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Abstract In this paper, we deal with infinite horizon optimal control problems in-
volving affine-linear dynamics and prove the existence of optimal solutions. The in-
novation of this paper lies in the special setting of the problem, precisely in the choice
of weighted Sobolev and weighted Lebesgue spaces as the state and control spaces,
respectively, which turns out to be meaningful for various problems. We apply the
generalized Weierstraß theorem to prove the existence result. A lower semicontinuity
theorem which is needed for that is shown under weakened assumptions.

Keywords Infinite horizon · Optimal control · Existence theorem ·
Weighted Sobolev and Lebesgue spaces · Weak lower semicontinuity

1 Introduction

The intensive theoretical investigation of infinite horizon optimal control problems
began in the 1970s. Since then many results concerning necessary optimality con-
ditions, e.g. [1–3], and sufficient optimality conditions, e.g. [4, 5], were established.
The existence results were paid pretty much attention as well, so that various re-
sults came to light, see [6–10] and others. For various new applications of this class
of problems we refer to [11, 12]. As was described in [5] and [13], the choice of
Sobolev and Lebesgue spaces as state and control spaces, respectively, is unsatisfac-
tory as some very simple examples showed. In [5] and [13] it was also shown that the
weighted Sobolev spaces and weighted Lebesgue spaces are much more reasonable
to work with, so that they are chosen as the functional spaces in the problem setting of
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the present paper. Another key point in the new problem formulation is the presence
of a special pointwise state constraint which has an impact on the boundedness of the
feasible set in the norms of underlying spaces and consequently on the existence of
an optimal solution. Throughout the paper the integral in the improper integral objec-
tive is understood in Lebesgue sense. Thus we obtain a new class of infinite horizon
optimal control problems for which it is important to find some existence results.

Main results of this paper include a lower semicontinuity theorem for integral
functionals involving a Lebesgue integral with respect to weak topology and an exis-
tence theorem itself. The necessity of distinguishing between different interpretations
of integral in the improper integral objective of infinite horizon control problems
was addressed in [14]. The main difference from the existence theorems presented
in [6, 7] is in the setting of the optimal control problem itself, namely in the choice
of weighted Sobolev and weighted Lebesgue spaces as the state and control spaces,
respectively. The corresponding choice of the weak topology of these spaces for the
proof of lower semicontinuity of integral functionals makes the direct comparison of
the existence result of this paper with those of [6, 7] rather difficult. Nevertheless,
while using these spaces we followed the well known heuristics, cf. [15], which says
that the vector space for the adjoint function should be a dual space of a space in
which the feasible set of the optimal control problem has a nonempty interior. Mo-
tivated by this the considering of the reflexive Banach space, which the considered
weighted Sobolev space is, is more comfortable than working with the space of lo-
cally absolutely continuous functions, which is considered in the named papers. In
this case the desired relation between the state space and the space for the adjoint
would be lost.

One of the classical tools for proving the existence of an optimal solution for a
control problem on some compact interval via the generalized Weierstraß theorem is
the compactness of the embedding of the weighted Sobolev space into the weighted
Lebesgue space of the same index. However, in order to achieve the compactness of
this embedding on an unbounded interval, it is necessary and sufficient to choose a
weight function satisfying the so called “decay at infinity”-condition, cf. [16, 17],
which was also applied for the proof of lower semicontinuity in [13]. In the present
paper we make use of a pointwise state constraint instead of this restrictive condition,
which requires some new technique of proof.

The present paper is structured as follows. Section 2 includes the problem for-
mulation, definitions and main assumptions. Section 3 is devoted to the proof of a
lower semicontinuity theorem for integral functionals in weak topology of weighted
Sobolev and weighted Lebesgue spaces. In the next section we prove an existence
theorem for the introduced class of problems. Section 5 presents an example illus-
trating the applicability of proved theorems. In Sect. 6 we finish with conclusions.

2 Preliminaries

2.1 Definitions and Notations

Let us introduce B as a measurable set in s-dimensional Euclidean space. We denote
by Mn(B), Ln

p(B) and C0,n(R+) the spaces of all vector functions x : B → R
n with
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Lebesgue measurable, in the pth power Lebesgue integrable or continuous compo-
nents, respectively ([18], p. 146 and pp. 285 ff.; [19], pp. 228 ff.). For n = 1, we
suppress the superscript in the labels of the spaces. We write [0,∞[= R

+.

Definition 2.1

(a) A continuous function ν : R+ → R
+\{0} is called a weight function.

(b) A weight function ν is called a density function iff it satisfies

L -
∫ ∞

0
ν(t) dt < ∞. (1)

Remark 2.1 The notation L -
∫

stands for the Lebesgue interpretation of the integral.
The Lebesgue measure will be denoted by μ, while the measure induced by a density
function ν will be denoted by μν . We also remark that because of the positivity and
continuity of the function ν the sets of measure zero are the same for both measures,
so that the meanings of μ-a.e. and μν -a.e. are in fact identical. Therefore, throughout
the paper we just use the abbreviation “a.e.” without concretizing the corresponding
measure.

Definition 2.2

(a) By means of a weight function ν, we define for any 1 ≤ p < ∞ the weighted
Lebesgue space

Ln
p(B, ν) :=

{
x ∈ Mn(B)

∣∣∣∣
(

L -
∫
B

∣∣x(t)
∣∣pν(t) dt

)1/p

< ∞
}

(2)

as well as

Ln∞(B, ν) :=
{
x ∈ Mn(B)

∣∣∣ ess sup
t∈B

∣∣x(t)ν(t)
∣∣ < ∞

}
(3)

and
(b) the weighted Sobolev space

W 1,n
p

(
R

+, ν
) := {

x ∈M
n
(
R

+) | x ∈ Ln
p

(
R

+, ν
)
, ẋ ∈ Ln

p

(
R

+, ν
)}

, (4)

where ẋ denotes the distributional derivative; see [20], p. 11 f. Equipped with the
norm

‖x‖
W

1,n
p (R+,ν)

= ‖x‖Ln
p(R+,ν) + ‖ẋ‖Ln

p(R+,ν), (5)

W
1,n
p (R+, ν) becomes a Banach space (this can be confirmed analogously to [20],

p. 19, Theorem 3.6).

Lemma 2.1 Let ν be a density function. Then any linear, continuous functional
ϕ : Lp(R+, ν) →R can be represented by a function y ∈ Lq(R+, ν) with 1

p
+ 1

q
= 1
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if 1 < p < ∞ and q = ∞ if p = 1:

〈ϕ,x〉 = L -
∫ ∞

0
y(t)x(t)ν(t) dt, ∀x ∈ Lp

(
R

+, ν
)
. (6)

We can apply [19], p. 287, Theorem 3.2, since the measure generated by the density
function ν is σ -finite on R

+.

Remark 2.2 The continuity of the weight function ν in Definition 2.1 is essen-
tial, since in the proofs of the main theorems we are going to apply the Rellich–
Kondrachov embedding theorem for non-weighted Sobolev spaces, which remains
valid also for the weighted Sobolev spaces if the weight function ν is continuous.

2.2 Infinite Horizon Optimal Control Problem

The infinite horizon control problem consists in minimizing the integral objective

J∞(x,u) := L -
∫ ∞

0
r
(
t, x(t), u(t)

)̃
ν(t) dt (7)

with respect to all pairs

(x,u) ∈ W
1,n
p

(
R

+, ν
) × Lm

p

(
R

+, ν
)
, 1 < p < ∞, (8)

governed by the differential equation

ẋ(t) = f
(
t, x(t), u(t)

)
a.e. on R

+, (9)

x(0) = x0, (10)

and satisfying the constraints
∣∣x(t)

∣∣ ≤ β(t), with β(·) ∈ L1
p

(
R

+, ν
)
, (11)

u(t) ∈ U ⊂ R
m a.e. on R

+. (12)

Hereby U denotes a compact convex subset of Rm, ν is a density function and ν̃ is a
weight function as in Definition 2.1. The functions x and u are called the state and the
control function, respectively. The integral in (7) is understood in Lebesgue sense. We
refer to problem (7)–(12) as to the problem (P∞). The choice of such sophisticated
spaces as in (8) is motivated by the fact that very often the solution trajectory x, as
well as the control function u, do not belong to any non-weighted Sobolev space over
the unbounded interval [0,∞[; cf. [13].

Remark 2.3

(a) State and control functions are weighted by the same density function ν which
seems to be natural and becomes clear if one considers the simplest state equation
ẋ(t) = u(t), where the functions on both hand sides are from the same weighted
Lebesgue space.
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(b) Since the weight function ν is a density, the inclusion L∞(R+) ⊆ Lp(R+, ν)

holds for a fixed 1 ≤ p < ∞ in contrast to the L∞(R+) � Lp(R+) for non-
weighted spaces. This allows to consider a larger space for the control function.

We now introduce the following assumptions:

Assumption 2.1 The function r : R+ ×R
n ×R

m → R satisfies the following condi-
tions: r(·, ξ, v) is continuous for all (ξ, v) ∈ R

n ×R
m, ∇ξ r(t, ·, v) is continuous for

all (t, v) ∈ R
+ ×R

m, ∇vr(t, ξ, ·) is continuous for all (t, ξ) ∈ R
+ ×R

n, r(t, ξ, ·) is
convex for all (t, ξ) ∈ R

+ ×R
n.

Assumption 2.2 r(t, ξ, v) satisfies the growth condition

∣∣r(t, ξ1, . . . , ξn, v1, . . . , vm)
∣∣ ≤ A1(t)

ν̃(t)
+ B1 ·

n∑
i=1

|ξi |p
ν̃(t)

· ν(t) + B1 ·
m∑

k=1

|vk|p
ν̃(t)

· ν(t),

∀(t, ξ, v) ∈R
+ ×R

n ×R
m (13)

with a function A1 ∈ L1(R
+) and a constant B1 > 0.

Assumption 2.3 The gradient ∇vr(t, ξ, v) satisfies the growth condition
∣∣∣∣∇vr(t, ξ1, . . . , ξn, v1, . . . , vm) · ν̃(t)

ν(t)

∣∣∣∣
≤ A2(t)ν(t)−1/q + B2 ·

n∑
i=1

|ξi |p/q + B2 ·
m∑

k=1

|vk|p/q,

∀(t, ξ, v) ∈ R
+ ×R

n ×R
m (14)

with 1
p

+ 1
q

= 1, 1 < p < ∞ with a function A2 ∈ Lq(R+) and a constant B2 > 0.

Assumption 2.4 Let the function f : R+ × R
n × R

m → R
n from (9) be defined as

follows:

f
(
t, x(t), u(t)

) := A
(
t, x(t)

) + B
(
t, x(t)

)
u(t), (15)

where the elements of the matrix B( · , x( · )) satisfy the growth conditions

∣∣Bij (t, ξ1, . . . , ξn)
∣∣ ≤ A3ij (t)

(
ν(t)

)−1/q + B3ij

n∑
k=1

|ξk|p/q,

∀(t, ξ) ∈R
+ ×R

n (16)

for all (i, j) : i ∈ {1, . . . , n}; j ∈ {1, . . . ,m}. Hereby 1
p

+ 1
q

= 1, A3ij ∈ Lq(R+),
B3ij > 0. Besides, it is assumed that there exist nonnegative constants C1, C2, C3,
C4 such that

∣∣A(t, ξ) + B(t, ξ)v
∣∣ ≤ C1 + C2|ξ | + C3|ξ | · |v| + C4|v|,

∀(t, ξ, v) ∈R
+ ×R

n ×R
m. (17)
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Remark 2.4

(a) The condition (16) as well as the growth conditions from Assumption 2.3 can be
written in a slightly different way, namely

∣∣Bij (t, ξ1, . . . , ξn)
∣∣ ≤ A3ij (t) + B3ij

n∑
k=1

|ξk|p/q, ∀(t, ξ) ∈ R
+ ×R

n (18)

for all (i, j) : i ∈ {1, . . . , n}; j ∈ {1, . . . ,m}. Hereby A3ij ∈ Lq(R+, ν), B3ij > 0,
1
p

+ 1
q

= 1 hold as before.
(b) The growth conditions in Assumptions 2.2 and 2.3 are in such a manner that if

they are satisfied for the integrand r and some weight function ν̃, then they are
also satisfied for the integrand r1 := r · ν̃ and the weight function ν̃1(t) ≡ 1 and
vice versa. Consequently, it is not necessary to separate some weight function ν̃

in the integral functional J∞ and one could just set ν̃(t) ≡ 1. However, in view
of numerous economical and biological applications of infinite horizon optimal
control problems which contain some special weight function, such as discount
rate e−ρt , in the integrand of the objective, we prefer here to explicitly introduce
the weight function ν̃ in the integral functional J∞.

Definition 2.3

(a) A pair (x,u) is called admissible for the problem (P∞), if it satisfies the condi-
tions (8)–(12) and the Lebesgue integral in (7) exists and has a finite value.

(b) An admissible pair (x∗, u∗) is called global optimal solution of the problem
(P∞), if for any admissible pair (x,u) the inequality J∞(x∗, u∗) ≤ J∞(x,u)

holds.

3 Lower Semicontinuity Result

Theorem 3.1 Let 1 < p < ∞ be given. Furthermore, let the integrand r :R+ ×R
n ×

R
m → R, a density function ν, a weight function ν̃ satisfy Assumptions 2.1–2.3. With

a function β ∈ Lp(R+, ν) and a compact nonempty set U ⊂ R
m we define the sets

Xp := {
x ∈ W 1,n

p

(
R

+, ν
) | ∣∣x(t)

∣∣ ≤ β(t),∀t ∈R
+}

, (19)

Up := {
u ∈ Lm

p

(
R

+, ν
) | u(t) ∈ U a.e. on R

+}
. (20)

Then, the integral functional J∞ from (7) is lower semicontinuous on the set Xp ×Up

with respect to the weak topology of spaces W
1,n
p (R+, ν) and Lm

p (R+, ν), i.e. the
inequality

J∞(x0, u0) = L -
∫ ∞

0
r
(
t, x0(t), u0(t)

)
ν̃(t) dt

≤ lim inf
N→∞ L -

∫ ∞

0
r
(
t, xN(t), uN(t)

)
ν̃(t) dt = lim inf

N→∞ J∞(xN,uN) (21)
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holds for any weak convergent sequences

{xN } ⇀ x0
(
in W 1,n

p

(
R

+, ν
))

, {uN } ⇀ u0
(
in Lm

p

(
R

+, ν
))

, N → ∞. (22)

Remark 3.1 We prove the lower semicontinuity of the integral functional on the set
Xp × Up , since we need it merely on the admissible set of optimal control prob-
lem (P∞). The existence of a majorant function β ∈ Lp(R+, ν) and of a nonempty
compact set U ⊂ R

m results from the statement of the optimal control problem.

Proof Consider an arbitrary sequence {(xN,uN)}∞N=1 ⊂ (Xp ×Up) such that {xN } ⇀

x0 (in W
1,n
p (R+, ν)) and {uN } ⇀ u0 (in Lm

p (R+, ν)). We show the validity of the
inequality (21).

The growth condition (13), the definition of the set Xp and the compactness of the
set U imply the existence of a function α ∈ L1(R

+, ν̃) such that all pairs of functions
(x,u) ∈ Xp ×Up satisfy the inequality r(t, x(t), u(t)) ≥ α(t) for all t > 0. Therefore,
without any loss of generality, we suppose that the function r has non-negative values.
Otherwise we could consider the function r̃ defined by

r̃
(
t, x(t), u(t)

) := r
(
t, x(t), u(t)

) − α(t) ≥ 0, ∀t > 0.

The convexity of r(t, ξ, ·), due to Assumption 2.1, yields

r
(
t, xN(t), uN(t)

)̃
ν(t)

≥ r
(
t, xN(t), u0(t)

)̃
ν(t) + ∇T

v r
(
t, xN(t), u0(t)

)
(uN − u0)(t )̃ν(t) (23)

pointwise on R
+ for all {xN,uN } satisfying xN ⇀ x0 in W

1,n
p (R+, ν) and uN ⇀ u0

in Lm
p (R+, ν). We rewrite this inequality as follows:

r
(
t, xN(t), uN(t)

)̃
ν(t)

≥ r
(
t, xN(t), u0(t)

)̃
ν(t)

+ ∇T
v r

(
t, x0(t), u0(t)

)(
uN(t) − u0(t)

)̃
ν(t)

+ [∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)] · (uN(t) − u0(t)
)̃
ν(t) (24)

and integrate it over the half-line. The inequality sign remains valid:
∫ ∞

0
r
(
t, xN(t), uN(t)

)̃
ν(t) dt

≥
∫ ∞

0
r
(
t, xN(t), u0(t)

)̃
ν(t) dt

+
∫ ∞

0
∇T

v r
(
t, x0(t), u0(t)

)(
uN(t) − u0(t)

)̃
ν(t) dt

+
∫ ∞

0

[∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)](
uN(t) − u0(t)

)̃
ν(t) dt.

(25)
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We now should ensure that all three integrals on the right hand side of the last in-
equality exist and have finite values. The first one exists due to Assumption 2.2, the
second and the third summands are finite by Assumption 2.3. Taking the limit infe-
rior of the both sides of the inequality (25) and having in mind that for arbitrary real
number sequences (aN), (bN), (cN) the inequality

lim inf
N→∞ (aN + bN + cN) ≥ lim inf

N→∞ (aN) + lim inf
N→∞ (bN) + lim inf

N→∞ (cN) (26)

holds, we obtain

l := lim inf
N→∞

∫ ∞

0
r
(
t, xN(t), uN(t)

)̃
ν(t) dt ≥ l1 + l2 + l3 (27)

with notations

l1 := lim inf
N→∞

∫ ∞

0
r
(
t, xN(t), u0(t)

)̃
ν(t) dt, (28)

l2 := lim inf
N→∞

∫ ∞

0
∇T

v r
(
t, x0(t), u0(t)

)(
uN(t) − u0(t)

)̃
ν(t) dt, (29)

l3 := lim inf
N→∞

∫ ∞

0

[∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)]

× (
uN(t) − u0(t)

)̃
ν(t) dt. (30)

Our aim now is to find suitable estimates from below for l1, l2 and l3.

Estimate for l1: We choose a subsequence {xm} ⊂ {xN } which provides the value of
the limit inferior in (28), i.e. we have

lim inf
N→∞

∫ ∞

0
r
(
t, xN(t), u0(t)

)̃
ν(t) = lim

m→∞

∫ ∞

0
r
(
t, xm(t), u0(t)

)̃
ν(t). (31)

The restrictions of the functions xm on the interval [0,1] are elements of weighted
Sobolev space W

1,n
p ([0,1], ν|[0,1]). Then, by the embedding theorem of Rellich–

Kondrachov for non-weighted Sobolev spaces, cf. [17], Theorem 6.2, p. 144, and
by the positivity and continuity of the function ν we conclude the existence of con-
tinuous representants of the sequence {xm}. It means there exist such a subsequence
{xN1} ⊂ {xm} and a function x̂1 ∈ (W

1,n
p ([0,1], ν|[0,1]) ∩ C0[0,1]) that the subse-

quence {xN1} converges uniformly on [0,1] to the function x̂1:

xN1 ⇀ x̂1
(
in W 1,n

p

([0,1], ν|[0,1]
))

, (32)

lim
N1→∞

‖xN1 − x̂1‖C0[0,1] = 0. (33)

In general we build the subsequences {xNk } ⊂ {xNk−1}, k = 2,3, . . . satisfying

xNk ⇀ x̂k

(
in W 1,n

p

([0, k], ν|[0,k]
))

, (34)

lim
Nk→∞

‖xNk − x̂k‖C0[0,k] = 0. (35)
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By the construction, we have the coincidence x̂k(t) = x̂k−1(t) on [0, k−1]. This leads
to the limit function x̂ ∈ (W

1,n
p,loc(R

+, ν) ∩ C0(R+)) whose restriction on [0, k] coin-
cides with x̂k . The uniqueness of the weak limit yields x̂(t) = x0(t) for all t ∈R

+.
We now construct a diagonal sequence having following properties: From the first

sequence {xN1} we take the first element xN1
1

satisfying

‖xN1
1

− x̂1‖C0[0,1] ≤ 1/2, (36)

from {xN2} we take the first element xN2
2

with N2
2 > N1

1

‖xN2
2

− x̂2‖C0[0,2] ≤ 1/4, (37)

and generally we take from the sequence {xNk } the first element xNk
k

having Nk
k >

Nk−1
k−1 and

‖xNk
k

− x̂k‖C0[0,k] ≤ 1/2k. (38)

The constructed diagonal sequence {xNk
k
} converges pointwise everywhere on [0,∞[

to the limit function x̂ = x0. Since the integrand r has nonnegative values, the Fatou
lemma, cf. [18], p. 152, can be applied in order to bring the limit under the integral
sign:

l1 = lim
Nk

k →∞

∫ ∞

0
r
(
t, xNk

k
(t), u0(t)

)̃
ν(t) dt

≥
∫ ∞

0
lim inf
Nk

k →∞
r
(
t, xNk

k
(t), u0(t)

)̃
ν(t) dt. (39)

Together with the estimate (39), the equation (31) and in consequence of the continu-
ity of the function r(t, · , v) for all (t, v) ∈ R

+ ×R
m, one obtains the following chain

of estimates:

l1 = lim inf
N→∞

∫ ∞

0
r
(
t, xN(t), u0(t)

)̃
ν(t) dt

= lim
Nk

k →∞

∫ ∞

0
r
(
t, xNk

k
(t), u0(t)

)̃
ν(t) dt

≥
∫ ∞

0
lim inf
Nk

k →∞
r
(
t, xNk

k
(t), u0(t)

)̃
ν(t) dt

=
∫ ∞

0
lim

Nk
k →∞

r
(
t, xNk

k
(t), u0(t)

)̃
ν(t) dt

= L -
∫ ∞

0
r
(
t, x0(t), u0(t)

)̃
ν(t) dt. (40)
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From this it follows that

l1 ≥ L -
∫ ∞

0
r
(
t, x0(t), u0(t)

)̃
ν(t) dt = J∞(x0, u0). (41)

Estimate for l2: We choose a subsequence {us} ⊂ {uN } which provides the value of
the limit inferior in l2, i.e. we have

l2 = lim
s→∞

∫ ∞

0
∇T

v r
(
t, x0(t), u0(t)

)(
us(t) − u0(t)

)̃
ν(t) dt. (42)

In view of the growth condition (14) stated in Assumption 2.3 and due to Theorem
25 from [21], p. 59, the Nemytskij operator N( · , · ) defined by

N(x0, u0)(t) = ∣∣∇vr
(
t, x0(t), u0(t)

)∣∣ ν̃(t)

ν(t)
(43)

maps all the functions from the space Ln+m
p (R+, ν) into the space Lq(R+, ν). Par-

ticularly, we obtain

∣∣∇vr
( · , x0( · ), u0( · ))∣∣ ν̃( · )

ν( · ) ∈ Lq

(
R

+, ν
)

(44)

and can use the function ∇vr( · , x0( · ), u0( · )) ν̃( · )
ν( · ) as an inducing element of a linear

continuous functional on the space Lm
p (R+, ν). Since {us} is weakly convergent in

Lm
p (R+, ν) to the function u0, we arrive due to the definition of the weak conver-

gence, cf. Definition 5.7 from [19], p. 261 f., at

l2 = lim
s→∞

∫ ∞

0
∇T

v r
(
t, x0(t), u0(t)

) ν̃(t)

ν(t)

(
us(t) − u0(t)

)
ν(t) dt = 0. (45)

Estimate for l3: Similarly as in the previous estimate, we choose a subsequence
{xq,uq} ⊂ {xN,uN } giving the value of the limit inferior in l3, i.e. we have

l3 = lim inf
N→∞

∫ ∞

0

[∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)]

× (
uN(t) − u0(t)

)̃
ν(t) dt

= lim
q→∞

∫ ∞

0

[∇T
v r

(
t, xq(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)]

× (
uq(t) − u0(t)

)̃
ν(t) dt. (46)

The subsequence {xq,uq} will again be indexed by the index N ∈ N. Since for 1 <

p < ∞ there exists a uniform majorant β ∈ Lp(R+, ν) for the elements of the weakly
convergent sequence {xN } such that

∣∣xN(t)
∣∣ ≤ β(t), ∀t ∈ R

+, (47)
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we can apply the growth condition (14) in order to construct a uniform majorant
M :R+ →R

+ for the family of functions

(∇vr
(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)) ν̃(t)

ν(t)
, N ∈N. (48)

Thus, the estimate
∣∣∣∣
(∇T

v r
(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)) ν̃(t)

ν(t)

∣∣∣∣
≤

∣∣∣∣∇T
v r

(
t, xN(t), u0(t)

) ν̃(t)

ν(t)

∣∣∣∣ +
∣∣∣∣∇T

v r
(
t, x0(t), u0(t)

) ν̃(t)

ν(t)

∣∣∣∣

≤ A2(t)ν(t)−1/q + B2 ·
n∑

i=1

∣∣xi
N(t)

∣∣p/q + B2 ·
m∑

k=1

∣∣uk
0(t)

∣∣p/q

+ A2(t)ν(t)−1/q + B2 ·
n∑

i=1

∣∣xi
0(t)

∣∣p/q + B2 ·
m∑

k=1

∣∣uk
0(t)

∣∣p/q (49)

with A2 ∈ Lq(R+),B2 > 0 holds for any arbitrary number N ∈ N and p ∈]1,∞[.
The last estimate can be continued in the following way:

∣∣∣∣
(∇vr

(
t, xN(t), u0(t)

)T − ∇vr
(
t, x0(t), u0(t)

)T ) ν̃(t)

ν(t)

∣∣∣∣
≤ 2A2(t)ν(t)−1/q + 2nB2β(t)p/q + 2mB2

∣∣u0(t)
∣∣p/q := M(t). (50)

It is obvious that the function M belongs to Lq(R+, ν), since due to Minkowski’s
inequality we have

{∫ ∞

0

∣∣2A2(t)ν(t)−1/q + 2nB2β(t)p/q + 2mB2
∣∣u0(t)

∣∣p/q ∣∣qν(t) dt

}1/q

≤
{∫ ∞

0

∣∣2A2(t)
∣∣q dt

}1/q

+
{∫ ∞

0

∣∣2nB2β(t)p/q
∣∣qν(t) dt

}1/q

+
{∫ ∞

0

∣∣2mB2
∣∣u0(t)

∣∣p/q ∣∣q
}1/q

ν(t) dt

= 2‖A2‖Lq(R+) + 2nB2‖β‖Lp(R+,ν) + 2mB2‖u0‖Lp(R+,ν) < ∞. (51)

The sequence {uN } is bounded in the norm because of its weak convergence. It means
the validity of the inequality

‖uN − u0‖Lp(R+,ν) ≤ C, N ∈ N (52)

for some constant C > 0. On the other side, the elements of the sequence {uN } are
also pointwise bounded, due to the compactness of the set U used in the definition
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of Up . Thus, there exists a number K > 0 so that
∣∣uN(t)

∣∣ ≤ K (53)

holds for all t ∈ R
+ and all N ∈ N. Through a similar diagonal selection method

used in the estimate for l1, we construct a diagonal subsequence {xNk
} ⊂ {xN } which

converges everywhere on R
+ to the function x0. Preparing the final estimate of the

term l3 we need several steps.

Step 1: Choose an arbitrary ε > 0. Since the integral

‖M‖q

Lq(X,ν) =
∫

X

∣∣M(t)
∣∣qν(t) dt (54)

is an absolutely continuous function with respect to X, for any ε > 0 there
exists a δ(ε) > 0 such that for all sets X with μν(X) < δ the inequality

‖M‖Lq(X,ν) <
ε

2C
(55)

holds.
Step 2: Find a number δ = δ(ε) with (55).
Step 3: Set ε1 := min{ε, δ(ε)}.
Step 4: Since the integrand r was assumed to be continuously differentiable in the

second and the third variables and due to the positivity and continuity of ν̃
ν

, the

sequence {∇vr(t, xNk
(t), u0(t))

ν̃(t)
ν(t)

}∞k=1 converges to ∇vr(t, x0(t), u0(t))
ν̃(t)
ν(t)

pointwise everywhere on R
+. The application of Jegorow Theorem, cf.

[19], Theorem 3.5, p. 250, to the sequence {∇vr(t, xNk
(t), u0(t))

ν̃(t)
ν(t)

} im-
plies for ε1 > 0 from the previous step the existence of a set Mε1 satisfy-
ing μν(R

+\Mε1) < ε1 < δ(ε) on which this sequence converges uniformly to
∇vr(t, x0(t), u0(t))

ν̃(t)
ν(t)

. Thus, for any ε > 0 one is able to find such a number
N0 ∈N that for all Nk ≥ N0 and for all t ∈ Mε1 the inequality

∣∣∇T
v r

(
t, xNk

(t), u0(t)
) − ∇T

v r
(
t, x0(t), u0(t)

)∣∣ ν̃(t)

ν(t)
<

ε1

4KV
<

ε

4KV
(56)

is true, where

V = L -
∫ ∞

0
ν(t) dt.

The sequence {xNk
} will again be numerated by the index N .

Step 5: We now estimate for p ∈]1,∞[ using the Hölder’s inequality, as well as the
inequalities (50), (52), (53), (55), (56):∣∣∣∣

∫ ∞

0

[∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)](
uN(t) − u0(t)

)̃
ν(t) dt

∣∣∣∣
≤

∫ ∞

0

∣∣∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)∣∣ ν̃(t)

ν(t)

× ∣∣uN(t) − u0(t)
∣∣ν(t) dt
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=
∫

Mε1

∣∣∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)∣∣ ν̃(t)

ν(t)

× ∣∣uN(t) − u0(t)
∣∣ν(t) dt

+
∫
R+\Mε1

∣∣∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)∣∣ ν̃(t)

ν(t)

× ∣∣uN(t) − u0(t)
∣∣ν(t) dt

≤
∫

Mε1

ε

4KV
2Kν(t) dt +

∫
R+\Mε1

∣∣M(t)
∣∣∣∣uN(t) − u0(t)

∣∣ν(t) dt

≤ ε

4KV
2K

∫ ∞

0
ν(t) dt + ‖M‖Lq(R+\Mε1 ,ν) · ‖uN − u0‖Lp(R+,ν)

<
ε

2KV
· KV + ε

2C
· C = ε. (57)

Consequently, we arrive at

l3 = lim
N→∞

∫ ∞

0

[∇T
v r

(
t, xN(t), u0(t)

) − ∇T
v r

(
t, x0(t), u0(t)

)]

× (
uN(t) − u0(t)

)̃
ν(t) dt = 0. (58)

Summarizing, we obtain together with (27), (41), (45), (58) the inequality

l = lim inf
n→∞ J∞(xN ,uN) ≥ l1 + l2 + l3 ≥ J∞(x0, u0), (59)

which proves the weak lower semicontinuity of the functional J∞ from (7) on the set
Xp ×Up . �

Remark 3.2 The integrability of the weight function ν plays an important role in the
growth conditions of Assumptions 2.2 and 2.3 which in turn allow to assure the con-
tinuity of corresponding Nemytskij operators mapping between weighted Lebesgue
spaces. Therefore, the condition L -

∫ ∞
0 ν(t) dt < ∞ is essential and cannot be omit-

ted. The stronger “decay at infinity”-condition

lim
t→∞

ν(t + ε)

ν(t)
= 0, ∀ε > 0, (60)

assumed in [13] in order to assure the compactness of the embedding

W 1,n
p

(
R

+, ν
)
↪→ Ln

p

(
R

+, ν
)
, (61)

could be avoided here. Instead of this we assumed a weaker condition posed in (19).
Moreover, the above embedding is not compact without the condition (60), since the
latter is a necessary one as well, cf. [16, 17].
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4 An Existence Theorem

Theorem 4.1 Let 1 < p < ∞. We assume that Assumptions 2.1–2.4 are satisfied and
that there exists at least one admissible pair of the problem (P∞). Furthermore, let
the functions A and B from (15) be uniformly Lipschitz continuous in x(t) and the
control set U be convex. Then, there exists an optimal solution of the problem (P∞).

Proof In order to prove this theorem, we want to use the generalized Weierstraß the-
orem which says that a weakly lower semicontinuous functional J = J (x,u) defined
on a weakly compact set A reaches its lower bound, i.e. there exists such a pair
(x∗, u∗) ∈A that

J
(
x∗, u∗) = inf

(x,u)∈A
J (x,u). (62)

Due to Assumptions 2.1–2.3, we now can apply Theorem 3.1 from the previous sec-
tion and make a conclusion about the weak lower semicontinuity of the functional
J∞. It now remains to prove the weak compactness of the admissible set

A = {
(x,u) ∈ W 1,n

p

(
R

+, ν
) × Lm

p

(
R

+, ν
) | (9)–(12) are satisfied

}
, (63)

which can be done by showing the weak closedness and boundedness of the set A;
cf. [22], p. 264. Therefore, we proceed in two steps.

Step 1. We prove that the set A is closed with respect to weak convergence. For this
purpose we will need four lemmas.

Lemma 4.1 Let the sequence {uN } with elements from Lm
p (R+, ν) converge weakly

to the function u0. Further, let the inclusion

uN(t) ∈ U (64)

be satisfied for every N ∈ N almost everywhere on R
+. U denotes a nonempty com-

pact convex set in R
m. Then, the inclusion

u0(t) ∈ U (65)

holds almost everywhere on R
+.

Proof We denote

Au := {
u ∈ Lm

p

(
R

+, ν
) | u(t) ∈ U a.e. on R

+}
(66)

and prove the closedness and convexity of the set Au. Consider a sequence {̃uN } ⊂
Au which converges in the Lm

p (R+, ν)-norm to some function ũ0. Using the scheme
illustrating connections between different convergence types, see [23], p. 446 f., and
the fact that

μν

(
R

+) =
∫ ∞

0
dμ(t) =

∫ ∞

0
ν(t) dt < ∞, (67)
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we can select a subsequence {̃uNk
} of the sequence {̃uN } which converges to ũ0 μν -

a.e. and consequently μ-a.e. on R
+, since the sets of measure zero are the same

for both Lebesgue and μν measures. It means, for all t ∈ R
+\N , that one has the

pointwise convergence

ũNk
(t) → ũ0(t), (68)

where the set N is a set of Lebesgue measure zero. Further, we define the set

B :=
∞⋃

k=1

{
t : ũNk

(t) /∈ U
}
, (69)

which is a set of Lebesgue measure zero due to the sigma additivity of Lebesgue
measure. It means that the set N ∪B is of Lebesgue measure zero as well, and for all
t ∈ R

+\(N ∪ B) the convergence

ũNk
(t) → ũ0(t) (70)

remains valid. Since for all t ∈R
+\(N ∪ B) and for all Nk the inclusion ũNk

(t) ∈ U

holds true, we obtain by using the compactness of the set U and the convergence
stated in (70) that the inclusion

ũ0(t) ∈ U, ∀t ∈R
+\(N ∪ B) (71)

is satisfied, which is the same as the condition (65), and the closedness of Au is
proved. To verify the convexity of the set Au, we consider a convex combination
λu1 +(1−λ)u2, λ ∈ [0,1] of the functions u1 ∈ Au,u2 ∈ Au and show that it belongs
to the set Au as well. It holds λu1 + (1 − λ)u2 ∈ Lm

p (R+, ν), since Lm
p (R+, ν) is a

vector space and ∀t ∈R
+\(Nu1 ∪Nu2)

λu1(t) + (1 − λ)u2(t) ∈ U, (72)

where Nu1 ∪Nu2 is a set of Lebesgue measure zero. Thus, the convexity of the set Au

is proved as well. We now can apply Theorem 3.3.8 from [24], p. 108., which says
that the weak limit of a weak convergent sequence {uN } with elements from a closed
convex subset V of a normed space X lies in the same subset V . This completes the
proof of the lemma. �

Lemma 4.2 We are given a sequence {xN } with elements from W
1,n
p (R+, ν) which

converges weakly to x0 ∈ W
1,n
p (R+, ν), 1 < p < ∞. Further, we assume that

xN(0) = x0, ∀N ∈N. (73)

Then, the equality

x0(0) = x0 (74)

is also true.
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Proof We choose an arbitrary interval [0, τ ] and apply the Rellich–Kondrachov the-
orem, see [17], p. 144, on this closed interval. It implies the existence of a subse-
quence {xNk

} ⊂ {xN } converging uniformly on [0, τ ] to x0. This in turn yields the
convergence at the point t = 0, which means

x0 = lim
Nk→∞x0 = lim

Nk→∞xNk
(0) = x0(0) (75)

and the lemma is proved. �

Lemma 4.3 We are given sequences of functions {xN } ⊂ W
1,n
p (R+, ν) and {uN } ⊂

Lm
p (R+, ν) which converge weakly to x0 ∈ W

1,n
p (R+, ν) and u0 ∈ Lm

p (R+, ν) respec-
tively, 1 < p < ∞. Further, for all N ∈ N let the equation

ẋN (t) = A
(
t, xN(t)

) + B
(
t, xN(t)

)
uN(t) (76)

be satisfied almost everywhere on R
+ and let uN satisfy the inclusion (12). The func-

tions A : R+ × R
n → R

n and B : R+ × R
n → R

n are assumed to be continuous in
the first variable and uniformly Lipschitz continuous in the second. Then, the limit
pair (x0, u0) satisfies the differential equation

ẋ0(t) = A
(
t, x0(t)

) + B
(
t, x0(t)

)
u0(t) (77)

almost everywhere on R
+.

Proof The restrictions of the functions xN on the interval [0,1] are elements of
W

1,n
p ([0,1], ν), while the restrictions of the admissible controls uN on the inter-

val [0,1] are elements of Lm∞([0,1], ν). Moreover, the sequence {uN }, as a se-
quence of admissible controls, is bounded in the norm of the space Lm∞([0,1], ν) =
[Lm

1 ([0,1], ν)]∗. Due to Theorem 3, p. 234 from [23] and the separability of
Lm

1 ([0,1], ν), there exists a subsequence of {uN } which converges weakly* in the
space Lm∞([0,1], ν). This subsequence will again be denoted by {uN }. Furthermore,
by the embedding theorem of Rellich–Kondrachov for non-weighted spaces, cf. [17],
Theorem 6.2, p. 144, and by the positivity and continuity of the density function
ν, we conclude the existence of continuous representants of the sequence {xN }.
That means the existence of subsequences {xN1, uN1} ⊂ {xN,uN } and of functions
x̂1 ∈ (W

1,n
p ([0,1], ν) ∩ C0[0,1]), û1 ∈ Lm∞([0,1], ν) such that

xN1 ⇀ x̂1
(
in W 1,n

p

([0,1], ν))
, uN1 ⇀∗ û1

(
in Lm∞

([0,1], ν))
, (78)

˙̂x1(t) = A
(
t, x̂1(t)

) + B
(
t, x̂1(t)

)
û1(t) a.e. on [0,1], (79)

lim
N1→∞

‖xN1 − x̂1‖C0[0,1] = 0. (80)
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Through analogous argumentation, step-by-step we construct for all k ∈ N, k =
2,3, . . . subsequences {xNk , uNk } ⊂ {xNk−1 , uNk−1} satisfying

xNk ⇀ x̂k

(
in W 1,n

p

([0, k], ν))
, uNk ⇀∗ ûk

(
in Lm∞

([0, k], ν))
, (81)

˙̂xk(t) = A
(
t, x̂k(t)

) + B
(
t, x̂k(t)

)
ûk(t) a.e. on [0, k], (82)

lim
Nk→∞

‖xNk − x̂k‖C0[0,k] = 0. (83)

By the construction, we have x̂k(t) = x̂k−1(t) for all t ∈ [0, k−1] and ûk(t) = ûk−1(t)

for almost all t ∈ [0, k − 1]. This leads to the limit functions

x̂ ∈ (
W

1,n
p,loc

(
R

+, ν
) ∩ C0(

R
+))

, û ∈ Lm
∞,loc

(
R

+, ν
)
, (84)

whose restrictions on [0, k] coincide with x̂k and ûk , respectively. The uniqueness
of the weak limit yields x̂(t) = x0(t) for all t ∈ R

+ and û(t) = u0(t) for almost all
t ∈ R

+.
Now, we still have to show the equality (82) for all k ∈ N. Similarly as in [25],

Lemma 2.3, p. 223, we multiply the equation (76) by an arbitrary test function φ ∈
C0,∞[0, k], i.e. an infinitely many times differentiable function with compact support
on [0, k], and derive the equation

∫ k

0
φ(t)

[
ẋNk (t) − A

(
t, xNk (t)

) − B
(
t, xNk (t)

)
uNk (t)

]
dt = 0 (85)

for all t ∈ [0, k]. Integrating the left hand side of the last equation by parts we obtain
for any φ ∈ C0,∞[0, k]

φ(t)xNk (t)
∣∣k
0 −

∫ k

0
φ̇(t)xNk (t) dt

=
∫ k

0
φ(t)

(
A

(
t, xNk (t)

) + B
(
t, xNk (t)

)
uNk (t)

)
dt, (86)

which is the same as
∫ k

0
φ̇(t)xNk (t) dt +

∫ k

0
φ(t)

(
A

(
t, xNk (t)

) + B
(
t, xNk (t)

)
uNk (t)

)
dt = 0. (87)

The uniform convergence of {xNk } on the interval [0, k] implies

lim
k→∞

∫ k

0
φ̇(t)xNk (t) dt =

∫ k

0
φ̇(t)x̂k(t) dt. (88)

Next we consider
∣∣∣∣
∫ k

0
φ(t)A

(
t, xNk (t)

)
dt −

∫ k

0
φ(t)A

(
t, x̂k(t)

)
dt

∣∣∣∣

≤
∫ k

0

∣∣φ(t)
∣∣ · ∣∣A(

t, xNk (t)
) − A

(
t, x̂k(t)

)∣∣dt (89)
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and using the Lipschitz continuity of the function A(t, · ), uniform with respect to t ,
we continue the previous estimate

∫ k

0

∣∣φ(t)
∣∣ · ∣∣A(

t, xNk (t)
) − A

(
t, x̂k(t)

)∣∣dt

≤ L1‖φ‖C0 ·
∫ k

0

∣∣xNk (t) − x̂k(t)
∣∣dt → 0, Nk → ∞, (90)

which holds due to the uniform convergence of {xNk } to the function x̂k . In the next
step we estimate

∣∣∣∣
∫ k

0
φ(t)B

(
t, xNk (t)

)
uNk (t) dt −

∫ k

0
φ(t)B

(
t, x̂k(t)

)
ûk(t) dt

∣∣∣∣

≤
∫ k

0

∣∣φ(t)
∣∣ · ∣∣B(

t, xNk (t)
) − B

(
t, x̂k(t)

)∣∣∣∣uNk (t)
∣∣dt

+
∣∣∣∣
∫ k

0
φ(t)B

(
t, x̂k(t)

)(
uNk (t) − ûk(t)

)
dt

∣∣∣∣

≤ L2 · K‖φ‖C0 ·
∫ k

0

∣∣xNk (t) − x̂k(t)
∣∣dt

+
∣∣∣∣
∫ k

0
φ(t)B

(
t, x̂k(t)

)(
uNk (t) − ûk(t)

)
dt

∣∣∣∣ (91)

due to the uniform Lipschitz continuity of the function B(t, · ). Taking the weak*
convergence of uNk ⇀∗ ûk in Lm∞([0, k], ν) into account one has for all φ( · )B( · ) ∈
Ln×m

1 [0, k] the componentwise convergence

∫ k

0
φ(t)B(t)uNk (t) dt →

∫ k

0
φ(t)B(t)ûk(t) dt, Nk → ∞ (92)

and, in particular, the convergence

∫ k

0
φ(t)B

(
t, x̂k(t)

)
uNk (t) dt →

∫ k

0
φ(t)B

(
t, x̂k(t)

)
ûk(t) dt, Nk → ∞, (93)

since the inclusion B( ·, x̂k( · )) ∈ Ln×m
q (R+, ν) ⊂ Ln×m

1 (R+, ν) ⊂ Ln×m
1 [0, k] holds

true because of (16) and the properties of φ( · ) as a test function. Having the uniform
convergence of {xNk }, estimate (91) and convergence (93) in mind we obtain

lim
Nk→∞

∫ k

0
φ(t)B

(
t, xNk (t)

)
uNk (t) dt =

∫ k

0
φ(t)B

(
t, x̂k(t)

)
ûk(t) dt. (94)

Using (88), (90) and (94) we pass to the limit Nk → ∞ in (87), i.e. we have

∫ k

0
φ̇(t)x̂k(t) dt +

∫ k

0
φ(t)A

(
t, x̂k(t)

)
dt +

∫ k

0
φ(t)B

(
t, x̂k(t)

)
ûk(t) dt = 0 (95)
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for all test functions φ ∈ C0,∞[0, k]. Through the integration by parts in the first term
one has

∫ k

0
φ(t)

{ ˙̂xk(t) − A
(
t, x̂k(t)

) − B
(
t, x̂k(t)

)
ûk(t)

}
dt = 0, ∀φ ∈ C0,∞[0, k]. (96)

Consequently, the equation

˙̂xk(t) = A
(
t, x̂k(t)

) + B
(
t, x̂k(t)

)
ûk(t) (97)

is satisfied almost everywhere on [0, k], and therefore, the equation (82) is proved for
all k ∈N.

We now construct a diagonal sequence having the following properties: From the
first sequence {xN1, uN1} we take the first pair {xN1

1
, uN1

1
} satisfying

‖xN1
1

− x̂1‖C0[0,1] ≤ 1/2, (98)

from {xN2, uN2} we take the first pair {xN2
2
, uN2

2
} with N2

2 > N1
1

‖xN2
2

− x̂2‖C0[0,2] ≤ 1/4, (99)

and generally we select from the sequence {xNk , uNk } the first pair {xNk
k
, uNk

k
} having

Nk
k > Nk−1

k−1 and

‖xNk
k

− x̂k‖C0[0,k] ≤ 1/2k. (100)

The diagonal sequence {xNk
k
} converges on the whole half-axis [0,∞[ pointwise to

the limit function x̂ = x0. From this we can deduce the result of Lemma 4.2, the
condition x0(0) = x0, as well. �

The state constraint (11) remains satisfied as N tends to infinity, as the next lemma
shows.

Lemma 4.4 Let {xN } be a sequence converging weakly to the function x0 in the
weighted Sobolev space W

1,n
p (R+, ν). Furthermore, let all of functions xN satisfy the

inequality
∣∣xN(t)

∣∣ ≤ β(t) a.e. on R
+. (101)

Then, the limit function x0 satisfies the same inequality
∣∣x0(t)

∣∣ ≤ β(t) a.e. on R
+. (102)

Proof Suppose the inequality (102) is violated, which means there exists such a set
F ⊂ R

+ of positive Lebesgue measure μ(F) > 0 that for all t ∈ F the inequality
∣∣x0(t)

∣∣ − β(t) ≥ K1 > 0 (103)
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holds true. Further, there exists an interval [0, T ] with μ(F ∩ [0, T ]) > 0. We de-
note F1 := F ∩[0, T ]. Since the embedding W

1,n
p ([0, T ], ν) → Lm

p ([0, T ], ν) is com-
pact, cf. the Rellich–Kondrachov theorem, Theorem 6.2, [17], p. 144, one can find a
subsequence of the weakly convergent sequence {xN |[0,T ]} of the weighted Sobolev
space W

1,n
p ([0, T ], ν) which is strong convergent in the weighted Lebesgue space

Ln
p([0, T ], ν). This subsequence will again be indexed by N ∈ N. Then we select a

subsequence {xNk } ⊂ {xN |[0,T ]} which converges to x0 almost everywhere on [0, T ]
and, consequently, on F1. This is possible due to the scheme provided in [23], p. 446,
and the continuity of the density function ν. Further, we estimate for large enough
Nk ∈ N and almost all t ∈ F1:

|xNk | − β(t) = ∣∣xNk (t)
∣∣ − ∣∣x0(t)

∣∣ + ∣∣x0(t)
∣∣ − β(t)

≥ ∣∣xNk (t)
∣∣ − ∣∣x0(t)

∣∣ + K1 ≥ K1 − ε = K2 > 0 (104)

which contradicts to the inequality (101). The last estimate is true because of the
continuity of the Euclidean norm function | · | and the inclusion F1 ⊂ [0, T ], which
guarantees the uniform convergence of the sequence {xNk |F1} on F1 with the excep-
tion of a set of Lebesgue measure zero. �

This result together with three previous lemmas completes the proof of the weak
closedness of the feasible set A. It remains to show the boundedness of this set what
we do in the second step.

Step 2. The set of all admissible controls is bounded since the inclusion u(t) ∈ U

holds almost everywhere on R
+, where U is a nonempty compact convex subset of

R
m, and it yields the existence of such a constant K > 0 that for almost all t ∈ R

+
the inequality

∣∣u(t)
∣∣ ≤ K (105)

remains valid. It in turn implies

‖u‖p

Lm
p (R+,ν)

=
∫ ∞

0

∣∣u(t)
∣∣pν(t) dt ≤ KpV = const., (106)

whereby

V =
∫ ∞

0
ν(t) dt < ∞. (107)

The application of the growth condition (17) and of the inequality (105) allows to
derive the following estimate for the derivative of the state trajectory x:

‖ẋ‖p

Ln
p(R+,ν)

=
∫ ∞

0

∣∣ẋ(t)
∣∣pν(t) dt

=
∫ ∞

0

∣∣f (
t, x(t), u(t)

)∣∣pν(t) dt
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≤
∫ ∞

0

(
C1 + C2

∣∣x(t)
∣∣ + C3

∣∣x(t)
∣∣∣∣u(t)

∣∣ + C4
∣∣u(t)

∣∣)p
ν(t) dt

≤
∫ ∞

0

(
C1 + (C2 + C3K)

∣∣x(t)
∣∣ + C4K

)p
ν(t) dt

≤ 2p(C1 + C4K)p
∫ ∞

0
ν(t) dt + 2p(C2 + C3K)p

∫ ∞

0

∣∣β(t)
∣∣pν(t) dt

≤ 2p(C1 + C4K)pV + 2p(C2 + C3K)p‖β‖p

Ln
p(R+,ν)

= const. (108)

Due to condition (11), we have

‖x‖p

Ln
p(R+,ν)

=
∫ ∞

0

∣∣x(t)
∣∣pν(t) dt ≤

∫ ∞

0

∣∣β(t)
∣∣pν(t) dt = ‖β‖p

Ln
p(R+,ν)

= const. (109)

The estimate (108) was made by using the elementary inequality

(a + b)p ≤ 2p
(
ap + bp

)
, a, b > 0,p ≥ 1. (110)

Thus, the boundedness of the admissible set A is proved and therefore the weak
compactness of the set A. The proof of the theorem is completed. �

Remark 4.1

(a) The condition (11) is essential for establishing the existence of an optimal so-
lution, since, together with the other assumptions, it guarantees both the weak
lower semicontinuity of the functional J∞ and the boundedness of the feasible
set, which is otherwise not necessarily given.

(b) The existence result of the above theorem remains valid if the growth conditions
in Assumptions 2.2 and 2.3 are satisfied only for all

(t, ξ, v) ∈R
+ ×R

n × U. (111)

5 Application to a Resource Allocation Model

We consider the following infinite horizon optimal control problem of resource allo-
cation. Minimize the integral functional:

L -
∫ ∞

0
e−ρtx(t)

(
u(t) − 1

)
dt → min! (112)

with respect to all pairs

(x,u) ∈ W 1
2

(
R

+, e−α∗t) × L2
(
R

+, e−α∗t), (113)
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satisfying the conditions

ẋ(t) = x(t)u(t) a.e. on R
+, x(0) = x0 > 0, (114)∣∣x(t)

∣∣ < Ceαt , C ≥ x0, 0 < 2α < α∗ < ρ, (115)

0 ≤ u(t) ≤ 1, (116)

where the discount rate ρ satisfies 0 < ρ < 1. This model was introduced in [26]
and belongs to the class of problems (P∞), which becomes clear if one defines the
function β as β(t) = Ceαt and notices that β ∈ L2(R

+, e−α∗t ). We refer to it as to
the adapted resource allocation model. It should be mentioned that without posing the
state constraint (115) no solution of this problem exists; cf. [26]. We verify whether
the problem (112)–(116) satisfies all the conditions of the existence theorem proved
before.

• Assumption 2.1 is satisfied, since r(t, ξ, v) = ξ(v − 1) is convex and continuous
differentiable in ξ and v. Continuity is obviously given with respect to all variables.

• According to Assumption 2.2 there must exist a function A1 ∈ L1(R
+) as well as

a positive constant B1 so that for all (t, ξ, v) ∈ R
+ ×R× U and p = 2 the growth

condition
∣∣ξ(v − 1)

∣∣ ≤ A1(t)e
ρt + B1

(|ξ |2 + |v|2)e(ρ−α∗)t (117)

is valid. This is the case, if A(t) = e−ρt and B = 2 due to the inequality
∣∣ξ(v − 1)

∣∣ ≤ 2|ξ | ≤ 2
(
1 + |ξ |2) ≤ 2e−ρt eρt + 2

(|ξ |2 + |v|2)e(ρ−α∗)t (118)

and the control restriction (116).
• Assumption 2.3 is fulfilled with A2 ≡ 0,B2 = 1 for p = q = 2.
• Having A(t, x(t)) ≡ 0 and B(t, x(t)) = x(t) we verify the conditions (17) and (18).

The first is satisfied with constants C1 = 1,C2 = 0,C3 = 1,C4 = 0 and p = q = 2.
The second one is true, since |B11(t, ξ)| = |ξ |, and we set A311 ≡ 0,B311 = 1.

• The uniform Lipschitz continuity of B(t, · ) and the convexity and closedness of
the control set U = [0,1] are obvious.

• The feasible set is not empty, because (x,u) = (x0e
αt , α) is an admissible process.

Thus, all the conditions of the existence theorem are fulfilled which implies the exis-
tence of an optimal solution for the adapted resource allocation problem. The optimal
solution is

x∗(t) =
{

x0e
(1−α)τ et , t < τ,

Ceαt , t ≥ τ,
u∗(t) =

{
1, t < τ,

α, t ≥ τ
(119)

with the switching point τ = 1
1−α

ln{ C
x0

}.

6 Conclusions

In this paper, we succeeded in proving an existence theorem for a special setting of
infinite horizon control problems, which involves an integral functional with integral
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in Lebesgue sense and an integrand, which is convex in control, as well as affine-
linear in control dynamics. The problem statement contains weighted Sobolev and
weighted Lebesgue spaces, which allows the application of the necessary optimality
conditions in the form of Pontryagin’s Type Maximum Principle formulated in the
same spaces, see [27], for calculating the optimal solution. However, the class of
problems for which the existence of optimal solutions is established in [6] allows also
nonconvex integrands. In order to generalize the present existence result for problems
with nonconvex integrands some relaxation techniques can be applied.

For guaranteeing the existence of an optimal solution, we made use of the addi-
tional pointwise state constraint. For certain types of the state equation, it is possible
to determine such a majorant that this state constraint is satisfied automatically. In
other cases, the form of the state constraint can be derived directly from the modeling
background. However, in some economic models it is not clear how the pointwise
state constraint should be properly posed. Any artificial choice of the majorant may
have an essential impact on the optimal solution, which seems to be rather restrictive.
Therefore, our future research will be focused on weakening the pointwise state con-
straint, e.g. by an isoperimetric state constraint, and establishing existence theorems
for the resulting optimal control problem using the techniques provided by weighted
functional spaces.

Acknowledgements The author would like to express her gratitude to anonymous referees for very
helpful comments.
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