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Abstract This paper deals with equilibrium problems with nonlinear constraints. Ex-
ploiting a gap function which relies on a polyhedral approximation of the feasible
region, we propose two descent methods. They are both based on the minimization
of a suitable exact penalty function, but they use different rules for updating the pe-
nalization parameter and they rely on different types of line search. The convergence
of both algorithms is proved under standard assumptions.
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1 Introduction

The equilibrium problem provides a general setting to formulate a large number
of problems such as scalar and vector optimization, variational inequality, fixed
point, complementarity, saddle points and noncooperative games in a unique format
(see [1, 2] and references therein). A huge number of applications have been devel-
oped in different areas such as economics, environment, transportation, information
technology and telecommunications: some recent papers focused on oligopolistic and
spatial price markets [3–5], auction and financial markets [6–8], risk management [9],
climate policies [10, 11], traffic and pricing over telecommunication networks or over
public roads [12–14], clouding computing [15, 16], power allocation in radio sys-
tems [17, 18], internet advertising [19].

Several kinds of methods to solve equilibrium problems have been proposed (see,
for instance, the recent survey [1]). One popular approach relies on the reformula-
tion of the equilibrium problem as an optimization problem through appropriate gap
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or D-gap functions: many ad hoc descent methods for minimizing the chosen gap
function have been developed (see [13, 14, 20–28]). Most of them require the com-
putation of the minimum of a convex function over the (convex) feasible region of the
equilibrium problem just to evaluate the gap function at a given point. Therefore, this
evaluation could be computationally expensive when the feasible region is described
by nonlinear (convex) constraints.

Recently, a gap function, which uses a polyhedral approximation of the feasi-
ble region, has been introduced in [14]. This paper introduces two descent methods
for solving equilibrium problems with nonlinear constraints, exploiting this new gap
function. They are both based on a search direction which could be unfeasible, unlike
most of the known algorithms. Therefore, some penalization techniques are needed:
an exact penalty term is introduced and a descent direction for the penalized gap
function is available, provided that the penalization parameter is small enough. It is
worthy to remark that the penalization parameter is updated throughout the iterations
of the algorithms whenever it is needed.

These new methods have some better features than most of the available descent
methods. At each iteration, a convex optimization problem with linear constraints
is solved instead of a convex problem with nonlinear constraints, as in [13, 21, 23,
25, 26]. Moreover, the key assumption for convergence is weaker than those for the
methods proposed in [21, 25, 26]. Finally, the parameters are bounded away from
zero while they might go to zero, and thus give numerical instability, in the methods
developed in [13, 14, 23].

The paper is organized as follows: Sect. 2 recalls some well-known definitions
and results about gap functions for equilibrium problems, and a key lemma on the
penalized gap function is proved. Section 3 provides the two new solution methods
and their convergence is proved under standard assumptions. Finally, Sect. 4 contains
some final remarks and comparisons between the new methods and those already
available in the literature.

2 Preliminaries

We consider the following equilibrium problem:

(EP) find x∗ ∈ C such that f
(
x∗, y

) ≥ 0, ∀y ∈ C,

where C ⊆ R
n is closed and convex and f :Rn×R

n → R is a bifunction. Throughout
the paper, the following basic assumptions are made:

– The feasible set C is bounded and it is defined by convex inequalities, i.e.,

C := {
x ∈R

n : ci(x) ≤ 0, i = 1, . . . ,m
}
,

where ci : Rn →R are convex functions.
– The ci ’s are twice continuously differentiable and Slater constraint qualification

holds, i.e., there is x̂ ∈R
n such that ci(x̂) < 0 for all i = 1, . . . ,m.

– The bifunction f is continuously differentiable, f (x, ·) is convex, f (x, x) = 0 for
all x ∈ D, where D is a bounded polyhedron containing C.
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The above assumptions guarantee that (EP) admits at least one solution (see, for
instance, [29]).

A function g : C → R is said to be a gap function for (EP) iff g is non-negative
on C, and x∗ solves (EP) if and only if x∗ ∈ C and g(x∗) = 0. Thus, gap functions
allow to reformulate an equilibrium problem as a global optimization problem, whose
optimal value is known a priori. In order to build gap functions with good smoothness
properties, it is helpful to consider a continuously differentiable auxiliary bifunction
h :Rn ×R

n → R which satisfies the following conditions:

– h(x, y) ≥ 0 for all x, y ∈ D and h(z, z) = 0 for all z ∈ D,
– h(x, ·) is strictly convex for all x ∈ D,
– ∇yh(z, z) = 0 for all z ∈ D,
– 〈∇xh(x, y) + ∇yh(x, y), y − x〉 ≥ 0 for all x, y ∈ D.

If all the conditions on f and h which involve D actually hold on the whole R
n,

then any bounded polyhedron D such that C ⊆ D can be considered.
Given any α > 0, a well-known gap function (see, for instance, [26]) is

φα(x) = −min
y∈C

{
f (x, y) + α h(x, y)

}
.

Several descent methods based on the minimization of the gap function φα have been
developed [13, 14, 21, 25, 26]. However, computing φα(x) requires the solution of a
convex optimization problem with nonlinear constraints, which may be computation-
ally expensive.

Recently, the gap function φα has been modified by replacing the feasible region
C by its polyhedral approximation at each considered point [14], namely introducing
the function

ϕα(x) = − min
y∈P(x)

{
f (x, y) + α h(x, y)

}
, (1)

where

P(x) = {
y ∈ D : ci(x) + 〈∇ci(x), y − x

〉 ≤ 0, i = 1, . . . ,m
}
.

The polyhedron D guarantees the boundedness of P(x): in fact, the linearization of
the constraints alone could be not enough for it, even though C itself is bounded.

Since the inner optimization problem in (1) has a strictly convex objective function
and a bounded feasible region, it admits a unique solution yα(x). We remark that this
modification of the gap function φα extends to (EP) a similar idea developed in [30]
for variational inequalities.

Lemma 2.1 [14] The following statements hold:

(a) ϕα is locally Lipschitz continuous on D;
(b) x∗ solves (EP) if and only if yα(x∗) = x∗;
(c) ϕα is a gap function for (EP);
(d) If x ∈ C does not solve (EP) and f is strictly ∇-monotone on D, i.e.

〈∇xf (x, y) + ∇yf (x, y), y − x
〉
> 0, ∀x, y ∈ D with x �= y, (2)

then yα(x) − x is a descent direction for ϕα at x.
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It is worth noting that it is not possible to replace P(x) by D in (1): ϕα would no
longer be a gap function, and also the fixed-point reformulation in the above lemma
would not hold.

The above results suggest to exploit yα(x) − x as a search direction at a given
iterate x in the minimization process of the gap function ϕα . However, the direction
yα(x)−x may be unfeasible because yα(x) belongs to the approximating polyhedron
P(x), but not necessarily to the feasible set C. For this reason, the following exact
penalty function has been introduced in [14]:

ψα,ε,p(x) := ϕα(x) + 1

ε

∥∥c+(x)
∥∥

p
,

where c+(x) = (c+
1 (x), . . . , c+

m(x)) with c+
i (x) = max{0, ci(x)}, ε > 0 and p ∈

[1,∞]. Given any α > 0, also the penalty function turns out to be a gap function,
provided that the penalization parameter ε is small enough. In fact, well-known re-
sults about penalization [31] allow to prove the following key properties.

Lemma 2.2 Given any α > 0 and any p ∈ [1,∞], there exists ε̄ > 0 such that

(a) ψα,ε,p(x) ≥ 0 for all x ∈ D,
(b) x∗ solves (EP) if and only if x∗ ∈ D and ψα,ε,p(x∗) = 0,

for all ε ∈]0, ε̄[.

Proof Consider any compact set D′ containing D in its interior, namely D ⊂ intD′.
By [31, Proposition 8 and Theorems 11 and 12], there exists ε̄ > 0 such that

argmin
{
ϕα(x) : x ∈ C

} = argmin
{
ψα,ε,p(x) : x ∈ intD′} (3)

holds for any ε ∈]0, ε̄[. Consider any global minimizer x̂ of ϕα over C: we have both
x̂ ∈ C and ϕα(x̂) = 0, so that ψα,ε,p(x̂) = ϕα(x̂) = 0. Therefore, (a) follows immedi-
ately since (3) implies that x̂ is also a minimizer of ψα,ε,p on D. As a consequence,
Lemma 2.1(c) and (3) imply that (b) holds as well. �

Next section introduces two new solution methods for (EP) based on the mini-
mization of the penalized gap function ψα,ε,p , which are both convergent under as-
sumption (2).

Actually, a method based on the minimization of ψα,ε,p has already been proposed
in [14]. The basic idea of the algorithm is the following: given values for α and ε, the
new iterate is obtained moving away from the current iterate xk along the direction
yα(xk) − xk if the decrease condition

ψα,ε,p

(
xk

) − α
[
h
(
xk, yα

(
xk

)) + 〈∇xh
(
xk, yα

(
xk

))
, yα

(
xk

) − xk
〉] ≤ −ηψα,ε,p

(
xk

)

(4)
is satisfied for some given η ∈]0,1[ along with two further technical conditions (re-
lated to ε). If this is not the case, a null step is performed simply decreasing both α

and ε simultaneously before trying again to move away from xk with the same proce-
dure. The decrease is run according to sequences of parameters going to zero. Thus,
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if the algorithm performs an infinite sequence of null steps, it generates a sequence
of iterates which converges to a solution of (EP) while the parameters α and ε go to
zero.

On the other hand, the assumptions required by this latter method for convergence
are different from those used in this paper. In fact, the above method from [14] is
based on the following concavity-type condition:

f (x, y) + 〈∇xf (x, y), y − x
〉 ≥ 0 ∀x, y ∈ D, (5)

which is neither weaker nor stronger than condition (2) (see Examples 2.5 and 3.2
in [13]). Furthermore, the following example satisfies both the conditions (2) and (5),
and it provides a case in which the above method could be numerically unstable since
the parameters α and ε actually go to zero. On the contrary, this may never happen
in the algorithms of this paper since α is kept fixed and ε is always updated a finite
number of times.

Example 2.1 Consider (EP) with n = 2, m = 1,

f (x, y) = (x1 + x2) y1 + (x2 − x1) y2 − x2
1 − x2

2

and c1(x) = x2
1 + x2

2 − 1. Therefore, the feasible region C is the unit ball and x∗ =
(0,0) is the unique solution of (EP). Consider h(x, y) = ‖y − x‖2

2/2 and the box
D = [−1,1] × [−1,1] containing the feasible region. Note that f satisfies (2) since

〈∇xf (x, y) + ∇yf (x, y), y − x
〉 = ‖y − x‖2

2.

Furthermore, f (·, y) is concave for all y ∈R
n, hence

0 = f (y, y) ≤ f (x, y) + 〈∇xf (x, y), y − x
〉
, ∀x, y ∈ D,

holds for all x, y ∈ D, i.e., f satisfies (5) as well.
Three cases can occur running the algorithm devised in [14] (see [14, Theorem

5]):

1. It finds x∗ after a finite number of iterations;
2. It generates a sequence which converges to x∗ while the parameters α and ε are

updated only a finite number of times;
3. It generates a sequence which converges to x∗ while α and ε go to zero.

Unless the starting point of the algorithm is x∗ itself, the first two cases cannot
happen.

The first case requires that x∗ = (0,0) belongs to the segment with x and yα(x)

as extreme points for some x, i.e., yα(x) = γ x for some γ < 0. Furthermore, yα(x)

is the projection of zα(x) onto P(x) with

zα(x) = (
x1 − (x1 + x2)/α, x2 − (x2 − x1)/α

)
.
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Fig. 1 Case 1 is not possible (Example 2.1)

In fact, we have

f (x, y) + αh(x, y) = (x1 + x2)y1 + (x2 − x1)y2 − x2
1 − x2

2

+ α
[
(y1 − x1)

2 + (y2 − x2)
2]/2

= α
[(

y1 − x1 + (x1 + x2)/α
)2 + (

y2 − x2 + (x2 − x1)/α
)2]

/2

= α
∥∥y − zα(x)

∥∥2
/2,

and therefore

yα(x) = argmin
{
f (x, y)+αh(x, y) : y ∈ P(x)

} = argmin
{∥∥y−zα(x)

∥∥2 : y ∈ P(x)
}
.

Figure 1 shows that no point γ x can ever be the projection of zα(x) onto P(x).
Therefore, yα(x) �= γ x for all γ < 0, which means that the first case cannot occur.

In the second case the algorithm generates a sequence xk → x∗ while α is def-
initely fixed and the decrease condition (4) holds whenever k is sufficiently large.
Clearly, zα(xk) → x∗ since zα(x) → 0 as x → 0. Hence, zα(xk) ∈ C ⊂ P(xk)

holds for any sufficiently large k, and it implies yα(xk) = zα(xk) and therefore
ψα,ε,p(xk) = ϕα(xk) = ‖xk‖2/α. However, the decrease condition (4) reads

0 ≤ −η

α
‖xk‖2,

which is not possible. Therefore, also the second case cannot occur.
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As a result, only the third case can occur: the algorithm generates a sequence
which converges to x∗ while α and ε go to zero.

3 Descent Methods

While yα(x) − x is a descent direction for ϕα at x, it is not necessarily so for any pe-
nalized gap function ψα,ε,p . Indeed, the key result shows that it is a descent direction
also for ψα,ε,p at x if the parameter ε is small enough. The generalized directional
derivative of ψα,ε,p at x along the direction d , i.e.,

ψ◦
α,ε,p(x;d) := lim sup

z→x
t↓0

t−1[ψα,ε,p(z + t d) − ψα,ε,p(z)
]
,

provides a convenient tool to check whether d is a descent direction. In fact, if
ψ◦

α,ε,p(x;d) < 0, then ψα,ε,p(x + td) < ψα,ε,p(x) holds whenever t > 0 is small
enough.

Theorem 3.1 Let α > 0, p ∈ [1,∞] and Λα(x) be the set of all the Lagrange multi-
pliers associated with yα(x). If (2) holds and x ∈ D does not solve (EP), then

ψ◦
α,ε,p

(
x;yα(x) − x

)
< 0,

and therefore yα(x) − x is a descent direction for ψα,ε,p at x, provided that 1/ε ≥
‖λ+‖q , where

λ+
i =

{
λi, if ci(x) > 0,

0, otherwise,

for any given λ ∈ Λα(x), and ‖ · ‖q is the dual norm of ‖ · ‖p .

Proof Since x does not solve (EP), then d := yα(x)−x �= 0. Considering the convex
function v(x) := ‖c+(x)‖p , then v◦(x;d) coincides with its directional derivative
v′(x;d). Thus, the generalized directional derivative of ψα,ε,p satisfies the following
inequality:

ψ◦
α,ε,p(x;d) ≤ ϕ◦

α(x;d) + 1

ε
v′(x;d).

The following chain of inequalities and equalities holds:

ϕ◦
α(x;d) ≤ −〈∇xf

(
x, yα(x)

) + α∇xh
(
x, yα(x)

)
, d

〉

<
〈∇yf

(
x, yα(x)

) + α∇yh
(
x, yα(x)

)
, d

〉

= −
m∑

i=1

λi

〈∇ci(x), d
〉

=
m∑

i=1

λi ci(x)
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≤
m∑

i=1

λ+
i c+

i (x)

= 〈
λ+, c+(x)

〉
.

The first inequality is actually Theorem 2(b) in [14], while the second one is due
to the strict ∇-monotonicity of f + αh. The subsequent equalities follow from the
multipliers’ rule and the complementarity slackness condition: in fact, we have

∇yf
(
x, yα(x)

) + α ∇yh
(
x, yα(x)

) +
m∑

i=1

λi∇ci(x) = 0 (6)

and

λi

[
ci(x) + 〈∇ci(x), yα(x) − x

〉] = 0, i = 1, . . . ,m, (7)

since λ is a Lagrange multiplier associated with yα(x). Finally, the last inequality and
equality follow immediately from the definitions. Moreover, the proof of Lemma 4
in [14] shows that v′(x;d) ≤ −v(x). Thus, we have:

ψ◦
α,ε,p(x;d) <

〈
λ+, c+(x)

〉 − ε−1
∥∥c+(x)

∥∥
p

≤ ‖λ+‖q

∥∥c+(x)
∥∥

p
− ε−1

∥∥c+(x)
∥∥

p

= (‖λ+‖q − ε−1)∥∥c+(x)
∥∥

p

≤ 0,

since 1/ε ≥ ‖λ+‖q . �

Note that yα(x) − x is a descent direction for ψα,ε,p at a feasible point x for any
ε > 0: in fact, x ∈ C implies λ+ = 0 and hence 1/ε ≥ ‖λ+‖q holds for all ε > 0. Un-
der assumptions on f other than strict ∇-monotonicity, this is no longer necessarily
true (see [14, Theorem 4]).

The solutions of (EP) coincide with the global minima of ψα,ε,p on the set D,
provided that ε is small enough (see Lemma 2.2). As a consequence of Theorem 3.1,
a further result holds under the strict ∇-monotonicity of f . In fact, provided that ε

is small enough, if (2) holds, then the stationary points of ψα,ε,p on D, i.e., those
x∗ ∈ D such that

ψ◦
α,ε,p

(
x∗;y − x∗) ≥ 0, ∀y ∈ D,

solve (EP). Furthermore, an explicit bound on ε is also available.

Corollary 3.1 Let α > 0, p ∈ [1,∞]. If (2) holds and

1/ε ≥ sup
{‖λ+‖q : λ ∈ Λα(x), x ∈ D

}
,

then any stationary point of ψα,ε,p on D solves (EP).



812 J Optim Theory Appl (2015) 164:804–818

Proof The thesis follows immediately from Theorem 3.1, provided that the bound is
finite. Consider the Lagrangian function

L(y) := f (x, y) + α h(x, y) +
m∑

i=1

λi

[
ci(x) + 〈∇ci(x), y − x

〉]
,

where x ∈ D and λ ∈ Λα(x) are fixed. The complementarity slackness condition (7)
implies L(yα(x)) = −ϕα(x), while the multipliers’ rule (6) states that yα(x) is a
stationary point of L. Since L is a convex function, then yα(x) minimizes L on R

n.
Considering any point x̂ ∈ R

n which satisfies the Slater constraint qualification (that
is, ci(x̂) < 0 for all i = 1, . . . ,m), the following chain of inequalities holds:

f (x, x̂) + α h(x, x̂) + ϕα(x) ≥
m∑

i=1

λi

[−ci(x) − 〈∇ci(x), x̂ − x
〉]

≥ −
m∑

i=1

λi ci(x̂)

≥ ζ

m∑

i=1

λi,

where

ζ := min
{−c1(x̂), . . . ,−cm(x̂)

}
> 0.

The first inequality simply states

L(yα(x)) ≤ L(x̂),

while the second one follows from the convexity of the functions ci ’s. Therefore, we
have

‖λ‖1 ≤ [
f (x, x̂) + α h(x, x̂) + ϕα(x)

]
/ζ.

The maximum of the right-hand side over D is finite since f , h and ϕα are con-
tinuous and D is compact. Therefore, all the multipliers λ ∈ Λα(x) are uniformly
bounded over x ∈ D. Since ‖λ+‖1 ≤ ‖λ‖1, the same property holds also for all the
corresponding vectors λ+: thus, the bound in the statement is finite. �

Therefore, any local minimization method could be directly applied for solving
(EP) exploiting a unique penalized gap function, but the computation of the bound
would be required. Actually, this is not necessary: a descent method can be devised
moving away from the current iterate xk along the direction dk = yα(xk) − xk after
updating the penalization parameter ε just in case it is too big for dk to be a de-
scent direction. Clearly, dk = 0, which means that xk is a fixed point of the map yα ,
guarantees that xk solves (EP).
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Algorithm 1

(0) Choose a sequence ρj ↓ 0, p ∈ [1,∞], α > 0, β,γ ∈]0,1[, x0 ∈ D. Set ε = ρ0,
j = 0 and k = 0.

(1) Compute yk = arg min{f (xk, y) + α h(xk, y) : y ∈ P(xk)} and λk a correspond-
ing Lagrange multiplier vector.

(2) If dk := yk − xk = 0, then STOP.
(3) While 1/ε < ‖(λk)+‖q do

set ε = ρj+1 and j = j + 1.
end

(4) Compute the smallest non-negative integer s such that

ψα,ε,p

(
xk + γ s dk

) − ψα,ε,p

(
xk

) ≤ −β γ 2s ‖dk‖2,

set tk = γ s , xk+1 = xk + tk dk , k = k + 1 and goto Step 1.

Theorem 3.2 If (2) holds, then either Algorithm 1 stops at a solution of (EP) after
a finite number of iterations or ε is updated at most a finite number of times and
Algorithm 1 produces a bounded sequence {xk}, such that any of its cluster points
solves (EP) and the sequence of the values {ψα,ε,p(xk)} converges to 0.

Proof Since there exists M > 0 such that ‖λ‖q ≤ M holds for all x ∈ D and all
λ ∈ Λα(x) (see the proof of Corollary 3.1), the parameter ε is updated at most a finite
number of times and Step 3 may never loop indefinitely.

Next, we show that the line search procedure in Step 4 is finite. By Theorem 3.1
and the choice of ε at Step 3, ψ◦

α,ε,p(xk;dk) < 0 holds for all k. By contradiction,
suppose there exists an iteration k such that

ψα,ε,p

(
xk + γ s dk

) − ψα,ε,p

(
xk

)
> −β γ 2s ‖dk‖2

holds for all s ∈N. Then, taking the limit we get the contradiction:

ψ◦
α,ε,p

(
xk;dk

) ≥ lim sup
s→∞

γ −s
[
ψα,ε,p

(
xk + γ s dk

) − ψα,ε,p

(
xk

)] ≥ 0.

If the algorithm stops at x∗ after a finite number of iterations, then the stopping crite-
rion guarantees that x∗ solves (EP) because of Lemma 2.1.

Now, suppose the algorithm generates an infinite sequence {xk}: the sequence is
bounded since xk is a convex combination of xk−1 and yα(xk), which both belong
to D. Consider any cluster point x∗ of the sequence. Taking the appropriate subse-
quence {x�}, we have x� → x∗. Without any loss of generality, we can assume that
ε is constant for all the iterations. Moreover, the continuity of the map yα guarantees
d� → d∗ = yα(x∗) − x∗. We want to prove d∗ = 0 and therefore that x∗ solves (EP).
By contradiction, suppose d∗ �= 0. Since the sequence {ψα,ε,p(xk)} is monotone, de-
creasing and bounded below, it has a limit. Hence, we also have

lim
�→∞

[
ψα,ε,p

(
x�

) − ψα,ε,p

(
x�+1)] = 0.
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Moreover, the stepsize rule 4 guarantees

ψα,ε,p

(
x�

) − ψα,ε,p

(
x�+1) ≥ β t2

� ‖d�‖2 > 0.

Therefore, t� → 0 as � → +∞ since d∗ �= 0. Moreover, the inequality

ψα,ε,p

(
x� + t� γ −1 d�

) − ψα,ε,p

(
x�

)
> −β

(
t� γ −1)2 ‖d�‖2 (8)

holds for all � ∈ N. Since ψα,ε,p is locally Lipschitz continuous, the mean value
theorem guarantees that

ψα,ε,p

(
x� + t� γ −1 d�

) − ψα,ε,p

(
x�

) = 〈
ξ�, t� γ −1 d�

〉
, (9)

where ξ� is a generalized gradient of ψα,ε,p at x� + θ� t� γ −1 d�, holds for some
θ� ∈]0,1[. Hence, (8) and (9) imply

〈
ξ�, d�

〉
> −β t� γ −1 ‖d�‖2.

On the other hand, we have

ψ◦
α,ε,p

(
x� + θ� t� γ −1 d�;d�

) ≥ 〈
ξ�, d�

〉
,

and thus

ψ◦
α,ε,p

(
x� + θ� t� γ −1 d�;d�

)
> −β t� γ −1 ‖d�‖2.

Since x� → x∗, d� → d∗, and t� → 0, we get x� + θ� t� γ −1 d� → x∗. Since ψ◦
α,ε,p is

upper semicontinuous as function of (x;d) (see, for instance, [32]), taking the limit
we get

ψ◦
α,ε,p

(
x∗;d∗) ≥ lim sup

�→∞
ψ◦

α,ε,p

(
x� + θ� t� γ −1 d�;d�

) ≥ 0. (10)

Eventually taking a subsequence, λ� → λ∗ as � → +∞ for some λ∗ ∈ R
m+ since

the sequence {λ�} bounded. Moreover, we have λ∗ ∈ Λα(x∗) since the set-valued
map Λα is closed (see [33, Lemma 2]). Therefore, 1/ε ≥ ‖(λ�)+‖q implies 1/ε ≥
‖(λ∗)+‖q , and hence Theorem 3.1 ensures ψ◦

α,ε,p(x∗;d∗) < 0 in contradiction
with (10).

Therefore, x∗ solves (EP). By Lemma 2.2 we have ψα,ε,p(x∗) = 0, and thus 0 is
the limit of the whole sequence {ψα,ε,p(xk)}. �

The algorithm does not require to check that the penalized gap function is positive
at the current iterate xk . Indeed, ψα,ε,p(xk) < 0 might happen at some iteration and
a descent step could be taken as well. Anyhow, negative values may be met only as
long as the penalization parameter ε keeps being updated, hence they are possible at
most a finite number of times. In fact, after ε is fixed once and for all, the sequence
{ψα,ε,p(xk)} is monotone, decreasing and goes to 0, which could not happen with
negative values.

The main difference between the above algorithm and the one in [14] is about
the parameters’ update. Parameters are updated to guarantee that dk is a descent di-
rection: in Algorithm 1 it is enough to check that ε is small enough, while in the
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algorithm of [14] also two further conditions must be met and α has to be updated,
too. This difference affects the behaviour of the parameters meaningfully: in Algo-
rithm 1 α is fixed and ε is updated at most a finite number of times, while in the
other algorithm α and ε change simultaneously and may actually go to zero (see
Example 2.1).

In general, a different kind of line search can be considered, too: the term ‖d‖2
may be replaced by the value of the considered gap function (see [13]). Applying this
idea in the current framework requires some additional care as the solution strategy
is based on the minimization of the penalized gap function ψα,ε,p . While a descent
direction can be obtained in the same way of Algorithm 1, lack of feasibility may
create some further troubles. A line search based on the inequality

ψα,ε,p

(
xk + γ s dk

) − ψα,ε,p

(
xk

) ≤ −β γ 2s ψα,ε,p

(
xk

)

may not work. In fact, the right-hand size of the inequality has to be negative. There-
fore, a further check has to be performed to guarantee that the penalized gap function
is positive at the current iterate xk : if it is not so, it is enough to decrease the penaliza-
tion parameter ε to get a positive value (see Lemma 2.2). Anyway, feasibility may be
not achieved all the same: the method could provide sequences for which the values
of the gap function go to zero, but whose cluster points are not feasible. Adding the
penalty term ‖c+(x)‖p to the right-hand side of the line search inequality allows to
get feasibility as well.

Algorithm 2

(0) Choose a sequence ρj ↓ 0, p ∈ [1,∞], α, δ > 0, β,γ ∈]0,1[, x0 ∈ D. Set ε = ρ0,
j = 0 and k = 0.

(1) Compute yk = arg min{f (xk, y) + α h(xk, y) : y ∈ P(xk)} and λk a correspond-
ing Lagrange multiplier vector.

(2) If dk := yk − xk = 0, then STOP.
(3) While ψα,ε,p(xk) ≤ 0 or 1/ε < ‖(λk)+‖q do

set ε = ρj+1 and j = j + 1.
end

(4) Compute the smallest non-negative integer s such that

ψα,ε,p

(
xk + γ s dk

) − ψα,ε,p

(
xk

) ≤ −β γ 2s
[
ψα,ε,p

(
xk

) + δ
∥∥c+(

xk
)∥∥

p

]
,

set tk = γ s , xk+1 = xk + tk dk , k = k + 1 and goto Step 1.

Theorem 3.3 If (2) holds, then either Algorithm 2 stops at a solution of (EP) after
a finite number of iterations or ε is updated at most a finite number of times and
Algorithm 2 produces a bounded sequence {xk}, such that any of its cluster points
solves (EP) and the sequence of the values {ψα,ε,p(xk)} converges to 0.

Proof The parameter ε is updated at most a finite number of times since all the multi-
pliers λ ∈ Λα(x) are uniformly bounded over x ∈ D (see the proof of Corollary 3.1).
Furthermore, arguing as in the proof of Theorem 3.2, it is easy to show that the line
search procedure in Step 4 is finite.
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If the algorithm stops at x∗ after a finite number of iterations, then the stopping
criterion guarantees that x∗ solves (EP) because of Lemma 2.1.

Now, suppose the algorithm generates an infinite sequence {xk}: the sequence is
bounded since xk is a convex combination of xk−1 and yα(xk), which both belong
to D. Consider any cluster point x∗ of the sequence. Taking the appropriate subse-
quence {x�}, we have x� → x∗. Without any loss of generality, we can assume that
ε is constant for all the iterations. By contradiction, suppose that x∗ does not solve
(EP). If x∗ ∈ C, then

ψα,ε,p

(
x∗) + δ

∥∥c+(
x∗)∥∥

p
= ψα,ε,p

(
x∗) = ϕα

(
x∗) > 0.

On the other hand, if x∗ ∈ D \ C, then ‖c+(x∗)‖p > 0 and ψα,ε,p(x∗) ≥ 0, since
ψα,ε,p(x�) > 0. Therefore, we have

ψα,ε,p

(
x∗) + δ

∥∥c+(
x∗)∥∥

p
> 0

also in this case. Since the sequence {ψα,ε,p(xk)} is monotone, decreasing and
bounded below, it has a limit. Hence, we also have

lim
�→∞

[
ψα,ε,p

(
x�

) − ψα,ε,p

(
x�+1)] = 0.

Moreover, the stepsize rule 4 guarantees

ψα,ε,p

(
x�

) − ψα,ε,p

(
x�+1) ≥ β t2

�

[
ψα,ε,p

(
x�

) + δ
∥∥c+(

x�
)∥∥

p

]
> 0. (11)

Since

lim
�→∞ψα,ε,p

(
x�

) + δ
∥∥c+(

x�
)∥∥

p
= ψα,ε,p

(
x∗) + δ

∥∥c+(
x∗)∥∥

p
> 0,

then t� → 0 as � → +∞. Arguing as in the proof of Theorem 3.2, we get

ψ◦
α,ε,p

(
x∗;yα

(
x∗) − x∗) ≥ 0 (12)

and 1/ε ≥ ‖(λ∗)+‖q for some λ∗ ∈ Λα(x∗). Therefore, Theorem 3.1 guarantees

ψ◦
α,ε,p

(
x∗;yα

(
x∗) − x∗) < 0,

which contradicts (12).
Therefore, x∗ solves (EP). By Lemma 2.2 we have ψα,ε,p(x∗) = 0, and thus 0 is

the limit of the whole sequence {ψα,ε,p(xk)}. �

Though Algorithm 2 updates the penalization parameter ε according to a differ-
ent rule from Algorithm 1, it is still updated at most a finite number of times, thus
preventing the possible numerical troubles due to arbitrarily small parameters.
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4 Conclusions

In the paper, two globally convergent algorithms for solving equilibrium problems
with nonlinear constraints have been developed. They are both based on the mini-
mization of a suitable penalized gap function: at each iteration they solve a convex
optimization problem with linear constraints, but the computation of the generalized
derivative of the penalized gap function is not needed. The rule to update the pe-
nalization parameter and the line search are the core differences between the two
algorithm.

This paper extends to equilibrium problems the ideas given in [30] for variational
inequalities only. Moreover, explicit rules to update the penalization parameter ε

throughout the iterations are given, while the algorithm in [30] requires the a priori
knowledge of a suitable fixed ε. Furthermore, the new algorithms perform Armijo-
type inexact line searches instead of the rather theoretical exact line search of [30].

The descent methods given in [13, 21, 23, 25, 26] do not perform any con-
straint linearization, and hence convex optimization problems with nonlinear con-
straints have to be solved at each iteration, while the algorithms of this paper pro-
vide this valuable feature. Moreover, the convergence of the methods proposed
in [21, 25, 26] requires the strong ∇-monotonicity of the equilibrium bifunction (see,
for instance, [26, condition (15)]), which is a stronger assumption than the strict
∇-monotonicity condition (2) used in this paper.

While the methods proposed in [13, 14, 23] converge under assumptions which
are neither stronger nor weaker than condition (2), the behaviour of the regulariza-
tion and penalization parameters can be compared. In the algorithms of this paper
the regularization parameter α is fixed and the penalization parameter ε is updated at
most a finite number of times, and thus they are both bounded away from zero. Con-
versely, α and ε change simultaneously and may actually go to zero in [14], α is the
unique parameter and may go to zero in [13], while α is fixed but ε (which actually
plays the role of a further regularization parameter as no penalization is involved)
always goes to zero in [23].
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