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Abstract A new approach to derive Pareto front approximations with evolutionary
computations is proposed here.

At present, evolutionary multiobjective optimization algorithms derive a discrete
approximation of the Pareto front (the set of objective maps of efficient solutions)
by selecting feasible solutions such that their objective maps are close to the Pareto
front. However, accuracy of such approximations is known only if the Pareto front is
known, which makes their usefulness questionable.

Here we propose to exploit also elements outside feasible sets to derive pairs of
such Pareto front approximations that for each approximation pair the correspond-
ing Pareto front lies, in a certain sense, in-between. Accuracies of Pareto front ap-
proximations by such pairs can be measured and controlled with respect to distance
between elements of a pair.

A rudimentary algorithm to derive pairs of Pareto front approximations is pre-
sented and the viability of the idea is verified on a limited number of test problems.
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1 Introduction

Evolutionary multiobjective optimization (EMO) algorithms [1–3] derive finite ap-
proximations of Pareto fronts (i.e. sets of efficient solutions, as defined below). They
can be regarded, conventionally, as lower approximations (we assume that all ob-
jectives are to be maximized), because all their elements are feasible solutions. Yet,
with the exception of test problems, Pareto fronts are generally not known. Hence the
exact accuracy of such approximations is not known either.

To rectify this, we propose to work with elements outside the feasible solution set
(infeasible solutions), with the objective to provide upper approximations of Pareto
fronts. A pair consisting of a lower and an upper approximation forms an approxi-
mation of the Pareto front, whose accuracy can be controlled by distance between
the lower and the upper approximation. Thus, the approach proposed herein effectu-
ates the idea of two-sided Pareto front approximations, which is as yet absent from
the literature on EMO. Exploiting explicitly infeasible solutions to provide two-sided
approximations of Pareto fronts offers a new turn in research in the field.

Our research has been motivated by the absence, to our best knowledge, of papers
pertaining to EMO or multiobjective optimization, in which active use of infeasible
elements would be harnessed to approximate the Pareto front. The only exception
is perhaps paper [4]; however, in that work, infeasible solutions were not generated
intentionally, as it is done in our work.

The outline of the paper is as follows. In Sect. 2, necessary definitions are pro-
vided; in particular; lower and upper shells, which yield specific lower and upper
approximations of Pareto fronts, are defined. In Sect. 3, an approximation accuracy
measure is set, and a relaxation of the definition of upper shell is proposed with the
purpose to have a construct more suitable for computations than upper shell itself.

In Sect. 4, a rudimentary evolutionary algorithm for approximating Pareto fronts
within given accuracy is presented. The algorithm has been run on five test problems
taken from literature and the results are reported in Sect. 5. Directions for further
research are proposed in Sect. 6, whereas Sect. 7 contains the concluding remarks.

2 Definitions and Notation

Multicriteria Optimization (MO) problem is formulated as

maxf (x)

x ∈ X0 ⊆ R
n,

(1)

where f : Rn →R
k; f = (f1, . . . , fk), fi :Rn → R, i = 1, . . . , k, k ≥ 2, are objec-

tive (criteria) functions; max denotes the operator of deriving all efficient elements
(see the definition below). We assume that X0 has an interior.

The dominance relation ≺ is defined on R
n as

x′ ≺ x ⇔ f (x′) 	 f (x),

where 	 denotes fi(x
′) ≤ fi(x), i = 1, . . . , k, and fi(x

′) < fi(x) for at least one i.
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If x ≺ x′ then x is dominated by x′ and x′ is dominating x.
An element x of X0 is called efficient iff

�x′ ∈ X0 x ≺ x′.

We denote the set of efficient elements by N and the set f (N) (the Pareto front)
by P , P ⊆ f (X0).

Lower shell is a finite nonempty set SL ⊆ X0, elements of which satisfy

∀x ∈ SL �x′ ∈ SL x ≺ x′ (2)

(thus no element of SL is dominated by another element of SL).
We define the nadir point ynad as

ynad
i := min

x∈N
fi(x), i = 1, . . . , k.

Upper shell is a finite nonempty set SU ⊆ R
n \ X0, elements of which satisfy1

∀x ∈ SU �x′ ∈ SU x′ ≺ x, (3)

∀x ∈ SU �x′ ∈ N x ≺ x′, (4)

∀x ∈ SU ynad 	 f (x). (5)

3 Approximations of P

We aim at constructing numerically viable two-sided approximations of P .
To derive SL for which f (SL) is “close” to P , any EMO algorithm can be used

(cf. [1, 2, 6–9]).
Since the definition of an upper shell involves N , this construct is not a suitable

approximation of N . A more suitable construct, referring to SL instead of N , namely
an upper approximation AU , is obtained by replacing:
condition (3) by

∀x ∈ AU �x′ ∈ AU x′ ≺ x, (6)

condition (4) by

∀x ∈ AU �x′ ∈ SL x ≺ x′ , (7)

condition (5) by

∀x ∈ AU ynad(SL) 	 f (x), (8)

where ynad(SL) denotes an element of Rk such that

ynad
i (SL) := min

x∈SL

fi(x), i = 1, . . . , k

(ynad(SL) varies with SL).

1 Throughout the paper we assume that an upper shell exists. It may exist, as shown in Sect. 5 for test
problems, but it may not exist either (cf. [5]). An upper shell does not exist if for some x′ ∈ X0 there is no
x ∈ R

n \ X0 such that x′ ≺ x.
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Fig. 1 An example when an
element x, dominated by some
element of N , belongs to AU

By definition, an upper approximation AU can contain elements which are dom-
inated by some elements of N , as shown in Fig. 1, and certainly such elements are
undesirable for the purpose. Condition (8) is meant to limit the domain for such el-
ements. However, as SL gets “closer” to N and ynad(SL) gets “closer” to ynad, the
chance for such elements being included in AU decreases.

With SL and AU derived, the accuracy of the approximation of P by f (SL) and
f (AU) can be measured as

accP := 1

|SL|
∑

x∈SL

min
x′∈AU

∥∥f (x) − f (x′)
∥∥,

or

accP := max
x∈SL

min
x′∈AU

∥∥f (x) − f (x′)
∥∥,

where ‖ · ‖ is a norm and | · | is cardinality of a set. In numerical experiments and
applications, a form of normalization of accP and accP with respect to ranges of
values of objective functions over e.g. SL is advisable (cf. Sect. 5).

Those two indices measure only “closeness” of f (SL), f (AU). “Goodness” or
“fairness” of the approximation of P by such constructs has to be ensured by standard
EMO mechanisms.

In next section, we propose an algorithm for deriving two-sided approximations
of P .

4 An Algorithm for Two-sided Approximations of P

The algorithm we propose below derives two-sided approximations of P , thus pro-
viding a way for approximation accuracy monitoring.

Let αP denote the desired value of accP .
We limit the domain of searching in R

n \ X0 to some set

XDEC := {
x ∈ R

n |XL
i ≤ xi ≤ XU

i , i = 1, . . . , n
}

such that X0 ⊆ int(XDEC).
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By assumption, X0 has an interior, hence elements of XDEC, generated randomly,
belong to X0 with positive probability.

Algorithm EMO-APPROX

1. j := 0, S
j
L := ∅, A

j
U := ∅.

2. Select randomly η elements of X0 and derive S
j
L.

3. Select randomly an element x of S
j
L and:

3.1. derive an element x′ ∈ XDEC such that x′
⊀ x,

3.2. if x′ ∈ X0 then update S
j
L and A

j
U with S′ = S

j
L ∪ {x′}, go to 3.4,

3.3. update A
j
U with A′ = A

j
U ∪ {x′},

3.4. if accP ≤ αP or j = jmax then STOP,
3.5. j := j + 1, go to 3.

In step 2, η is a parameter and derivation of SL means that selected elements which
do not satisfy condition (2) are to be removed.

In substep 3.1, to derive an element x′ of the required properties, components of x

are mutated until x ∈ XDEC and x′
⊀ x holds. Mutations can increase or decrease with

probability 0.5 the value of a randomly selected component. The range of mutations
decreases with the increasing j . If a mutation increases the ith component of x, then
the value of this component after mutation is

xi + (
XU

i − xi

) ×
(

1 − rnd(0,1)
2(1− j

jmax )
)
,

and if this mutation decreases the component, then the value of this component after
mutation is

xi − (
xi − XL

i

) ×
(

1 − rnd(0,1)
2(1− j

jmax )
)
.

Function rnd(0,1) returns a random number from the range [0,1] with uniform prob-
ability. The presented method of mutation and the strategy of decreasing mutation
range have been taken from the literature (cf. e.g. [6]).

In substep 3.2, the update of S
j
L means that elements of S′ = S

j
L ∪ {x′} which do

not satisfy condition (2) are to be removed from S′, and only then S
j
L := S′. The

update of A
j
U means that elements of A

j
U which do not satisfy condition (7) with

respect to updated S
j
L are to be removed.

In substep 3.3, the update of A
j
U means that elements of A′ = A

j
U ∪ {x′} which

do not satisfy conditions (6), (7) and (8) are to be removed from A′, and only then
A

j
U := A′.
In substep 3.4, jmax is the maximal number of iterations in the algorithm.
There is no guarantee that the approximation accuracy monotonously improves

by each iteration of EMO-APPROX (i.e. on (i + 1)-th iteration accP takes a smaller
value than on iteration i). The phenomenon is illustrated in Fig. 2. Indeed, suppose
that SL = {a, b}, AU = {c, d}. Clearly, acc1

P = max{‖f (a)− f (c)‖,‖f (b)− f (d)‖}
(the superscript indicates the iteration). Including e into SL causes b to be eliminated
from SL (for e dominates b—condition (2)). Now we have acc2

P = max{‖f (a) −
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Fig. 2 Possible
non-monotonous behavior of the
algorithm

f (c)‖,‖f (e) − f (d)‖} and clearly acc2
P ≥ acc1

P , which means that the approxima-
tion accuracy has deteriorated. However, it can be expected that in successive itera-
tions mutations of e or d can recover this local loss of accuracy.

As the algorithm is founded on genetic-type heuristics, no formal proof is offered
that in general the algorithm is able to derive a two-sided approximation of P within a
given accuracy. However, by means of two-sided approximations at least the behavior
of such heuristics is put under control.

5 Numerical Experiments

We illustrate the behavior of EMO-APPROX on four test problems taken from [8],
denoted DTLZ2a, DTLZ4a, DTLZ7a, Selri, and one taken from [10, 11], denoted
Kita.

We normalized the accuracies accP and accP as follows:

accP := 1

|SL|
∑

x∈SL

min
x′∈AU

⎛

⎝
k∑

i=1

(
fi(x) − fi(x

′)
s
f
i

)2
⎞

⎠

1
2

,

accP := max
x∈SL

min
x′∈AU

⎛

⎝
k∑

i=1

(
fi(x) − fi(x

′)
s
f
i

)2
⎞

⎠

1
2

,

where s
f
i := maxx∈SL

fi(x) − minx∈SL
fi(x), i = 1, . . . , k (the normalization factor

varies with SL).
We ran EMO-APPROX on the test problems with jmax = 9000, η = 100 in each

case, taking three shots of the algorithm behavior and the results it provided at
j = 3000, j = 6000 and finally at j = 9000. Since it was not certain what values
of the parameter αP should be used, we set it to zero and we stopped the algo-
rithm after the iteration count reached jmax. In each case, XDEC was assumed to
be [−0.2,1.2] × [−0.2,1.2] × · · · × [−0.2,1.2] for all four DTLZ problems and
[−2.0,9.0] × [−2.0,9.0] for the Kita problem.
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Table 1 Test results—EMO-APPROX

Problem (n,m,b, k) j accP accP #f ‖SL‖ ‖AU ‖ ‖SL‖ + ‖AU ‖

DTLZ2a (8, 0, 8, 3) 3000 0.209 0.560 9054 752 93 845

6000 0.206 0.574 18895 1643 157 1800

9000 0.224 0.603 27796 2081 193 2274

DTLZ4a (8, 0, 8, 3) 3000 0.029 0.185 16369 248 180 428

6000 0.017 0.110 30545 512 435 947

9000 0.016 0.123 42436 805 633 1438

DTLZ7a (8, 0, 8, 3) 3000 0.030 0.259 5300 185 124 309

6000 0.024 0.098 10638 348 209 557

9000 0.019 0.158 15834 571 339 910

Selri (4, 0, 4, 3) 3000 0.048 0.229 3107 680 119 799

6000 0.033 0.193 6116 1284 266 1550

9000 0.026 0.219 9119 1926 377 2303

Kita (2, 3, 2, 2) 3000 0.024 0.905 4598 79 63 142

6000 0.024 0.116 9082 117 86 203

9000 0.017 0.076 13189 148 91 239

Table 12 shows the values of accP and accP for each problem and shot, where
n, m, b and k are, respectively, the number of variables, the number of general con-
straints, the number of box constraints and the number of criteria; #f is the number
of function f evaluations; ‖AU‖, ‖SL‖ and ‖AU‖ + ‖SL‖ are the cardinality of,
respectively, AU , SL and AU ∪ SL.

Figures 3 and 4 present, respectively, the elements of SL, AU and f (SL), f (AU)

for the Kita problem.
These test results constitute a rather limited base for drawing general conclusions.

It is, nevertheless, possible to point to some regularities, which seem to be in line
with the expected behavior of the algorithm.

Both accuracies improve monotonously for 3000, 6000 and 9000 iterations only in
two instances (DTLZ7a and Kita), whereas for other problems improvements are not
monotonous due to a phenomenon explained in previous section. In the remaining
instances, there was no significant gain in increasing the number of iterations from
6000 to 9000, for at 9000 the accuracies are either worse or only slightly better.

In all instances, SL has more elements then AU . This is caused by the order in
which the algorithm attempts to produce new elements of those sets—first in SL and
then in AU . By interchanging this order, more balanced sets can be produced.

For the Kita, DTLZ2a and DTLZ4a problems, for which analytic forms of N are
known, we have generated a number of elements of N (1852 elements for Kita, 2001
elements for DTLZ2a and DTLZ4a). In none of those problems is an element of AU

2Pairs of sets SL,AU and f (SL),f (AU ) for all five problems at j equal to 3000,6000,9000 can be
obtained from the Authors on request.
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Fig. 3 Elements of SL and AU for the Kita problem

Fig. 4 Elements of f (SL) and f (AU ) for the Kita problem

dominated by a generated element of N , which could be attributed to the strength of
condition (8) (we have inspected only AU derived in 9000 iterations).
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Table 2 Test results—NSGA-II + EMO-APPROX

Problem (n,m,b, k) Scaling j accP accP # f ‖SL‖ ‖AU ‖ ‖SL‖ + ‖AU ‖

DTLZ2a (8, 0, 8, 3) 1 1000 0.223 0.624 3843 802 113 915

2000 0.215 0.614 7592 1382 197 1579

3000 0.207 0.608 11195 1898 247 2145

DTLZ4a (8, 0, 8, 3) 1 1000 0.044 0.191 4100 443 165 608

2000 0.028 0.141 8201 577 247 824

3000 0.023 0.119 12273 678 382 1060

DTLZ7a (8, 0, 8, 3) 0.01 1000 0.004 0.049 1811 555 315 870

2000 0.003 0.078 3533 929 518 1447

3000 0.002 0.078 5082 1314 690 2004

Selri (4, 0, 4, 3) 0.01 1000 0.036 0.223 1204 961 96 1057

2000 0.023 0.123 2204 1673 166 1839

3000 0.019 0.115 3204 2412 214 2626

Kita (2, 3, 2, 2) 0.001 1000 0.004 0.031 1552 471 295 766

2000 0.003 0.023 2903 736 497 1233

3000 0.002 0.020 4255 1041 634 1675

6 Further Directions

To demonstrate the potential in further fine tuning of the approach, we have coupled
EMO-APPROX with the algorithm NSGA-II ([7]); the latter has proved itself a very
effective in producing well distributed and accurate lower approximations (SL) of P .
In this experiment, NSGA-II has been instructed to derive, for each problem consid-
ered, a lower approximation of P with 200 elements in 200 generations (’generation’
is NSGA-II parlance) to serve as a starting SL for EMO-APPROX.

Next, EMO-APPROX has been run for each problem with the respective SL. Be-
cause EMO-APPROX has been building successive SL and AU not from scratch,
but from the results provided by NSGA-II, we have decreased jmax to 3000. And as
we did not know how to account in EMO-APPROX for NSGA-II impact on mutat-

ing factor (1 − rnd(0,1)
2(1− j

jmax )
), for each problem we run the tandem NSGA-II +

EMO–APPROX with four different scalings of the starting mutating factor values,
namely with 1.0,0.1,0.01,0.001.

For each problem, at least one scaling produced lower or equal accP than algo-
rithm EMO-APPROX run alone for 9000 iterations. From all such cases, we have
selected those with the highest ‖SL‖ + ‖AU‖. Results for runs selected in that man-
ner are presented in Table 2.3

3 Actually, for problem DTLZ2a, NSGA-II + EMO-APPROX in its best run produced slightly higher
accP than EMO-APPROX, 0.608 versus 0.603, but considering the spread in the iteration count, such a
difference can be regarded as nil.
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Comparing Tables 1 and 2, it is evident that EMO-APPROX, producing two-sided
approximations of the Pareto front, has benefited significantly from the preprocessing
provided by NSGA-II—the tandem NSGA-II + EMO-APPROX has produced results
comparable to, and in some cases distinctly better than those produced by EMO-
APPROX alone, within three times less iterations. This strengthens our claim that,
in the future, embedding the full range of EMO mechanisms into EMO-APPROX is
worthwhile.

7 Conclusions

In this work, we limited ourselves to showing the viability of the idea to approximate
Pareto fronts by pairs of lower and upper approximations. We also demonstrated
how to improve interactively “closeness” between them. “Goodness” or “fairness”
of approximations of P by such constructs constitutes the topic for further research.
Another further topic is to provide means to derive pairs of SL and SU -like (AU -like)
constructs for cases where SU does not exist. Some preliminary results pertaining to
that issue have been already obtained and are reported in [5].

In the future experiments, to ensure even more uniform layouts of pairs f (AU),
f (SL) along P , other genetic operators should be also exploited, whereas here we
have confined ourselves only to the operator of mutation. We have done this delib-
erately to ensure clarity of the presentation and to demonstrate the viability of the
concept of two-sided approximations of P .

The problem of providing accurate two-sided approximations with uniform lay-
outs along Pareto fronts, being of interest in itself, has an immediate application in
Multiple Criteria Decision Making, where a decision process can be enhanced if it
is started with a not necessarily very accurate but uniform two-sided approximation
of the Pareto set to roughly represent it. Next, in the course of the decision process,
such approximations can be improved locally as directed by the decision maker’s
preferences [12, 13].

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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