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Abstract The aim of this note is to show that a number of publications on invexity
in prestigious journals contain unclear definitions, ambiguous statements and some-
times wrong proofs. By analyzing certain facts of some relevant works, we wish to
call readers’ attention to the literature on invexity when they use it in their research.
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1 Introduction

The concept of invexity was first introduced by Hanson [1], Craven and Glover [2]
and some others in the 1980s. The main focus of invexity is to find a class of func-
tions for which any point where the derivative of a function vanishes, called a critical
point, is also a global minimum of the function. The concept is then extended to non-
differentiable functions and set-valued functions, too. The class of invex functions
has nice properties and allows one to produce zero-gap duality for some optimization
problems. However, since the 1990s a lot of generalizations have come to light with
all sorts of names like quasi-invex functions, pre-invex functions, pseudo-invex func-
tions, and so on. The number of publications on invexity is overwhelming, dispro-
portional with the importance of this concept both from mathematical and practical
points of view. However, what is worse is the fact that many papers in this domain
contain unclear definitions, erroneous statements and false proofs which affect the
community of researchers in applied mathematics.
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e-mail: zalinesc@uaic.ro
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The aim of this short note is not to criticize the authors of certain papers (errare
humanum est), but to analyze what is wrong in their publications in order to help the
interested researchers avoid such mistakes and pay attention when using references
on invexity.

2 About Statements and Proofs

Let us consider the following text quoted from [3] (Ref. [3] is cited 89 (resp., 106)
times in Google Scholar and 10 (resp., 19) times in MathSciNet in April, 2012 (resp.,
in August, 2013)):

Definition 1.1 See Refs. 1–2. A set K ⊆ R
n is said to be invex if there exists a

vector function η : Rn ×R
n →R

n such that

x, y ∈ K, λ ∈ [0,1] ⇒ y + λη(x, y) ∈ K.

Remark 1.1 A convex set is an invex set; i.e., take η(x, y) = x − y. But the
converse does not hold.1

Of course, the converse does not hold because, by [3, Definition 1.1] (quoted
above), any set is invex: just take η(x, y) := 0. The honest definition is: Let η :
R

n ×R
n →R

n be a function. The set K ⊂ R
n is said to be η-invex iff . . .

Or there is another formulation: One says that f is (θ,α)-d invex iff there ex-
ist θ . . . such that f satisfies a certain condition involving θ . . . Of course, it is
correct to first introduce θ,α, d and after that to say that f is (θ,α)-d invex iff . . .

Let us quote from [4]:

Theorem 8 A function f : Rn → R is B-(0, r)-invex (B-(0, r)-incave) with
respect to η and b on R

n if and only if its every stationary points is a global
minimum (maximum) in R

n.

At least two remarks are in order with respect to this statement: first, if the state-
ment is true, f is B-(0, r)-invex with respect to η and b (in the sense of Definition 1
in [4]) if and only if f is invex (because, as seen above, the invexity of a differen-
tiable function f : Rn → R is equivalent to the fact that every stationary point is a
global minimum); so why introduce B-(0, r)-invexity? Second, the statement gives
the impression that the functions η and b, as well as r ∈R, are given. Consider n = 1,
r = 0, b(x,u) := 1 and η(x,u) := u−1(x2 − u2) + sgnu for u �= 0, η(x,u) := 0 for
u = 0. Taking f (x) = 1

2x2 for x ∈ R, we see that every stationary point of f (that is,
u = 0) is a global minimum, but f is not B-(0, r)-invex with respect to η and b on R.

Let us quote also from Definition 8 in [5]:

Let S ⊂ Rn be a nonempty invex set with respect to η. A function f : S → R

is said to be pre-invex with respect to η if there exists a vector-valued function
η : S × S → Rn such that the relation . . .

Definition 9 in [5] is obtained by changing pre-invex by invex. So, first, η is given,
and one line below one asks for the existence of such an η.

1To see the precise coordinates of the references referred in the quoted texts, one might consult the reviews
on MathSciNet of the corresponding articles listed at the end of this note.
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Reading the next text quoted from [6], one could ask if invexity is a topic in math-
ematics (Ref. [6] is cited 77 (resp., 88) times in Google Scholar and 15 (resp., 21)
times in MathSciNet in April, 2012 (resp., in August, 2013)):

Remark 2.3 We will show that Assumption C holds if η(x, y) = x − y +
o(‖x − y‖). In fact, the following two equalities hold:2

(i) η
(
y, y + λη(x, y)

)

= η(y, y + λ
(
x − y + o(‖x − y‖))

= −λ
(
x − y + o(‖x − y‖)) + o

(
λ(‖x − y + o(‖x − y‖))‖)

= −λ
[
x − y + o(‖x − y‖) + o(‖x − y + o(‖x − y‖))‖]

= −λ
[
x − y + o(‖x − y‖)]

= −λη(x, y); . . .
Which is this Condition C (or Assumption C)?
I quote again from p. 610 of [6] (see also p. 116 of [7]):

Assumption C See Ref. 6. Let η : X × X → R
n. Then, for any x, y ∈ R

n and
for any λ ∈ [0,1],
η(y, y + λη(x, y)) = −λη(x, y),
η(x, y + λη(x, y)) = (1 − λ)η(x, y).

Somewhere it is written that X ⊂ R
n; probably for the authors it is not very im-

portant to speak about η(x, y) when x or y is not in X. Let us consider X = R
n.

(Moreover, note that in Definition 2.4 of [6] η : X ×X →R, that is, η takes its values
in R instead of Rn.)

To see that the assumption η(x, y) = x − y + o(‖x − y‖) does not imply Condi-
tion C, let us consider η : R×R → R be defined by η(x, y) := x − y + (x − y)2. Of
course, η satisfies the hypothesis of the statement in Remark 2.3 of [6]. For λ = 1,
the first relation of Condition C is equivalent to each of the following: −η(x, y) +
(η(x, y))2 = −η(x, y), (η(x, y))2 = 0, η(x, y) = 0, (x − y)(1 + x − y)=0, x − y ∈
{0,−1}. So, taking x = 0, y = 2 and λ = 1, one sees that η does not verify Condi-
tion C.

In [7], one finds:

Example 2.1 Let

η(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − y if x ≥ 0, y ≥ 0;
x − y if x ≤ 0, y ≤ 0;
−2 − y if x > 0, y ≤ 0;
2 − y if x ≤ 0, y > 0.

Then, it is easy to verify that η satisfies Condition C.

2Related to this piece of non-mathematics, let us quote from what the authors say in the first footnote on the
first page of [6]: “The authors are thankful to . . . , and three anonymous referees for their many valuable
comments on an early version of this paper. The authors are also grateful to Professor B.D. Craven for
some discussion on this paper”.
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A similar example is the following quoted from [6] (which is very close to that
quoted above from [7], as well as to Example 1.1 in [3]):

Example 2.2 Let
f = −|x|,∀x ∈ K = [−2,2], and let

η(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − y, if x ≥ 0, y ≥ 0;
x − y, if x < 0, y < 0;
−2 − y, if x > 0, y ≤ 0;
2 − y, if x ≤ 0, y > 0.

Then, it is easy to verify that f is invex with respect to η on K and that f and
η satisfy Assumptions A and C. However, f is not convex.

The authors seem not to realize that η, defined in these two examples, is not a
function because η(2,0) gives 2 using the first expression and −2 using the third
expression. A possible modification for η, defined in Example 2.1 of [7], could be:

η(x, y) =
{

x − y if xy ≥ 0,

2 − y if xy < 0.

Take x, y ∈ R with x > 0 > y and λ ∈ [0,1] and let us look at the second relation
in Condition C. We have that η(x, y) = 2 − y and y′ := y +λη(x, y) = y +λ(2 − y).
Assuming that y′ ≥ 0, then η(x, y′) = x − y′ = x − 2 + (1 − λ)η(x, y). Hence,
in such a situation (y < 0 and y + λ(2 − y) ≥ 0), one has η(x, y + λη(x, y)) =
(1 − λ)η(x, y) if and only if x = 2. Is it possible to have y < 0, y + λ(2 − y) ≥ 0
and λ ∈ [0,1]? The answer is YES! Just take λ = 1. Hence, for x = 1, y = −1
and λ = 1 the second relation in Condition C is not verified because η(1,−1) = 3,
η(1,−1 + 3) = η(1,2) = −1 �= 0.

In fact, an adequate modification of the function η in Example 2.1 from [7] (or
Example 2.2 in [6]) is

η(x, y) =

⎧
⎪⎨

⎪⎩

x − y if xy ≥ 0,

2 − y if x < 0, y > 0,

−2 − y if x > 0, y < 0.

The function η defined in this way indeed satisfies Condition C.
Somewhere (say [S]) it was said that

η
(
y + λ2η(x, y), y + λ1η(x, y)

) = (λ2 − λ1)η(x, y)

∀x, y ∈R
n, ∀λ1, λ2 ∈ [0,1], (1)

whenever η verifies Condition C; and for this, the proof of Theorem 3.1 in [6] was
cited. In fact, I was determined by [S] to look at [6] and [7]. Of course, relation
(1) is nice and good to have; moreover, for λ2 = 0 one recovers the first relation in
Condition C.
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Looking at the proof of Theorem 3.1 in [6] (but one can look also at the proof of
Theorem 2.1 in [6] for the same text), one observes that one takes 0 < λ2 < λ1 < 1
and one obtains relation (14) of [6] I am quoting below:

η
(
y + λ1η(x, y), y + λ2η(x, y)

)

= η
(
y + λ1η(x, y), y + λ1η(x, y) − (λ1 − λ2)η(x, y)

)

= η
(
y + λ1η(x, y), y + λ1η(x, y) + η

(
y, y + (λ1 − λ2)η(x, y)

))

= −η(y, y + (
λ1 − λ2η(x, y)

)

= (λ1 − λ2)η(x, y).

The first equality is obvious, the second as well as the fourth follow from the
first relation in Condition C [however, it is = −η(y, y + (λ1 − λ2)η(x, y)) instead
of = −η(y, y + (λ1 − λ2η(x, y))]. What is used to obtain the third equality? Setting
y′ := y + λ1η(x, y), the expression on the third line becomes η(y′, y′ + η(y, y +
(λ1 − λ2)η(x, y))). In order to get the expression on the fourth line (using Condition
C directly), we should have η(y′′, y′′ + η(y, y′′)) with y′′ := y + (λ1 − λ2)η(x, y). Is
y′ = y′′? In fact, y′ = y′′ if and only if η(x, y) = 0 or λ2 = 0.

Maybe (1) is true whenever Condition C holds, but some additional arguments
must be provided.

I have no purpose to mention all doubtful sentences or statements in articles about
invexity, but the majority I had occasion to browse are like that.

3 About the Triviality of Results and Generalizations

Another problem with invexity is given by the triviality of some results or generaliza-
tions. Let us mention some of them found in recent articles published in prestigious
journals.

It is well known that for a Gâteaux differentiable function f : D → R with D an
open subset of a normed vector space X (but X could be a topological vector space),
for any (distinct) points a, b ∈ D with [a, b] := {λa + (1 − λ)b | λ ∈ [0,1]} ⊂ D,
there exists c ∈ ]a, b[ := {λa + (1 − λ)b | λ ∈ (0,1)} such that f (b) − f (a) =
∇f (c)(b − a) (the proof being immediate using the real-valued function ϕ defined
by ϕ(t) := f (ta + (1 − t)b) for those t ∈ R with ta + (1 − t)b ∈ D). What are the
main results obtained in [5]? I don’t speak about Theorems 11 and 12 which are just
rewritten definitions of convexity and pre-invexity (in Theorem 11 of [5] no need to
have the differentiability of f ). Let us quote Theorem 14 in [5]:

Theorem 14 Let S ⊂ Rn be a nonempty invex set with respect to η : S ×S →Rn,
and Pab be an arbitrary η-path contained in intS. Moreover, we assume that
f : S → R is defined on S and differentiable on intS. Then, for any a, b ∈ S,
there exists c ∈ P 0

ab such that the following relation

f
(
a + η(b, a)

) − f (a) = [
η(b, a)

]T ∇f (c) (8)

holds.
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Because (c.f. Definition 5 in [5]) Pab := [a, a +η(a,b)] and P 0
ab := ]a, a +η(a,b)[,

we see that Theorem 14 in [5] is an immediate consequence of the usual mean-value
theorem mentioned above. (Note that it is not said what kind of differentiability is
asked for f —Gâteaux or Fréchet.) Probably the next paper will deal with such a
result in infinite dimensional spaces, then with α–η invex functions (mentioned be-
low). Theorem 17 in [5] deals with a Taylor’s expansion (of order 2) for f . Other
“important” results (Theorems 21, 22) are immediate consequences of known results
for differentiable functions of one real variable. They could constitute easy exercises
for students following a first course in analysis.

Another example in this sense is provided by [8]. As seen in the title of [8], there
is some G there. What is it? It is a function defined on a certain set A ⊂ R with
values in R which is increasing (s, t ∈ A, s < t ⇒ G(s) < G(t)), and moreover, G is
differentiable. In fact, G is defined on the image of a real-valued function f defined
in its turn on an η-invex set X ⊂ R

n. (By the way, if A = If (X) is {0,1}, what does
differentiability of G mean?) One defines G-invex and G-pre-invex functions. Let us
quote Definition 3 in [8]:

Definition 3 Let X be a nonempty invex (with respect to η) subset of Rn and
f : X → R be a differentiable function defined on X. Further, we assume that
there exists a differentiable real-valued increasing function G : If (X) → R.
Then f is said to be (strictly) G-invex at u ∈ X on X with respect to η if
there exists a vector-valued function η : X × X → Rn such that, for all x ∈ X

(x �= u),

G
(
f (x)

) − G
(
f (u)

) ≥ G′(f (u)
)∇f (u)η(x,u) (>). (2)

If (2) is satisfied for any u ∈ X then f is G-invex on X with respect to η.

Taking into account that, for f (Fréchet) differentiable, one has ∇h(u) =
G′(f (u))∇f (u), where h := G ◦ f , the inequality above says that h(x) − h(u) ≥
∇h(u)η(x,u). Having this inequality for all x,u ∈ X means that h is invex. So, one
can simply say that f is G-invex (at u) iff G ◦ f is invex (at u). This simple remark
is not made in [8], but one has (quoted from [8]):

We remark that the G-invexity assumption generalizes a hypothesis of Avriel
et al. [6], Avriel [7], Hanson [11] and Antczak [3] for differentiable functions.
Thus, the following remarks are true:

Remark 5 In the case when η(x,u) = x − u, we obtain a definition of a differ-
entiable G-convex function introduced Avriel et al. [6].

Remark 6 Every invex function with respect to η introduced by Hanson [11] is
G-invex with respect to the same function η, where G : If (X) → R is defined
by G(a) ≡ a. The converse result is, in general, not true (see also Remark 13
and Example 14).

Remark 7 Every r-invex function with respect to η introduced by Antczak
[1,3] is G-invex with respect to the same function η, where G : If (X) → R is
defined by G(a) = era , where r is any finite real number.



J Optim Theory Appl (2014) 162:695–704 701

(However, note that, for r ≤ 0, the function G defined by G(a) = era is not in-
creasing.)

It is suggestive to quote also the definition a G-pre-invex function (but probably
the reader already guesses it):

Definition 9 Let X be a nonempty invex (with respect to η) subset of Rn.
A function f : X → R is said to be (strictly) G-pre-invex at u on X with respect
to η if there exist a continuous real-valued increasing function G : If (X) → R

and a vector-valued function η : X × X → Rn such that for all x ∈ X (x �= u),

f
(
u + λη(x,u)

) ≤ G−1(λG
(
f (x)

) + (1 − λ)G
(
f (u)

))
(<). (3)

If (2) is satisfied for any u ∈ X then f is G-pre-invex on X with respect to η.

Of course, the author does not (want to) observe that this means that h := G ◦ f

is pre-invex at u. What does one obtain in Theorem 10 of [8]? One obtains that f

is G-invex provided f and G are differentiable and f is G-pre-invex. I quote from
p. 646 in [3]:

Recently, Pini (Ref. 6) showed that, if f is defined on an invex set K ⊆ Rn and
if it is preinvex and differentiable, then f is also invex with respect to η, i.e.,
f (y) − f (x) ≥ η(y, x)T ∇f (x).

Of course, in [8] one gives a detailed proof. On p. 646 of [3], one continues with:

But the converse is not true, in general. A counterexample was given in Ref. 6.
However, Mohan and Neogy (Ref. 9) proved that a differentiable invex function
is also preinvex under the following condition. Condition C . . .

On p. 1620 of [8], one says:

The converse result is not true in general, that is, there exist G-invex functions
with respect to η which are not G-pre-invex with respect to the same function η.
To prove the converse theorem, the function η should satisfy the following
Condition C (see [16]). Condition C . . .

Of course, one states Theorem 11 and gives a detailed proof. As a conclusion for
paper [8]: The function f is G-“. . . ” iff G ◦ f is “. . . ”. If an existing result holds
for “. . . ” then in [8] one has a result for G-“. . . ” with detailed proof. And this is
published in a prestigious journal.

The case of [5] and [8] is not singular. Let us have a look at [9] and its fol-
lower [10]. Let us first quote two interesting phrases from [9]:

In recent years, the concept of convexity has been generalized and extended in
several directions using novel and innovative techniques . . .

and

Motivated and inspired by the research going on in this fascinating field, we
introduce a new class of generalized functions.
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Let us quote again from p. 698 of [9]:

Let K be a nonempty closed set in a real Hilbert space H . We denote by 〈·, ·〉
and ‖ · ‖ the inner product and norm, respectively. Let F : K → H and η(·, ·) :
K ×K → R be continuous functions. Let α : K ×K → R \{0} be a bifunction.
First of all, we recall the following well-known results and concepts.

Definition 2.1 Let u ∈ K . Then the set K is said to be α-invex at u with respect
to η(·, ·) and α(·, ·), if, for all u,v ∈ K, t ∈ [0,1], u + tα(v,u)η(v,u) ∈ K .
K is said to be an α-invex set with respect to η and α, if K is α-invex at each
u ∈ K . The α-invex set K is also called αη-connected set. Note that the convex
set with α(v,u) = 1 and η(v,u) = v − u is an invex set, but the converse is not
true.

First note that u + tα(v,u)η(v,u) above does not make sense if H �= R because
u ∈ H and tα(v,u)η(v,u) ∈ R; next, if η(·, ·) : K ×K → H (as in [10]), then K is an
α-invex set with respect to η if and only if K is η′-invex, where η′ := αη (apparently
not observed in [9, 10]). Of course, in Definition 2.2 of [9], one says:

The function F on the α-invex set K is said to be α-preinvex with respect to α

and η, if F(u + tα(v,u)η(v,u)) ≤ (1 − t)F (u) + tF (v),∀u,v ∈ K, t ∈ [0,1],
that is, I say, F is η′-preinvex (however, one must take F : K → R as in [10]
instead of F : K → H). In a similar way, one obtains the corresponding defini-
tions for “α-invex” replaced by “quasi α-preinvex” (see Definition 2.3 in [9]), “log-
arithmic α-preinvex” (see Definition 2.4 in [9]), “pseudo α-preinvex” (see Def-
inition 2.5 in [9]) from the definitions without α. (Note the interesting inequal-
ity max{F(u),F (v)} < max{F(u),F (v)} from the displayed relation after Defini-
tion 2.4 in [9].) Maybe the next one is an exception:

Definition 2.6 A differentiable function F on K is said to be an α-invex func-
tion with respect to α and η, if

F(v) − F(u) ≥ 〈
α(v,u)F ′(u), η(v,u)

〉
, ∀u,v ∈ K,

where F ′(u) is the differential of F at u ∈ K . The concepts of the α-invex
and α-preinvex functions have played very important role in the development
of convex programming; see [6,7]. Note that for α(v,u) = 1, Definition 2.6 is
mainly due to Hanson [1].

Unfortunately, even in this case, F is α-invex with respect to α and η if and only
if F is η′-invex. What is new and surprising for me is the emphasized text above.

Similar remarks are valid for the notions of “αη-monotone”, “strictly αη-mono-
tone”, “αη-pseudomonotone”, “quasi αη-monotone”, “strictly αη-pseudomonotone”
referred to an operator T : K → H (defined in Definition 2.7 of [9]).

However, there are some notions which do not correspond to those for η′ := αη.
These are those containing the word “strongly” in their definition: “strongly
αη-monotone” and “strongly αη-pseudomonotone” operators (see Definition 2.7
in [9]) as well as “strongly α-preinvex” (see Definition 2.8 in [9]), “strongly α-invex”
(see Definition 2.9 in [9]), “strongly pseudo αη-invex” (see Definition 2.10 in [9])
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and “strongly quasi α-invex” (see Definition 2.11 in [9]) functions. The results which
refer to these notions are Theorems 3.1–3.5 in [9]. I do not aim at verifying the cor-
rectness of these results (however, see Example 6.1 in [10]), but some of them are
probably not true having in mind that Theorems 6.1 and 6.4 in [10] give alternative
formulations for the sufficiency parts of Theorems 3.2 and 3.5 in [9], respectively.
What I want to point out are the following facts:

1. If η(u,u) = 0 for some u ∈ K , then there do not exist pseudo α-preinvex, strictly
α-invex and strictly pseudo α-invex functions with respect to α and η, as well as
strictly αη-monotone and strictly pseudo αη-monotone operators. Note that, if α

and η satisfy Condition C on p. 702 of [9] or condition (ii) in Theorem 6.1 of [10],
then η(u,u) = 0 for every u ∈ K .

2. In some proofs of the statements in [9] and [10], one uses the relation g(1) −
g(0) = ∫ 1

0 g′(t) dt , where g is a real-valued differentiable function on a subset of
R containing [0,1]. In fact, g(t) := F(u+ tα(v,u)η(v,u)) for t ∈ [0,1], where F

is differentiable. It is a well-known fact that the formula g(1)−g(0) = ∫ 1
0 g′(t) dt

might not be true if g′ is not Riemann integrable on [0,1]. As an example, take
g(t) := t2 sin(t−2) for t ∈ ]0,1], g(0) := 0.

3. In Theorems 6.1–6.4 of [10], one uses the condition

α
(
u,u + tα(v,u)η(v,u)

) = tα(v,u), ∀u,v ∈ K, t ∈ [0,1].
Taking t = 0, this implies that α(u,u) = 0 for every u ∈ K , contradicting the
assumption made before Definition 1.1 in [10] that α takes its values in R \ {0}.
This shows that the domain of applicability of Theorems 6.1–6.4 in [10] is the
empty set.

4 Conclusions

In this note, we pointed out that several papers published in prestigious journals con-
tain important drawbacks in the formulation of the notions and in the statements of the
results, as well as very serious mistakes in the proofs. Furthermore, there are many
trivial generalizations of notions and results. In this sense, it is useful to mention
that there are several reviews in Mathematical Reviews and Zentralblatt für Mathe-
matik which are concordant with our opinions; let us cite the reviews MR1989930
(2004e:90091) (for [6], by S. Komlosi), in which it is mentioned explicitly that Re-
mark 2.3 of [6] is false by giving a counterexample; Zbl 1094.26008 Noor, Muham-
mad Aslam On generalized preinvex functions and monotonicities. (English) [J] JI-
PAM, J. Inequal. Pure Appl. Math. 5, No. 4, Paper No. 110, 9 p., electronic only
(2004). ISSN 1443-5756 (by J. E. Martínez-Legaz), in which it is mentioned that
all the results in the paper follow from a simple observation; Zbl 1096.26006 Noor,
Muhammad Aslam; Noor, Khalida Inayat On strongly generalized preinvex functions.
(English) [J] JIPAM, J. Inequal. Pure Appl. Math. 6, No. 4, Paper No. 102, 8 p., elec-
tronic only (2005). ISSN 1443-5756 (by J. E. Martínez-Legaz), in which, besides
other remarks, a definition is mentioned which does not make sense; Zbl 1093.26006
(for [9], by N. Hadjisavvas), where it is mentioned that “Many other notions and
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properties introduced in this paper can be derived in the same way from the usual
generalized invexity notions that can be found in other papers in the field. When this
is not the case, mistakes occur frequently”. In conclusion, we consider that there are
too many papers related to invexity, much more than the domain deserves. We con-
sider that the editors of mathematical journals have to pay much more attention when
accepting to publish such papers, taking into account at least the lack of criticism in
the Invexity Community.
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