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Abstract In this paper, we introduce a new dual program, which is representable as
a semidefinite linear programming problem, for a primal convex minimax program-
ming problem, and we show that there is no duality gap between the primal and the
dual whenever the functions involved are sum-of-squares convex polynomials. Un-
der a suitable constraint qualification, we derive strong duality results for this class
of minimax problems. Consequently, we present applications of our results to robust
sum-of-squares convex programming problems under data uncertainty and to mini-
max fractional programming problems with sum-of-squares convex polynomials. We
obtain these results by first establishing sum-of-squares polynomial representations
of non-negativity of a convex max function over a system of sum-of-squares convex
constraints. The new class of sum-of-squares convex polynomials is an important sub-
class of convex polynomials and it includes convex quadratic functions and separable
convex polynomials. The sum-of-squares convexity of polynomials can numerically
be checked by solving semidefinite programming problems whereas numerically ver-
ifying convexity of polynomials is generally very hard.
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1 Introduction

The problem of minimizing a maximum of finitely many functions subject to inequal-
ity constraints, known as discrete minimax program, arises in many areas of appli-
cations in engineering and commerce, as resource allocation and planning problems
(see [1, 2] and other references therein). More recently, discrete minimax programs
have appeared in robust optimization [3, 4], which is becoming increasingly impor-
tant in optimization due to the reality of uncertainty in many real-world optimization
problems and the importance of finding solutions that are immunized against data
uncertainty [3, 5].

On the other hand, the standard convex polynomial program, where we minimize
a single convex polynomial subject to convex polynomial inequality constraints, ap-
pears, often in the form of a convex quadratic program, in decision-making problems
of finance and engineering. Remarkably, there is no duality gap between a primal con-
vex polynomial program and its Lagrangian dual [6]. However, the Lagrangian dual,
in general, may not easily be solvable. Recent research has shown that, whenever
the functions involved in the primal convex program are sum-of-squares convex poly-
nomials (in short, SOS-convex polynomials (see Definition 2.1), the convex program
enjoys special properties such as exact sum of squares relaxation and zero duality gap
between the primal and its dual [7, 8]. The key feature of these results is that the sum
of squares relaxation problem or the dual problem is representable as a semidefinite
programming problem (SDP). Such a result is of great interest in optimization be-
cause semidefinite programs can efficiently be solved by interior-point methods [9],
and so the optimal value of the original problem can be found by solving its relaxation
or dual problem.

The new class of SOS-convex polynomials from algebraic geometry [7, 10] is an
important subclass of convex polynomials and it includes convex quadratic functions
and separable convex polynomials. The SOS-convexity of polynomials can numeri-
cally be checked by solving semidefinite programming problems, whereas deciding
convexity of polynomials is generally very hard [11, 12].

In this paper, we study discrete minimax programs with SOS-convex polynomi-
als and examine the very basic issue of which discrete minimax programs can be
presented with zero duality gap, where the duals can be represented as semidefinite
linear programming problems. We make the following contributions to minimax op-
timization.

I. Without any qualifications, we establish dual characterizations of non-negativi-
ty of max functions of convex polynomials over a system of convex polynomial
inequalities and then derive sum-of-squares polynomial representations of non-
negativity of max functions of SOS-convex polynomials over a system of SOS-
convex polynomial inequalities.

II. Using the sum-of-squares polynomial representations, we introduce a dual pro-
gram, which is representable as a semidefinite linear programming problem, and
show that there is no duality gap between the primal and its dual, whenever the
functions involved in the primal program are SOS-convex polynomials. Under
a constraint qualification, we prove that strong duality holds between the primal
minimax problem and its dual problem. As an application, we prove that the
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value of a robust convex programming problem under polytopic data uncertainty
is equal to its dual semidefinite program. The significance of our duality theo-
rems is that the value of our primal minimax program can easily be found by
solving its dual semidefinite program.

III. Under a constraint qualification, we establish that strong duality continues to
hold for SOS-convex minimax fractional programming problems with their cor-
responding dual semidefinite programs, including minimax linear fractional pro-
gramming problems, for which the dual semidefinite programs reduce to linear
programming problems.

The outline of the paper is as follows. Section 2 provides dual characterizations
and representations of non-negativity of max functions of convex polynomials as well
as SOS-convex polynomials over a system of inequalities. Section 3 presents zero
duality gaps and strong duality results. Section 4 gives applications of our duality
results to classes of robust convex optimization problems and minimax fractional
programming problems. Appendix provides basic re-formulation of our dual problem
as a semidefinite linear programming problem.

2 Dual Characterizations and Representations of Non-negativity

In this section, we present dual characterizations of solvability of inequality sys-
tems involving convex as well as SOS-convex polynomials. Firstly, we shall recall
a few basic definitions and results which will be needed later in the sequel. We say
that a real polynomial f is sum-of-squares [13] iff there exist real polynomials fj ,
j = 1, . . . , s, such that f = ∑s

j=1 f 2
j . The set of all sum-of-squares real polynomials

is denoted by Σ2, whereas the set consisting of all sum of squares real polynomi-
als with degree at most d is denoted by Σ2

d . Similarly, we say a matrix polynomial
F ∈ R[x]n×n is a SOS-matrix polynomial provided that F(x) = H(x)H(x)T , where
H(x) ∈ R[x]n×s is a matrix polynomial for some s ∈ N. We now introduce the defi-
nition of SOS-convex polynomial.

Definition 2.1 [10, 11] A real polynomial f on R
n is called SOS-convex iff the Hes-

sian matrix function x �→ ∇2f (x) is a SOS-matrix polynomial.

Clearly, a SOS-convex polynomial is convex. However, the converse is not true.
Thus, there exists a convex polynomial, which is not SOS-convex [11]. It is known
that any convex quadratic function and any convex separable polynomial is a SOS-
convex polynomial. Moreover, a SOS-convex polynomial can be non-quadratic and
non-separable. For instance, f (x) = x8

1 +x2
1 +x1x2 +x2

2 is a SOS-convex polynomial
(see [14]), which is non-quadratic and non-separable.

The following basic known results on convex polynomials will play key roles
throughout the paper.

Lemma 2.1 [10, Lemma 8] Let f be a SOS-convex polynomial. If f (u) = 0 and
∇f (u) = 0 for some u ∈ R

n, then f is a sum-of-squares polynomial.



738 J Optim Theory Appl (2014) 162:735–753

Lemma 2.2 ([15, Theorem 3]) Let f0, f1, . . . , fm be convex polynomials on R
n. Sup-

pose that infx∈C f0(x) > −∞, where C := {x ∈ R
n : fi(x) ≤ 0, i ∈ Nm} �= ∅. Then,

argminx∈C f0(x) �= ∅.

Corollary 2.1 Let f be a non-negative SOS-convex polynomial on R
n. Then, f is a

sum-of-squares polynomial.

Proof Assume that f is a non-negative SOS-convex polynomial on R
n. In virtue

of Lemma 2.2, we know that minx∈Rn f (x) = f (x∗) for some x∗ ∈ R
n. Therefore,

h := f − f (x∗) is a non-negative SOS-convex polynomial such that h(x∗) = 0 and
∇h(x∗) = 0. By applying Lemma 2.1, we find that h is a sum-of-squares polynomial,
so f − f (x∗) = σ for some σ ∈ Σ2. Therefore, f = σ + f (x∗) is a sum-of-squares
polynomial since f (x∗) ≥ 0. �

Let � be the simplex in R
r , that is, � := {δ ∈ R

r+ : ∑r
j=1 δj = 1}. Note that for

l ∈N, Nl is defined by Nl = {1,2, . . . , l}

Theorem 2.1 (Dual characterization of non-negativity) Let pj and gi be convex
polynomials for all j ∈ Nr and i ∈ Nm, with F := {x ∈ R

n : gi(x) ≤ 0, i ∈ Nm} a
nonempty set. Then, the following statements are equivalent:

(i) gi(x) ≤ 0, i ∈ Nm ⇒ maxj∈Nr
pj (x) ≥ 0.

(ii) (∀ε > 0) (∃ δ̄ ∈ �, λ̄ ∈R
m+)

∑r
j=1 δ̄j pj + ∑m

i=1 λ̄igi + ε > 0.

Proof (ii) ⇒ (i) Suppose that, for each ε > 0, there exist δ̄ ∈ � and λ̄ ∈ R
m+ such that∑r

j=1 δ̄jpj + ∑m
i=1 λ̄igi + ε > 0. Then, for any x ∈F we have

max
δ∈�

r∑

j=1

δjpj (x) + ε ≥
r∑

j=1

δ̄j pj (x) + ε ≥
r∑

j=1

δ̄j pj (x) +
m∑

i=1

λ̄igi(x) + ε > 0.

Letting ε → 0, we see that

max
j∈Nr

pj (x) = max
δ∈�

r∑

j=1

δjpj (x) ≥ 0

for all x ∈ F .
(i) ⇒ (ii) Assume that (i) holds. Let ε > 0 be arbitrary and let fj := pj + ε for all

j ∈ Nr . Then, one has

max
j∈Nr

fj (x) = max
j∈Nr

{
pj (x)

} + ε > 0 ∀x ∈F .

Now, we will show that the set

G := {
z = (z, z) ∈R

r+m : ∃x ∈R
n s.t. fj (x) ≤ z

j
, j ∈Nr , gi(x) ≤ zi, i ∈ Nm

}

is a closed and convex set. As fj and gi are all convex polynomials, then G is clearly a
convex set. To see that it is closed, let {zk}k∈N ⊂ G be such that {zk} → z∗ as k → ∞.
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Then, for each k ∈N, there exists xk ∈ R
n such that fj (x

k) ≤ zk
j

and gi(x
k) ≤ zk

i , for
all j ∈Nr and i ∈Nm. Now, consider the convex optimization problem

(P̄ ) min
x∈Rn,u∈Rr+m

‖u − z∗‖2

s.t. fj (x) − uj ≤ 0, j ∈Nr ,

gi(x) − ui ≤ 0, i ∈Nm.

Obviously, 0 ≤ inf(P̄ ) ≤ ‖zk − z∗‖2 for all k ∈ N, where inf(P̄ ) denotes the optimal
value of the problem inf(P̄ ). Since ‖zk − z∗‖2 → 0 as k → ∞, we get inf(P̄ ) = 0.
Moreover, Lemma 2.2 implies that inf(P̄ ) is attained, and so, there exists x∗ ∈ R

n

such that fj (x
∗) ≤ z∗

j
, j ∈Nr , and gi(x

∗) ≤ z∗
i , i ∈ Nm. So z∗ ∈ G, and consequently,

G is closed.
Since maxj∈Nr

fj (x) > 0 for all x ∈ F , 0 /∈ G. Hence, by the strict separation
theorem [16, Theorem 1.1.5], there exist v = (v, v) ∈ R

r+m\{0}, α ∈ R and ξ > 0
such that

0 = vT 0 ≤ α < α + ξ ≤ vT z + vT z

for all z ∈ G. Since G + (Rr+ × R
m+) ⊂ G, vj ≥ 0 and vi ≥ 0, for all j ∈ Nr and

i ∈ Nm. Observe that, for each x ∈ R
n, (f1(x), . . . , fr (x), g1(x), . . . , gm(x)) ∈ G.

So, for each x ∈ R
n,

r∑

j=1

vjfj (x) +
m∑

i=1

vigi(x) ≥ α + ξ ≥ ξ > 0. (1)

Now, we claim that v ∈ R
r+\{0}. Otherwise, if v = 0, then from (1) we get∑m

i=1 vigi(x̄) > 0 for any x̄ ∈ F (recall that F is nonempty). Since gi(x̄) ≤ 0 and
vi ≥ 0 for all i ∈ Nm,

∑m
i=1 vigi(x̄) ≤ 0, which is a contradiction. So, one has

κ := ∑r
j=1 vj > 0. Therefore, (1) implies that

r∑

j=1

δ̄j fj (x) +
m∑

i=1

λ̄igi(x) ≥ ξ̄ > 0

for all x ∈ R
n, where δ̄j := κ−1vj ≥ 0 for all j ∈Nr , λ̄i := κ−1vi ≥ 0 for all i ∈ Nm,

and ξ̄ := κ−1ξ > 0. Since
∑r

j=1 δ̄j = 1, we can write

r∑

j=1

δ̄j pj +
m∑

i=1

λ̄igi + ε > 0.

Thus, the conclusion follows. �

Let d be the smallest even number such that

d ≥ max
{

max
j∈Nr

degpj , max
i∈Nm

deggi

}
.
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Theorem 2.2 (SOS-Convexity and representation of non-negativity) Let pj and gi

be SOS-convex polynomials for all j ∈ Nr and i ∈Nm. Assume that the set F := {x ∈
R

n : gi(x) ≤ 0, i ∈ Nm} is nonempty. Then, the following statements are equivalent:

(i) gi(x) ≤ 0, i ∈ Nm ⇒ maxj∈Nr
pj (x) ≥ 0.

(ii) (∀ε > 0) (∃ δ̄ ∈ �, λ̄ ∈R
m+, σ̄ ∈ Σ2

d )
∑r

j=1 δ̄j pj + ∑m
i=1 λ̄igi + ε = σ̄ .

Proof (ii) ⇒ (i) Suppose that for each ε > 0, there exist δ̄ ∈ �, λ̄ ∈ R
m+ and σ̄ ∈ Σ2

d

such that
∑r

j=1 δ̄jpj + ∑m
i=1 λ̄igi + ε = σ̄ . Then, for any x ∈F we have

max
δ∈�

r∑

j=1

δjpj (x) + ε ≥
r∑

j=1

δ̄j pj (x) + ε = σ̄ (x) −
m∑

i=1

λ̄igi(x) ≥ 0.

Letting ε → 0, we see that maxj∈Nr
pj (x) ≥ 0 for all x ∈F .

(i) ⇒ (ii) Assume that (i) holds and let ε > 0 arbitrary. Then, by Theorem 2.1,
there exist δ̄ ∈ � and λ̄ ∈R

m+ such that

L :=
r∑

j=1

δ̄j pj +
m∑

i=1

λ̄igi + ε > 0.

Since pj and gi are all SOS-convex polynomials, then L is a (non-negative) SOS-
convex polynomial too. Hence, Corollary 2.1 ensures that L is a sum-of-squares
polynomial (of degree at most d), that is, there exist σ̄ ∈ Σ2

d such that

r∑

j=1

δ̄jpj +
m∑

i=1

λ̄igi + ε = σ̄ .

Thus, the conclusion follows. �

3 Duality for Minimax Programs with SOS-Convex Polynomials

In this section, we introduce the dual problem for our minimax model problem and
establish duality theorems whenever the functions involved are SOS-convex polyno-
mials.

Consider the minimax programming problem

(P ) inf
x∈Rn

max
j∈Nr

pj (x)

s.t. gi(x) ≤ 0, i ∈Nm,

(2)

and its associated dual problem

(D) supμ

s.t.
r∑

j=1

δjpj +
m∑

i=1

λigi − μ ∈ Σ2
d

δ ∈ �, λ ∈R
m+, μ ∈R,

(3)



J Optim Theory Appl (2014) 162:735–753 741

where pj and gi are real polynomials on R
n for all j ∈ Nr and i ∈ Nm and d is the

smallest even number such that d ≥ max{maxj∈Nr
degpj ,maxi∈Nm

deggi}.
Throughout the paper, the set F := {x ∈ R

n : gi(x) ≤ 0, i ∈ Nm} is assumed to be
nonempty.

It is well known that optimization problems of the form (D) can equivalently be re-
formulated as semidefinite programming problem [7]. See the appendix for details.
For instance, consider the quadratic optimization problem (P cq) where pj and gi

are all quadratic functions, that is, for all x ∈ R
n, pj (x) = xT Ajx + aT

j x + αj and

gi(x) = xT Cix + cT
i x + γi , with Aj ,Ci ∈ S

n, the space of all symmetric (n × n)

matrices, aj , ci ∈R
n and αj , γi ∈ R for all j ∈Nr and i ∈Nm, that is,

(P cq) inf
x∈Rn

max
j∈Nr

xT Ajx + aT
j x + αj

s.t. xT Cix + cT
i x + γi ≤ 0, ∀i ∈ Nm.

(4)

In this particular case, the sum-of-squares constraint in its associated dual problem∑r
j=1 δjpj +∑m

i=1 λigi −μ ∈ Σ2
2 is equivalent to

∑r
j=1 δjpj +∑m

i=1 λigi −μ ≥ 0.
This, in turn (see [17, p. 163]), is equivalent to

(∑r
j=1 δjαj + ∑m

i=1 λiγi − μ 1
2 (

∑r
j=1 δj a

T
j + ∑m

i=1 λic
T
i )

1
2 (

∑r
j=1 δj aj + ∑m

i=1 λici)
∑r

j=1 δjAj + ∑m
i=1 λiCi

)

� 0.

Therefore, the dual problem of (P cq) becomes

(Dcq) supμ

s.t.
r∑

j=1

δj

(
2αj aT

j

aj 2Aj

)

+
m∑

i=1

λi

(
2γi cT

i

ci 2Ci

)

− μ

(
2 0
0 0

)

� 0,

δ ∈ �, λ ∈R
m+, μ ∈R,

(5)

which is clearly a semidefinite programming problem.

Lemma 3.1 Let pj and gi be convex polynomials for all j ∈ Nr and i ∈Nm. Then,

inf(P ) = sup
δ∈�,λ∈Rm+

inf
x∈Rn

{
r∑

j=1

δjpj (x) +
m∑

i=1

λigi(x)

}

.

Proof Note that, for any x̄ ∈F , δ̄ ∈ � and λ̄ ∈R
m+, one has

max
j∈Nr

pj (x̄) ≥
r∑

j=1

δ̄j pj (x̄) +
m∑

i=1

λ̄igi(x̄) ≥ inf
x∈Rn

{
r∑

j=1

δ̄j pj (x) +
m∑

i=1

λ̄igi(x)

}

.

Therefore, inf(P ) ≥ supδ∈�,λ∈Rm+ infx∈Rn{∑r
j=1 δjpj (x) + ∑m

i=1 λigi(x)}.
To see the reverse inequality, we may assume without any loss of generality that

inf(P ) > −∞, otherwise the conclusion follows immediately. Since F �= ∅, we have
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μ∗ := inf(P ) ∈R. Then, for ε > 0 arbitrary, as maxj∈Nr
{pj (x) − μ∗} ≥ 0 for all x ∈

F , by Theorem 2.1 we see that there exist δ̄ ∈ � and λ̄ ∈R
m+ such that

∑r
j=1 δ̄j pj +

∑m
i=1 λ̄igi > μ∗ − ε. Consequently,

sup
δ∈�,λ∈Rm+

inf
x∈Rn

{
r∑

j=1

δjpj (x) +
m∑

i=1

λigi(x)

}

≥ μ∗ − ε.

Since the above inequality holds for any ε > 0, passing to the limit we obtain the
desired inequality, which concludes the proof. �

As a consequence of Lemma 3.1, we derive the following zero duality gap result
for (P ).

Theorem 3.1 (Zero duality gap) Let pj and gi be SOS-convex polynomials for all
j ∈ Nr and i ∈ Nm. Then, inf(P ) = sup(D).

Proof For any feasible points x̄ ∈ F and δ̄ ∈ �, λ̄ ∈ R
m+ and μ̄ ∈ R such that

∑r
j=1 δ̄jpj + ∑m

i=1 λ̄igi − μ̄ = σ̄ ∈ Σ2
d ,

r∑

j=1

δ̄j (pj (x̄) − μ̄) =
r∑

j=1

δ̄j pj (x̄) − μ̄ = σ̄ (x̄) −
m∑

i=1

λ̄igi(x̄) ≥ 0.

Then, there exists j0 ∈ Nr such that pj0(x̄) − μ̄ ≥ 0, and so, μ̄ ≤ maxj∈Nr
pj (x̄).

Thus, sup(D) ≤ inf(P ).
To see the reverse inequality, we may assume without any loss of generality that

inf(P ) > −∞, otherwise the conclusion follows immediately. Since F �= ∅, we have
μ∗ := inf(P ) ∈R. Then, as a consequence of Lemma 3.1, for ε > 0 arbitrary we have

sup
δ∈�,λ∈Rm+,μ∈R

{

μ :
r∑

j=1

δjpj +
m∑

i=1

λigi − μ ≥ 0

}

≥ μ∗ − ε.

As pj and gi are all SOS-convex polynomials, then L := ∑r
j=1 δjpj + ∑m

i=1 λigi −
μ is a SOS-convex polynomial too. So, by Corollary 2.1, L is non-negative if and
only if L ∈ Σ2

d . Hence, μ∗ − ε ≤ sup(D). Since the previous inequality holds for any
ε > 0, passing to the limit we get μ∗ ≤ sup(D), which concludes the proof. �

Corollary 3.1 Let f and gi be SOS-convex polynomials for all i ∈Nm. Then,

inf
x∈Rn

{
f (x) : gi(x) ≤ 0, i ∈Nm

} = sup
λ∈Rm+,μ∈R

{

μ : f +
m∑

i=1

λigi − μ ∈ Σ2
d ,

}

where d is the smallest even number such that d ≥ max{degf,maxi∈Nm
deggi}.

Proof It is a straightforward consequence of Theorem 3.1 by taking r = 1. �
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Remark 3.1 It is worth observing that the conclusion of Theorem 3.1 can be also
obtained from Corollary 3.1. To see this, let us consider the following SOS-convex
polynomial optimization problem associated with (P ):

(Pe) inf
(x,z)∈Rn×R

z

s.t. pj (x) − z ≤ 0, ∀j ∈Nr ,

gi(x) ≤ 0, ∀i ∈ Nm.

(6)

Then, inf(P ) = inf(Pe). Corollary 3.1 gives us that inf(Pe) = sup(De), where the
dual problem (De) is given by

sup
μ∈R,σ∈Σ2

λ∈Rm+,δ∈Rr+

{

μ : z +
m∑

i=1

λigi(x) +
r∑

j=1

δj

(
pj (x) − z

) − μ = σ(x, z),∀(x, z) ∈ R
n+1

}

The constraint in the above dual problem can be written as follows:

z

(

1 −
r∑

j=1

δj

)

+
r∑

j=1

δjpj (x) +
m∑

i=1

λigi(x) − μ = σ(x, z) (7)

for all (x, z) ∈ R
n+1. Let γ := 1 − ∑r

j=1 δj and fix x = x0 ∈ R
n. Following the

arguments employed in [18], we claim that γ = 0. If γ > 0, letting z ∈ R small
enough we find that the right-hand side of (7) becomes negative, which contradicts
the fact that σ(x0, z) ≥ 0 for all z ∈ R. On the other hand, if γ < 0, letting z ∈ R large
enough, we see that the right-hand side of (7) becomes negative, which implies again
a contradiction. Consequently, γ = 0 and σ does not depend on z. So, the problem
(De) collapses to problem (D) introduced in (3).

We now see that whenever the Slater condition,
{
x ∈ R

n : gi(x) < 0, i ∈ Nm

} �= ∅,

is satisfied, strong duality between (P ) and (D) holds.

Theorem 3.2 (Strong duality) Let pj and gi be SOS-convex polynomials for all j ∈
Nr and i ∈Nm. If the Slater condition holds, then inf(P ) = max(D).

Proof Let f := maxj∈Nr
pj and μ∗ := inf(P ) ∈R. Thus, since the Slater condition is

fulfilled, by the usual convex programming duality and the convex-concave minimax
theorem, we get

μ∗ ≤ inf(P ) = inf
x∈Rn

{
f (x) : gi(x) ≤ 0, i ∈ Nm

}

= max
λ∈Rm+

inf
x∈Rn

{

f (x) +
m∑

i=1

λigi(x)

}
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= max
λ∈Rm+

inf
x∈Rn

max
δ∈�

{
r∑

i=1

δjpj (x) +
m∑

i=1

λigi(x)

}

= max
λ∈Rm+,δ∈�

inf
x∈Rn

{
r∑

i=1

δjpj (x) +
m∑

i=1

λigi(x)

}

.

Hence, there exist λ̄ ∈ R
m+ and δ̄ ∈ � such that

L :=
r∑

j=1

δ̄j pj +
m∑

i=1

λ̄igi − μ∗ ≥ 0.

As pj and gi are all SOS-convex polynomials, L is a (non-negative) SOS-convex
polynomial too, and consequently, in virtue of Corollary 2.1, L is a sum-of-squares
polynomial (of degree at most d). Hence, (δ̄, λ̄,μ∗) is a feasible point of (D), so
μ∗ ≤ sup(D). Since weak duality always holds, we conclude inf(P ) = max(D). �

Recall the minimax quadratic programming problem (P cq) introduced in (4) and
its dual problem (Dcq) given in (5). Note that the set of all (n × n) positive semidef-
inite matrices is denoted by S

n+.

Corollary 3.2 Let Aj ,Ci ∈ S
n+, aj , ci ∈ R

n, and αj , γi ∈ R for all j ∈ Nr and i ∈
Nm. If there exists x̄ ∈ R

n such that x̄T Ci x̄ + cT
i x̄ + γi < 0 for all i ∈ Nm, then

inf(P cq) = max(Dcq).

Proof As Aj ,Ci ∈ S
n+ for all j ∈ Nr and i ∈ Nm, all the quadratic functions involved

in (P cq) are convex. Hence, since the Slater condition holds and any convex quadratic
function is a SOS-convex polynomial, by applying Theorem 3.2 we get inf(P cq) =
max(Dcq). �

Remark 3.2 (Attainment of the optimal value) For the problem (P ) introduced in
(2), note that, if f := maxj∈Nr

pj (which is not a polynomial, in general) is bounded
from below on the nonempty set F , then f attains its minimum on F . In other words,
if inf(P ) ∈ R, then there exists x∗ ∈ F such that f (x∗) = min(P ). To see this, let
consider again the convex polynomial optimization problem (Pe) introduced in (6).
Let Fe be the (nonempty) feasible set of (Pe). Observe that x0 ∈ F implies (x0, z0) ∈
Fe for all z0 ≥ f (x0), and conversely, (x0, z0) ∈ Fe implies x0 ∈ F . Moreover, one
has inf(P ) = inf(Pe). Thus, Lemma 2.2 can be applied to problem (Pe) and then,
there exists (x∗, z∗) ∈ Fe such that z∗ = min(Pe). Since z∗ ≤ z for all (x, z) ∈ Fe

and (x, f (x)) ∈Fe for all x ∈ F , then we get

z∗ ≤ f (x) ∀x ∈F . (8)

On the other hand, as (x∗, z∗) ∈Fe we get x∗ ∈F and

f
(
x∗) ≤ z∗. (9)
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Combining (8) and (9), we conclude f (x∗) ≤ f (x) for all x ∈ F , and so, x∗ is a
minimizer of (P ).

Recall that the subdifferential of the (convex) function f at x ∈ R
n is defined to

be the set

∂f (x) := {
v ∈R

n : f (y) ≥ f (x) + vT (y − x), ∀y ∈ domf
}
.

For a convex set C ⊂ R
n, the normal cone of C of at x ∈ C is given by

NC(x) := {
v ∈R

n : vT (y − x) ≤ 0, ∀y ∈ C
}
.

We will say that the normal cone condition holds for F at x ∈F , provided that

NF (x) =
{

m∑

i=1

λi∇gi(x) : λ ∈R
m+,

m∑

i=1

λigi(x) = 0

}

.

It is known that the Slater condition guarantees the normal cone condition (see [19,
Sect. 2.2]). However, the converse statement is not true in general. The following
example1 shows this fact.

Example 3.1 Let g1(x1, x2) := x1 +x2
2 , g2(x1, x2) := −x1 +x2

2 , g3(x1, x2) := x2
1 +x2

and g4(x1, x2) := x2
1 − x2, for all x ∈ R

2. Then, it is easy to check that each gi

is a SOS-convex polynomial and F := {x ∈ R
2 : gi(x) ≤ 0, i ∈ N4} = {(0,0)}. So,

NF (x) = R
2 for all x ∈F . Since, for all x ∈ F ,

{
4∑

i=1

λi∇gi(x) : λ ∈ R
4+,

4∑

i=1

λigi(x) = 0

}

=
⋃

λ∈R4+

(λ1 − λ2, λ3 − λ4) = R
2,

then the normal condition holds. On the other hand, it is easy to see that the Slater
condition fails.

Theorem 3.3 (Min-max duality) Let pj and gi be SOS-convex polynomials for all
j ∈ Nr and i ∈ Nm. Let x∗ ∈ F be an optimal solution of (P ) and assume that the
normal cone condition for F at x∗ holds. Then, min(P ) = max(D).

Proof Let f := maxj∈Nr
pj and μ∗ := min(P ) ∈ R. If x∗ ∈ F is an optimal so-

lution of (P ), that is, f (x∗) = μ∗, then by optimality conditions we have 0 ∈
∂f (x∗) + NF (x∗). As a consequence of the normal cone condition for F at x∗ and
[20, Proposition 2.3.12], we get

0 =
r∑

j=1

δ̄j∇pj (x
∗) +

m∑

i=1

λ̄i∇gi(x
∗)

1The authors are grateful to Dr. Guoyin Li (University of New South Wales, Sydney), who provided this
example.
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for some λ̄ ∈ R
m+ with λ̄igi(x

∗) = 0 for all i ∈ Nm, and δ̄ ∈ � with δ̄j = 0 for those
j ∈ Nr such that pj (x

∗) �= μ∗. Note that the polynomial

L :=
r∑

j=1

δ̄j pj +
m∑

i=1

λ̄igi − μ∗

satisfies L(x∗) = 0 and ∇L(x∗) = 0. Moreover, L is a SOS-convex polynomial since
pj and gi are all SOS-convex polynomials. Then, as a consequence of Lemma 2.1,
L is a sum-of-squares polynomial (of degree at most d). Then, (δ̄, λ̄,μ∗) is a fea-
sible point of (D), so μ∗ ≤ sup(D). Since weak duality always holds, we conclude
min(P ) = max(D). �

The following simple example illustrates the above min-max duality theorem.

Example 3.2 Consider the optimization problem

(P1) min
x∈R

{
max

{
2x4 − x,5x2 + x

} : x ≥ −2
}
.

It is easy to check that x∗ = 0 is a minimizer of (P1) and min(P1) = 0. The corre-
sponding dual problem of (P1) is

(D1) max
δ≥0,λ≥0,μ∈R

{
μ : δ(2x4 − x

) + (1 − δ)
(
5x2 + x

) − λ(x + 2) − μ ∈ Σ2
4

}
.

As x4 + 5
2x2 ∈ Σ2

4 , δ = 1
2 , λ = 0 and μ = 0 is a feasible point of (D1). So, sup(D1) ≥

0. On the other hand, the sum-of-squares constraint in (D1) gives us −2λ − μ ≥ 0.
Consequently, μ ≤ −2λ ≤ 0, which implies max(D) = 0.

4 Applications to Robust Optimization and Rational Programs

In this section, we provide applications of our duality theorems to robust SOS-convex
programming problems under data uncertainty and to rational programming prob-
lems.

Let us consider the following optimization program with the data uncertainty in
the constraints and in the objective function:

(UP) inf
x∈Rn

{
f0(x, v0) : fi(x, vi) ≤ 0, ∀i = 1, . . . , k

}
,

where, for each i ∈ {0} ∪ Nk , vi is an uncertain parameter and vi ∈ Vi for some
Vi ⊂ R

ni . The robust counterpart of (UP) is given by

(RP) inf
x∈Rn

sup
v0∈V0

{
f0(x, v0) : fi(x, vi) ≤ 0, ∀vi ∈ Vi ,∀i = 1, . . . , k

}
.

Theorem 4.1 (Finite data uncertainty) Let fi(·, vi) be a SOS-convex polynomial for
each vi ∈ Vi := {v1

i , . . . , v
si
i } and each i ∈ {0} ∪ Nk and let r := s0. Assume that
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there exists x̄ ∈ R
n such that fi(x̄, v

j
i ) < 0 for all j ∈ Nsi and i ∈ Nk . Then, one has

inf(RP) = max(RD) where

(RD) supμ

s.t.
r∑

l=1

δlf0
(·, vl

0

) +
k∑

i=1

si∑

j=1

λ
j
i fi

(·, vj
i

) − μ ∈ Σ2
t

δ ∈ �, λi ∈ R
si+ (∀i ∈Nk), μ ∈ R,

(10)

and t is the smallest even number such that

t ≥ max
{

max
l∈Nr

degf0
(·, vl

0

)
,max
i∈Nk

max
j∈Nsi

degfi(·, vj
i )

}
.

Proof It is easy to see that problem (RP) is equivalent to

(RPe) inf max
j∈Nr

{
f0

(
x, v

j

0

) : fi

(
x, v

j
i

) ≤ 0, ∀j ∈Nsi ,∀i = 1, . . . , k
}
.

Since the Slater condition holds, we conclude inf(RPe) = max(RD) by applying The-
orem 3.2. �

Theorem 4.2 (Polytopic data uncertainty) Suppose that, for each i ∈ {0} ∪Nk , x �→
fi(x, vi) is a SOS-convex polynomial for each vi ∈ Vi := conv{v1

i , . . . , v
si
i } with r :=

s0, and vi �→ fi(x, vi) is affine for each x ∈R
n. Assume that there exists x̄ ∈ R

n such
that fi(x̄, v

j
i ) < 0 for all j ∈ Nsi and i ∈ Nk . Then, one has inf(RP) = max(RD),

where the problem (RD) is defined in (10).

Proof Let i ∈ Nk . As fi(x, ·) is affine for each x ∈ R
n, then fi(x, vi) ≤ 0 for all

vi ∈ Vi := conv{v1
i , . . . , v

si
i } if and only if fi(x, v

j
i ) ≤ 0 for all j ∈ Nsi . Moreover,

we see that

sup
v0∈V0

f0(x, v0) = max
j∈Nr

f0(x, v
j

0 ).

Hence, problem (RP) is equivalent to (RPe). Reasoning as in the proof of the above
theorem, we conclude inf(RP) = max(RD). �

Now, consider the following minimax rational programming problem,

(P) inf
x∈Rn

{

max
j∈Nr

pj (x)

q(x)
: gi(x) ≤ 0, i ∈Nm

}

,

where pj , for j ∈ Nr , q , and gi , for i ∈ Nm, are real polynomials on R
n, and for

each j ∈ Nr , pj (x) ≥ 0 and q(x) > 0 over the feasible set F , which is assumed to
be nonempty. This is a generalization of problem (P ) introduced in (2). For related
minimax fractional programs, see [21, 22]. Minimax fractional programs often ap-
pear in resource allocation and planning problems of management science where the
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objective function in their optimization problems involve ratios such as cost or profit
in time, return on capital and earnings per share (see [23]).

We associate with (P) the following SDP dual problem

(D) supμ

s.t.
r∑

j=1

δjpj +
m∑

i=1

λigi − μq ∈ Σ2
d

δ ∈ �, λ ∈R
m+, μ ∈R,

(11)

where d is the smallest even number such that

d ≥ max
{

degq, max
j∈Nr

degpj , max
i∈Nm

deggi

}
.

It is worth noting that, in general, problem (P) may not attain its optimal value
when it is finite, even when r = 1. To see this, consider the rational programming
problem (P1) infx∈R{ 1

x
: 1 − x ≤ 0}. Obviously, inf(P1) = 0, however, for any feasi-

ble point x, one has 1
x

> 0. Thus, the optimal value of (P1) is not attained.

Theorem 4.3 (Strong duality for minimax rational programs) Let pj , gi and −q be
SOS-convex polynomials for all j ∈Nr and i ∈ Nm, such that pj (x) ≥ 0 and q(x) > 0
for all x ∈F . If the Slater condition holds, then

inf(P) = max(D).

Proof Note that, for any μ ∈ R+, one has inf(P) ≥ μ if and only if inf(Pμ) ≥ 0,
where

(Pμ) inf
x∈F

max
j∈Nr

{
pj (x) − μq(x)

}
. (12)

By the assumption, inf(P) is finite. So, it follows easily that μ∗ := inf(P) ∈ R+ and
then inf(Pμ∗) ≥ 0. Since, for each j ∈Nr , pj −μ∗q is a SOS-convex polynomial and
the Slater condition holds, by Theorem 3.2, we have inf(Pμ∗) = max(Dμ∗), where

(Dμ∗) sup θ

s.t.
r∑

j=1

δjpj +
m∑

i=1

λigi − μ∗q − θ ∈ Σ2
d

δ ∈ �, λ ∈ R
m+, θ ∈ R.

(13)

As max(Dμ∗) = inf(Pμ∗) ≥ 0, there exist δ̄ ∈ �, λ̄ ∈ R
m+ and θ̄ ∈ R+ such that

r∑

j=1

δ̄j pj +
m∑

i=1

λ̄igi − μ∗q ∈ (θ̄ + Σ2
d ) ⊂ Σ2

d .

Therefore, (δ̄, λ̄,μ∗) is a feasible point of (D), so μ∗ ≤ sup(D). Since weak duality
always holds, we conclude inf(P) = max(D). �



J Optim Theory Appl (2014) 162:735–753 749

Let us consider the particular problem (Pcq) where pj , q and gi are all quadratic

functions; that is, pj (x) = xT Ajx +aT
j x +αj , q(x) = xT Bx +bT x +β and gi(x) =

xT Cix + cT
i x + γi for all x ∈ R

n, with Aj ,B,Ci ∈ S
n, aj , b, ci ∈ R

n and αj ,β, γi ∈
R for all j ∈Nr and i ∈ Nm; that is,

(Pcq) inf
x∈Rn

max
j∈Nr

xT Ajx + aT
j x + αj

xT Bx + bT x + β

s.t. xT Cix + cT
i x + γi ≤ 0, i ∈Nm.

Assume that pj (x) ≥ 0 and q(x) > 0 over the feasible set. The dual problem of (Pcq)

is given by

(Dcq) supμ

s.t.
r∑

j=1

δj

(
2αj aT

j

aj 2Aj

)

+
m∑

i=1

λi

(
2γi cT

i

ci 2Ci

)

− μ

(
2β bT

b 2B

)

� 0,

δ ∈ �, λ ∈R
m+, μ ∈R,

which is clearly a semidefinite programming problem.

Corollary 4.1 Let consider the problem (Pcq) such that Aj ,−B,Ci ∈ S
n+ for all

j ∈ Nr and i ∈ Nm. If there exists x̄ ∈ R
n such that x̄T Ci x̄ + cT

i x̄ + γi < 0 for all
i ∈ Nm, then

inf(Pcq) = max(Dcq).

Proof Note that the sum-of-squares constraint in its associated dual problem∑r
j=1 δjpj +∑m

i=1 λigi −μq ∈ Σ2
2 is equivalent to

∑r
j=1 δjpj +∑m

i=1 λigi −μq ≥
0. This is further equivalent to
( ∑r

j=1 δjαj + ∑m
i=1 λiγi − μβ 1

2 (
∑r

j=1 δj a
T
j + ∑m

i=1 λic
T
i − μbT )

1
2 (

∑r
j=1 δj aj + ∑m

i=1 λici − μb)
∑r

j=1 δjAj + ∑m
i=1 λiCi − μB

)

� 0.

So, our dual problem (D) collapses to (Dcq). Since the Slater condition holds and any
convex quadratic function is a SOS-convex polynomial, by applying Theorem 4.3 we
get inf(Pcq) = max(Dcq). �

Corollary 4.2 Let p, gi and −q be SOS-convex polynomials for all i ∈ Nm, such
that p(x) ≥ 0 and q(x) > 0 for all x ∈F . If the Slater condition holds, then

inf
x∈F

p(x)

q(x)
= max

μ∈R,λ∈Rm+

{

μ : p +
m∑

i=1

λigi − μq ∈ Σ2
k

}

where k is the smallest even number such that k ≥ max{degp,degq,maxi∈Nm
deggi}.

Proof It is a straightforward consequence of Theorem 4.3 when r = 1. �
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Next we show that the non-negativity of the polynomials pj can be dropped when-
ever q is an affine function.

Corollary 4.3 Let pj and gi be SOS-convex polynomials for each j ∈ Nr and each
i ∈ Nm, b ∈R

n and β ∈ R such that bT x +β > 0 for all x ∈ F . If the Slater condition
holds, then

inf
x∈F

max
j∈Nr

pj (x)

bT x + β
= max

μ∈R
δ∈�,λ∈Rm+

{

μ :
r∑

j=1

δjpj +
m∑

i=1

λigi − μ
(
bT (·) + β

) ∈ Σ2
d

}

.

Proof The proof follows the same line of arguments as the proof of Theorem 4.3,
except that, in the case q(x) := bT x +β for all x ∈ R

n, all polynomials pj −μ∗q are
SOS-convex without the non-negativity of all pj ’s, and therefore, of μ∗. �

For the particular problem

(
P l

)
inf

x∈Rn

{

max
j∈Nr

aT
j x + αj

bT x + β
: cT

i x + γi ≤ 0, i ∈ Nm

}

,

the corresponding dual problem can be stated as the following linear programming
problem:

(
Dl

)
maxμ

s.t.
r∑

j=1

δj aj +
m∑

i=1

λici − μb = 0, (14)

r∑

j=1

δjαj +
m∑

i=1

λiγi − μβ ≥ 0, (15)

δ ∈ �, λ ∈ R
m+, μ ∈ R.

Corollary 4.4 Let αj ,β, γi ∈ R and aj , b, ci ∈ R
n for all j ∈ Nr and i ∈ Nm. Assume

that bT x + β > 0 for all feasible point x of P l . Then,

inf(P l) = max(Dl ).

Proof By applying Corollary 4.3, we find that inf(P l ) equals

max
μ∈R

δ∈�,λ∈Rm+

{

μ :
r∑

j=1

δj

(
aT
j x + αj

) +
m∑

i=1

λi

(
cT
i x + γi

) − μ
(
bT x + β

) ∈ Σ2
2

}

.

Since the sum-of-squares constraint in the above dual problem is equivalent to (14)
and (15), we conclude inf(P l ) = max(Dl ). �

If a minimizer x∗ of (P) is known, then the Slater condition in Theorem 4.3 can
be replaced by a weaker condition in order to derive strong duality between (P) and
(D).
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Theorem 4.4 Let pj , gi and −q be SOS-convex polynomials for all j ∈ Nr and
i ∈ Nm, such that pj (x) ≥ 0 and q(x) > 0 for all x ∈ F . Let x∗ ∈ F be an optimal
solution of (P) and assume that the normal cone condition for F at x∗ holds. Then,
min(P) = max(D).

Proof Let μ∗ := min(P) ∈ R+. Note that (P) has optimal solution x∗ with optimal
value μ∗ if and only if x∗ is an optimal solution of (Pμ∗) with optimal value 0 (cf.
[22, Lemma 2.3]), where (Pμ∗) is stated in (12). Since, for each j ∈ Nr , pj − μ∗q
is a SOS-convex polynomial and the normal cone condition for F at x∗ holds, by
Theorem 3.3 we have min(Pμ∗) = max(Dμ∗), where (Dμ∗) has been stated in (13).
As max(Dμ∗) = 0, there exist δ̄ ∈ � and λ̄ ∈R

m+ such that

r∑

j=1

δ̄j pj +
m∑

i=1

λ̄igi − μ∗q ∈ Σ2
d .

Therefore, (δ̄, λ̄,μ∗) is a feasible point of (D), so μ∗ ≤ sup(D). Since weak duality
always holds, we conclude min(P) = max(D). �

5 Conclusions

In this paper, we have shown that various classes of minimax programs involving
sum-of-squares convex (SOS-convex) polynomials exhibit zero duality gaps with
their corresponding dual programs without any qualifications. The significance of the
results is that the dual programs are representable as semidefinite programs which
can efficiently be solved by interior-point methods. So, the optimal values of the
original minimax problems can be found by solving their dual programs. Under con-
straint qualifications, we further derived strong duality results where the dual pro-
grams attain their optimal values. We applied our results to obtain corresponding
results for robust SOS-convex programs under polytopic data uncertainty and to min-
imax fractional programs including minimax fractional programs involving quadratic
functions.
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Appendix: SDP Representations of Dual Programs

Finally, for the sake of completeness, we show how our dual problem (D) given in
(11) can be represented by a semidefinite linear programming problem. To this aim,
let us recall some basic facts on the relationship between sum-of-squares polynomials
and semidefinite programming problems.

We denote by S
n the space of symmetric n × n matrices. For any A,B ∈ S

n, we
write A � 0 if and only if A is positive semidefinite, and 〈A,B〉 stands for trace(AB).
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Let Sn+ := {A ∈ S
n : A � 0} be the closed and convex cone of positive semidefinite

n × n (symmetric) matrices. The space of all real polynomials on R
n with degree d

is denoted by Rd [x1, . . . , xn] and its canonical basis is given by

y(x) ≡ (
xα

)
|α|≤d

:= (
1, x1, x2, . . . , xn, x

2
1 , x1x2, . . . , x

2
2 , . . . , x2

n, . . . , xd
1 , . . . , xd

n

)T
,

which has dimension e(d,n) := (
n+d
d

)
, and α ∈ ({0} ∪N)n is a multi-index such that

|α| := ∑n
i=1 αi . Let N := {α ∈ ({0} ∪ N)n : |α| ≤ d}. Thus, if f is a polynomial on

R
n with degree at most d , one has

f (x) =
∑

α∈N
fαxα.

Assume that d is an even number, and let k := d/2. Then, according to [7, Propo-
sition 2.1], f is a sum-of-squares polynomial if and only if there exists Q ∈ S

e(k,n)
+

such that f (x) = y(x)T Qy(x). By writing y(x)y(x)T = ∑
α∈N Bαxα for appropri-

ate matrices (Bα) ⊂ S
e(k,n), one finds that f is a sum-of-squares polynomial if and

only if there exists Q ∈ S
e(k,n)
+ such that 〈Q,Bα〉 = fα for all α ∈N .

Using the above characterization, we see that our dual problem (D) can be equiv-
alently rewritten as the following semidefinite programming problem:

(SD) supμ

s.t.
r∑

j=1

δj (pj )α +
m∑

i=1

λi(gi)α − μqα = 〈Q,Bα〉, ∀α ∈N ,

r∑

j=1

δj = 1,

δ ∈R
r+, λ ∈R

m+, μ ∈R, Q ∈ S
e(k,n)
+ .

Letting qα = 1 for α = (0, . . . ,0) and qα = 0 otherwise, we get the SDP represen-
tation for problem (D) in (3).
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