0, we have from (4) that

∂ϕ

∂a− (0, 0) = 0 if and only if α > 1. (5)

On the other hand, since ϕ(a, 0) = 0 for each a � 0, we know that ∂ϕ

∂a+ (0, 0) = 0.
Therefore, we can conclude from (5) that
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∂ϕ

∂a− (0, 0) = ∂ϕ

∂a+ (0, 0) if and only if α > 1,

i.e., ∂ϕ
∂a (0, 0) exists if and only if α > 1. Similarly, we can prove that ∂ϕ

∂b exists at the
origin if and only if α > 1. 
�
Theorem 4.1 Suppose that NCP function ϕ is homogeneous of degree α > 1. Then ϕ

is continuously differentiable if and only if the first order partial derivatives of ϕ exist
on R

2\{(0, 0)} and are continuous.

Proof If ϕ is continuously differentiable, then we know that it has continuous partial
derivatives everywhere in the plane. To prove the converse, it is sufficient to show that
the partial derivatives of ϕ exist and are continuous at the origin.

Notice that, from Lemma 4.2, it follows that the partial derivatives of ϕ exist at the
origin. Thus, by Lemma 3.1, we have ∂ϕ

∂a (0, 0) = ∂ϕ
∂b (0, 0) = 0. Now, let S be the unit

sphere in R
2, i.e., S = {(a, b) ∈ R

2 : ||(a, b)|| = 1}. Since S is a compact set and
∂ϕ
∂a is continuous on S, it is bounded on this set. Thus, there exists M > 0 such that

| ∂ϕ
∂a (a, b)| � M , for all (a, b) ∈ S. On the other hand, by using Lemma 4.1 we know

that ∂ϕ
∂a is homogeneous of degree α − 1. So, for each (a, b) �= (0, 0),

∣∣∣∣
∂ϕ

∂a
(a, b)

∣∣∣∣ =
∣∣∣∣
∂ϕ

∂a
(
||(a, b)||
||(a, b)|| (a, b))

∣∣∣∣ = ||(a, b)||α−1 |∂ϕ

∂a
(

1

||(a, b)|| (a, b))|
� ||(a, b)||α−1 M.

Hence, we have ∂ϕ
∂a (a, b) → 0 as (a, b) → (0, 0). This means that ∂ϕ

∂a is continuous

at the origin. Similarly, it can be shown that ∂ϕ
∂b is continuous at the origin. 
�

Theorem 4.2 Suppose that NCP function ϕ is homogeneous of degree α > 0 and its
partial derivatives exist and are continuous on R

2\{(0, 0)}. Let k ∈ N, then ϕk is a
continuously differentiable NCP function if and only if k > 1

α
.

Proof It is easy to see that ϕk is a homogeneous NCP function of degree kα. If ϕk is
continuously differentiable then by Lemma 4.2 we have kα > 1, and so it follows that
k > 1

α
. The proof of converse statement is a direct consequence of Theorem 4.1. 
�

As a direct result of Theorem 4.2, we have the following corollary:

Corollary 4.1 Suppose that NCP function ϕ is homogeneous of degree α � 1 and its
partial derivatives exist and are continuous on R

2\{(0, 0)}. Then ϕk is a continuously
differentiable NCP function, for each k ∈ {2, 3, 4, . . .}.
Example 4.1 One can easily see that ϕθp is linearly homogeneous, for all θ ∈]0, 1] and
all p > 1. So, by Lemma 4.2, the partial derivatives of ϕθp do not exist at the origin. It
has been proved in [15] that ϕθp is continuously differentiable on R

2\{(0, 0)}. Hence,
Corollary 4.1 implies that ϕk

θp is a continuously differentiable NCP function, for each

k ∈ {2, 3, 4, . . .}. As a special case, it follows that ϕY F B = ϕ2
F B is a continuously

differentiable NCP function.
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5 Quasiconvexity of NCP Functions

In this section, we prove some properties of the quasiconvex NCP functions. In par-
ticular, we generalize a theorem by Galántai [4], to quasiconvex NCP functions.

Definition 5.1 A function f : R
n → R is said to be quasiconvex iff, for every x,

y ∈ R
n and every λ ∈ [0, 1],

f (λx + (1 − λ)y) � max{ f (x), f (y)}.

Here we prove a generalization of Corollary 2 in [4]. To prove this Theorem we need
the following lemma.

Lemma 5.1 For any continuous NCP function ϕ, the following cases are possible:

1. ϕ(a, b) � 0 everywhere on R
2;

2. ϕ(a, b) � 0 everywhere on R
2;

3. ϕ(a, b) < 0 if and only if a, b > 0;
4. ϕ(a, b) > 0 if and only if a, b > 0.

Proof See [4]. 
�
Theorem 5.1 Let ϕ be a continuous and quasiconvex NCP function. Then ϕ(a, b) < 0
if and only if a, b > 0.

Proof Since ϕ is quasiconvex, then for each c > 0 we can write

ϕ
(1

2
(2c, 0) + 1

2
(0, 2c)

)
� max{ϕ(2c, 0), ϕ(0, 2c)} = 0.

Therefore, we have ϕ(c, c) � 0, and this implies that ϕ(c, c) < 0. So, ϕ belongs to
neither case 1 nor case 4 in Lemma 5.1. On the other hand, we have

ϕ(0, 0) = ϕ
(1

2
(c, c) + 1

2
(−c,−c)

)
� max{ϕ(c, c), ϕ(−c,−c)},

i.e.,
0 � max{ϕ(c, c), ϕ(−c,−c)}.

This last inequality together with ϕ(c, c) < 0 concludes that ϕ(−c,−c) � 0, which
implies that ϕ(−c,−c) > 0. Thus, ϕ does not belong to the case 2 in Lemma 5.1, this
means that ϕ belongs to the case 3, as desired. 
�
Theorem 5.2 Suppose that NCP function ϕ is continuous and quasiconvex. If ϕ is
homogeneous of degree α > 0, then it has no local minimum (or maximum).

Proof By contradiction, suppose that ϕ has a local minimum at x∗ = (a∗, b∗)T , i.e.,
there exists r > 0 such that

||x − x∗|| < r �⇒ ϕ(x) � ϕ(x∗). (6)
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If we define the function g :]0,+∞[→ R by

g(t) := ϕ(tx∗) = tαϕ(x∗),

then g has a local minimum at t = 1. So, we have

g′(1) = αϕ(x∗) = 0,

and hence ϕ(x∗) = 0. It follows from the fact that ϕ is an NCP function that

a∗ � 0, b∗ � 0, a∗b∗ = 0.

Now, if we set a = a∗ + r
2 , b = b∗ + r

2 and x = (a, b)T , then since a, b > 0 by
Theorem 5.1, we obtain that ϕ(x) < 0. On the other hand, we have

||x − x∗|| = ||( r

2
,

r

2
)T || = r√

2
< r.

Thus, from (6) it follows that ϕ(x) � ϕ(x∗) = 0. This is a contradiction and completes
the proof. In a similar way, it can be proved that ϕ has no local maximum. 
�

6 Conclusions

We showed in this paper that an NCP function cannot be pseudoconvex, and as a conse-
quence of this, that every convex NCP function is nondifferentiable. Some properties
of quasiconvex NCP functions are proved. Also, a characterization of continuously
differentiable NCP functions is given.
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