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Abstract In the last decades, heuristic techniques have become established as suit-
able approaches for solving optimal control problems. Unlike deterministic methods,
they do not suffer from locality of the results and do not require any starting guess to
yield an optimal solution. The main disadvantages of heuristic algorithms are the lack
of any convergence proof and the capability of yielding only a near optimal solution,
if a particular representation for control variables is adopted. This paper describes the
indirect swarming method, based on the joint use of the analytical necessary condi-
tions for optimality, together with a simple heuristic technique, namely the particle
swarm algorithm. This methodology circumvents the previously mentioned disadvan-
tages of using heuristic approaches, while retaining their advantageous feature of not
requiring any starting guess to generate an optimal solution. The particle swarm algo-
rithm is chosen among the different available heuristic techniques, due to its apparent
simplicity and the recent promising results reported in the scientific literature. Two
different orbital maneuvering problems are considered and solved with great numeri-
cal accuracy, and this testifies to the effectiveness of the indirect swarming algorithm
in solving low-thrust trajectory optimization problems.
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1 Introduction

The determination of optimal (either minimum time or minimum consumption) space
trajectories has been pursued with different approaches, for decades. Classical numer-
ical optimization techniques are usually classified as

(i) Indirect methods, based on applying the necessary conditions for optimality (i.e.,
the Pontryagin minimum principle and the Euler–Lagrange equations), which
arise from the calculus of variations. Several indirect approaches have been pro-
posed. Miele employed the gradient-restoration algorithm to optimizing Earth-
to-Moon [1] and Earth-to-Mars [2] trajectories, as well as multistage rockets as-
cending paths [3, 4]. Brown et al. [5] applied a shooting method (in conjunction
with some simplifying analytical developments) to generate multiburn transfers.
A shooting approach was also used by Brusch and Vincent [6] and Kluever and
Pierson [7], who addressed the optimization of Earth–Moon transfers. An in-
direct shooting method (based on determining the initial values of the adjoint
variables) was proposed by Hull [8]. McAdoo et al. [9] developed OPBURN, a
tool that combines two indirect techniques. Lastly, Redding [10] used an indirect
method for optimizing transfers from a low Earth orbit to a geostationary orbit
with a large number of burns;

(ii) Direct methods, based on converting the optimization problem into a nonlinear
programming problem (often involving a large number of parameters), without
the use of the necessary conditions for optimality. In this class of methods, rele-
vant contributions are due to Betts [11] and Enright and Conway, who success-
fully employed direct transcription [12] and direct collocation with nonlinear
programming [13], based upon using quadrature rules for the implicit integration
of the state equations. Differential inclusion has been investigated by Seywald
[14] and Coverstone-Carrol and Williams [15];

(iii) Hybrid methods, which combine direct and indirect techniques, usually by re-
placing some difficult conditions that arise from the calculus of variations with
some simplified relations. With reference to multiburn transfer trajectories, Zon-
dervan et al. [16] proposed a hybrid approach based on directly choosing the
time intervals associated with each flight phase, without defining a switching
function. Most recently, Kluever [17] used a hybrid algorithm that incorporates
multiple shooting.

These three types of techniques belong to the class of “deterministic” methods,
as opposed to “heuristic” or “stochastic” techniques. Due to their theoretical founda-
tions, direct and indirect algorithms exhibit specific features, which are extensively
dealt with in the scientific literature [18, 19]. With regard to convergence, in general
direct techniques are more robust because they are often capable of converging to the
desired result even in the presence of a poor guess. Conversely, indirect methods are
more numerically accurate and do not need any parameterization of the time-varying
quantities involved in the problem of interest. Both direct and indirect algorithms are
relatively fast and accurate in yielding an optimal solution, if a reasonable guess is
supplied. The implementation of deterministic techniques usually requires consid-
erable programming efforts, both for the definition of the basic routines and for the
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development of the algorithm overall architecture. However, the two intrinsic features
of deterministic approaches that represent their main limitations are (a) the need of a
starting guess, and (b) locality of the results. In fact, both direct and indirect meth-
ods are local in nature, in the sense that the optimal solution they are able to identify
depends on the available first attempt “solution”. The numerical result found by de-
terministic techniques usually lies in the proximity of the guess.

These circumstances have motivated the development of heuristic optimization
techniques, usually inspired by natural phenomena. Heuristic methods exploit a pop-
ulation of individuals, representing possible solutions to the problem of interest. The
initial population is randomly generated, and therefore no guess is to be provided. The
optimal solution is sought through cooperation and competition among individuals.
The most popular class of these techniques is represented by the genetic algorithms
[20], which model the evolution of a species, based on Darwin’s principle of survival
of the fittest. Applying heuristic algorithms to optimal control problems requires their
preliminary conversion into parameter optimization problems, if possible with a mod-
erate number of unknown parameters. In fact, as the dimensionality of the parameter
set increases, the population size must increase to obtain a satisfactory performance,
especially in terms of the algorithm capability of exploring the search space, where
the unknown parameters are sought. The latter requirement on the parameter set im-
plies also the mandatory use of explicit integration rules, because implicit integration
would lead to an excessive number of parameters. While the state variables are ob-
tained through numerical integration, the control variables are usually represented by
means of a finite number of parameters, for instance using polynomial functions of
time [21]. The main disadvantage in using heuristic approaches is in the fact that no
guarantee of converging to an optimal solution exists. In fact, in general no analytical
proof exists about convergence of a heuristic method, even to a locally minimizing so-
lution. The effectiveness of heuristic approaches is instead based on the likelihood of
converging to the globally minimizing solutions of qualitatively different problems,
and extensive numerical tests are to be performed for evaluating the performance of
any new algorithm. In addition, if a specific representation is adopted for the control
variables, a heuristic method can identify at most a near optimal solution, i.e., the
best solution in the class of functions used to represent the control.

The work that follows describes and applies a general optimization methodology,
based upon the joint use of the necessary conditions for optimality (summarized in
Sect. 2.1) and a recently-introduced heuristic technique (the particle swarm optimiza-
tion algorithm [22], described in Sect. 2.2). Specifically, the necessary conditions for
optimality are employed to express the control variables as functions of the adjoint
variables, which are subject to the costate equations (and the related boundary condi-
tions). As a result, a reduced parameter set (mainly composed of the unknown initial
values of the adjoint variables) suffices to transcribe the optimal control problem into
a parameter optimization problem. Furthermore, the optimal control variables are de-
termined without any restriction, because no particular representation is assumed.
Lastly, satisfaction of all the necessary conditions guarantees the (local) optimality
of the solution. This methodology, termed indirect swarming algorithm, is thus ca-
pable of circumventing the main disadvantages of using heuristic techniques, while
retaining the main advantage, which is the absence of any starting guess. The main
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reason for using a swarming algorithm is in its simplicity. In fact, the basic version of
the particle swarm algorithm (PSO) appears as very intuitive and is extremely easy
to program. Albeit computationally expensive with respect to gradient-based meth-
ods [23], in the scientific literature [24] the particle swarm technique is reported to
be more efficient when compared to genetic algorithms, due to a reduced number of
function evaluations. Despite its promising features and the vast number of papers
devoted to this technique, most researchers concentrated on topological and multi-
modal mathematical problems [25], and only recently has this method been applied
to space trajectory optimization problems [21, 26–28].

This work applies the indirect swarming method to solving two different low-
thrust orbital maneuvering problems:

(i) Low-thrust transfers between elliptic orbits. The problem consists in determin-
ing the optimal thrust direction time history and the optimal locations of the de-
parture and arrival points (along the initial and the final orbit, respectively) that
minimize the time needed for transferring a spacecraft from a specified initial el-
liptic orbit to a specified (non-coaxial) final elliptic orbit. As continuous thrust is
employed, minimizing the time of flight implies that also propellant consumption
is minimized;

(ii) Attainable low-thrust rendezvous in a specified time. Given a pursuer spacecraft
and a target (circular) orbit, the problem consists in determining the portion of
the target orbit that the pursuing spacecraft can reach (with appropriate velocity
for orbit insertion) in a specified time. The attainable portion of orbit identifies
the possible positions of a target spacecraft with which the pursuer spacecraft
can rendezvous within a specified time.

This study is intended to prove that the indirect swarming method, despite its
intuitiveness and simplicity, is capable of effectively solving low-thrust orbit transfer
and rendezvous problems with great numerical accuracy.

2 Indirect Swarming Method

This section is concerned with the description of the method of solution, based on the
joint use of the analytical necessary conditions for optimality and a simple swarming
algorithm.

In general, a given dynamical system is described through the time-varying,
n-dimensional state vector x(t) and controlled through the time-varying, m-dimen-
sional control vector u(t); the dynamical system evolution over the time interval
[t0, tf ] (with t0 and tf either specified or unspecified) depends also on the time-
independent, p-dimensional parameter vector p. The governing state equations have
the general form

ẋ = f(x,u,p, t) (1)

and are subject to q boundary conditions (q ≤ 2n + p),

ψ(x0,xf ,p, t0, tf ) = 0. (2)
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Definition 2.1 (Feasible solution) A feasible solution for the previously mentioned
dynamical system is a solution that obeys the state equations (1) and satisfies the
boundary conditions (2).

Definition 2.2 (Objective functional) The objective functional associated with the
time evolution of the dynamical system has the following general form

J := ϕ(x0,xf ,p, t0, tf ) +
∫ tf

t0

L
[
x(t),u(t),p, t

]
dt (3)

where the first term depends only on the initial and final values of the state variables,
p, t0, and tf , whereas the second term depends on the entire time evolution of the
integrand functional L.

Definition 2.3 (Optimal control problem) The optimal control problem consists of
identifying a feasible solution that minimizes the objective functional J , through se-
lection of the optimal control law u∗(t) and the optimal parameter vector p∗, i.e.,{

u∗,p∗} = arg min
{u,p}

J. (4)

2.1 Necessary Conditions for Optimality

In order to state the necessary conditions for optimality, which are extensively em-
ployed in the present paper, first some auxiliary functions are to be introduced.

Definition 2.4 (Hamiltonian and boundary condition function) A Hamiltonian H and
a function of the boundary conditions Φ are defined as [29, 30]

H(x,u,p, t) := L(x,u,p, t) + λT f(x,u,p, t), (5)

Φ := ϕ(x0,xf ,p, t0, tf ) + υT ψ(x0,xf ,p, t0, tf ) (6)

where the time-varying, n-dimensional vector λ(t) and the time-independent, q-
dimensional vector υ are the adjoint variables conjugate to the state equations (1)
and to the boundary conditions (2), respectively.

Proposition 2.1 (Necessary conditions for optimality) In the presence of an optimal
(locally minimizing) solution, the following conditions hold:

u∗ = arg min
u

H, (7)

λ̇ = −
[
∂H

∂x

]T

, (8)

λ0 = −
[

∂Φ

∂x0

]T

⇒ λ0 = −
[

∂ϕ

∂x0

]T

−
[

∂ψ

∂x0

]T

υ, (9)

λf =
[

∂Φ

∂xf

]T

⇒ λf =
[

∂ϕ

∂xf

]T

+
[

∂ψ

∂xf

]T

υ, (10)

[
∂Φ

∂p

]T

+
∫ tf

t0

[
∂H

∂p

]T

dt = 0. (11)
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For the very general Hamiltonian of Eq. (5) the minimum principle (Eq. (7)) yields the
control variables as functions of the adjoint variables and the state variables; Eq. (8)
are the adjoint (or costate) equations, together with the related boundary conditions
(9) and (10); Eq. (11) is equivalent to p algebraic scalar equations. If the initial time
is unspecified, then the following transversality condition holds:

H0 − ∂Φ

∂t0
= 0 (12)

whereas if the final time is unspecified, the additional transversality condition is

Hf + ∂Φ

∂tf
= 0. (13)

Proposition 2.1 is well established in optimal control theory (and is proven, for
instance, in [30]). Unknowns for the problem are the state x, the control u, the pa-
rameter vector p, and the adjoint variables λ and υ . Among Eqs. (9) and (11), q scalar
equations are assumed to exist such that they can be solved to obtain υ . As a result,
only (2n + p − q) scalar equations remain to be used (other than the 2n scalar dif-
ferential equations (1) and (8), which govern the state and costate time evolution).
These equations are completed by the q boundary conditions (2), and therefore the
total number of equations equals (2n+p), corresponding to (2n+p) unknowns (the
state and costate variables x and λ, and p parameters). These (2n + p) scalar equa-
tions are problem-dependent and can be employed for expressing some of the initial
conditions (for the state x or the costate λ) as a function of other unknown quantities.

Proposition 2.2 (Problems with prescribed initial state) If the initial conditions for
the state are all specified or expressed by n functions of p, then the initial values of
the adjoint variables, {λi0}i=1,...,n, are unspecified.

Proof Due to the assumptions of Proposition 2.2, Eq. (2) can be rewritten as

ψ(x0,xf ,p, t0, tf ) =
[
x10 − f10(p) . . . xn0 − fn0(p) ψ̃

T
(xf , tf )

]T

(14)

where fk0(p) (k = 1, . . . , n) denotes either a function of p or a specified value. Due
to Eq. (9), one obtains

λi0 = −υi (i = 1, . . . , n). (15)

This means that in this special case Eq. (9) does not yield any useful relation on the
initial values of the adjoint variables, which remain unspecified. �

Proposition 2.3 (Problems with prescribed final state) If the final conditions for the
state are all specified or expressed by n functions of p, then the final values of the
adjoint variables, {λif }i=1,...,n, are unspecified.

Proof Proposition 2.3 can be proven in a way similar to that used for demonstrating
Proposition 2.2. �
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Propositions 2.2 and 2.3 imply that in the case of initial and final values of all of
the state components specified, or functions of p only, no condition can be derived
for the terminal values of the adjoint variables.

In conclusion, using well established analytical developments arising from the cal-
culus of variations, the original optimal control problem can be converted into a two-
point boundary-value problem, in which the control vector is expressed as a function
of the time-varying adjoint variables λ (and, possibly, of p unknown parameters).
With this theoretical basis, the solution process that is being employed is composed
of the following steps:

Step 1 Using Eqs. (9)–(11) a minimal set of unknown parameters and initial condi-
tions (for x and λ) is identified and denoted with X0.

Step 2 The optimal control is obtained by means of the Pontryagin minimum princi-
ple (7).

Step 3 For a particular choice of X0 and of the initial and final times (if they are
unspecified)
(a) The state equations (1) and the adjoint equations (8) are integrated nu-

merically, using the optimal control law given at Step 2;
(b) The boundary conditions holding at the final time, i.e., Eqs. (2) and (10),

are evaluated.

In the end, the optimal control problem has been converted into a parame-
ter optimization problem, whose parameter set is denoted with χ = [χ1 . . . χN ]T
(= [XT

0 t0 tf ]T , in general). Convergence to a locally minimizing solution corre-
sponds to the vanishing of the boundary constraint violations calculated at Step 3(b).

2.2 Particle Swarm Algorithm

Unconstrained parameter optimization problems can be stated as follows: determine
the optimal values of the N unknown parameters {χ1, . . . , χN } such that the objective
function J is minimized. The time evolution of the dynamical system under consid-
eration depends on {χ1, . . . , χN }, which are constrained to their respective ranges,

ak ≤ χk ≤ bk (k = 1, . . . ,N). (16)

As previously mentioned, the PSO technique is a population-based method,
where the population is represented by a swarm of N particles. Each particle i

(i = 1, . . . ,NP ) is associated with a position vector χ(i) and with a velocity vec-
tor w(i). The position vector includes the values of the N unknown parameters of the
problem

χ(i) := [
χ1(i) . . . χN(i)

]T (17)

whereas the velocity vector, whose components are denoted with wk(i) (k =
1, . . . ,N ), determines the position update (both χ and w are defined as N -
dimensional column vectors). As the position components are bounded, also the
corresponding velocity components must be constrained to suitable ranges,

− (bk − ak) ≤ wk ≤ (bk − ak) ⇒ −dk ≤ wk ≤ dk

if dk := bk − ak (k = 1, . . . ,N). (18)
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The limitations (18) are due to the fact that if wk > bk − ak or wk < ak − bk then,
starting from any coordinate χ

(j)
k (at the iteration j ), the updated coordinate χ

(j+1)
k

(= χ
(j)
k +wk) would violate condition (16). If a := [a1 . . . aN ]T , b := [b1 . . . bN ]T ,

and d := [d1 . . . dN ]T , the relationships (16) and (18) can be rewritten in compact
form as

a ≤ χ ≤ b and − d ≤ w ≤ d. (19)

Each particle represents a possible solution to the problem, and corresponds to
a specific value of the objective function. The initial population is randomly gener-
ated by introducing NP particles, whose positions and velocities are (stochastically)
uniformly distributed in the respective search spaces, defined by Eq. (19). The ex-
pressions for position and velocity update determine the swarm evolution toward the
location of the globally optimal position, which corresponds to the globally optimal
solution to the problem of interest. The following steps compose the generic itera-
tion j :

Step 1 For i = 1, . . . ,NP ,
(a) Evaluate the objective function associated with particle i, J (j)(i);
(b) Determine the best position ever visited by particle i up to the current

iteration j ,

ψ (j)(i)

(
:=

[
ψ

(j)

1 (i) . . . ψ
(j)
N (i)

]T
)

: ψ (j)(i) = χ (l)(i),

where l = arg min
p=1,...,j

J (p)(i).

Step 2 Determine the global best position ever visited by the entire swarm, Y(j)

(:= [Y (j)

1 . . . Y
(j)
N

]T ) : Y(j) = ψ (j)(q), where q = arg mini=1,...,NP
�(j)(i)

and �(j)(i) (i = 1, . . . ,NP ) represents the value of the objective function cor-
responding to the best position ever visited by particle i up to iteration j , i.e.,
�(j)(i) = minp=1,...,j J (p)(i).

Step 3 Update the velocity vector. For each particle i and for each component wk(i)

(k = 1, . . . ,N ; i = 1, . . . ,NP )

w
(j+1)
k (i) = cIw

(j)
k (i) + cC

[
ψ

(j)
k (i) − x

(j)
k (i)

] + cS

[
Y

(j)
k − x

(j)
k (i)

]
. (20)

The inertial, cognitive, and social (stochastic) weights have the following
expressions [31]:

cI = 1 + r1(0,1)

2
, cC = 1.49445r2(0,1), cS = 1.49445r3(0,1),(21)

where r1(0,1), r2(0,1), and r3(0,1) represent three independent random
numbers with uniform distribution between 0 and 1. Then,
(a) if w

(j+1)
k (i) < −dk ⇒ w

(j+1)
k (i) = −dk ;

(b) if w
(j+1)
k (i) < −dk ⇒ w

(j+1)
k (i) = −dk .

Step 4 Update the position vector. For each particle i and for each component χk(i)

(k = 1, . . . , n; i = 1, . . . ,NP )

χ
(j+1)
k (i) = χ

(j)
k (i) + w

(j)
k (i). (22)
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Then,
(a) if χ

(j+1)
k (i) < ak ⇒ χ

(j+1)
k (i) = ak and w

(j+1)
k (i) = 0;

(b) if χ
(j+1)
k (i) > bk ⇒ χ

(j+1)
k (i) = bk and w

(j+1)
k (i) = 0.

The algorithm terminates when the maximum number of iterations NIT is reached.
The position vector of the global best particle, Y(NIT ), is expected to contain the op-
timal values of the unknown parameters, which correspond to the global minimum
of J , denoted with J

(NIT )
opt . A fairly large number of iterations are set to ensure that

the final solution is stable enough to be considered optimal. The central idea under-
lying the method is contained in the formula (20) for velocity updating. This formula
includes three terms with stochastic weights: the first term is the so-called inertial
component and for each particle is proportional to its velocity in the preceding iter-
ation; the second component is termed the cognitive component, directed toward the
personal best position, i.e., the best position experienced by the particle; and finally,
the third term is the social component, directed toward the global best position, i.e.,
the best position yet located by any particle in the swarm. According to Step 3, if
a component wk of the velocity vector violates Eq. (18), then wk is set to the min-
imum (maximum) value −dk(dk). If a component χk of the position vector violates
Eq. (16), then χk is set to the minimum (maximum) value ak(bk), and the correspond-
ing velocity component is set to 0. This ensures that in the successive iteration the
update of the velocity component is not affected by the first term of Eq. (20), which
could lead the particle to again violate the constraint (16).

Optimization problems must be frequently modeled as constrained optimization
problems, i.e., they involve equalities and/or inequalities, regarding (directly or indi-
rectly) the unknown parameters. The PSO algorithm must be suitably adjusted to deal
with constrained problems. In general, heuristic computation methods encounter dif-
ficulties in treating equality constraints [31, 32] because they narrow considerably the
search space where feasible solutions can be located. This is due to the fact that (non-
redundant) equality constraints actually reduce the degree of freedom of the problem
according to their number. In fact, M equality constraints reduce the degree of free-
dom by m. Therefore, in the presence of N unknown parameters, at most M = N

equality constraints are admissible (M ≤ N),

dr(χ) = 0 (r = 1, . . . ,M). (23)

The most popular approach for dealing with these constraints consists in penalizing
them by adjoining additional terms to the objective function

J̃ = J +
M∑

r=1

αr

∣∣dr(χ)
∣∣. (24)

In this research, the equality constraints are represented by the boundary conditions
evaluated at Step 3(b) of Sect. 2.1. As previously remarked, the necessary conditions
are employed to enforce optimality, and, as a result, in Eq. (24) J can be set to 0.
Minimizing the resulting objective J̃ to 0 implies fulfillment of all the necessary
conditions for optimality and is the final purpose of the indirect swarming algorithm.
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Fig. 1 Geometry of the
terminal elliptic orbits

3 Low-Thrust Transfers Between Elliptic Orbits

The problem is in determining the optimal thrust direction time history and the opti-
mal locations of the departure and arrival points (along the initial and the final orbit,
respectively) that minimize the time needed for transferring a spacecraft from an ini-
tial elliptic orbit to a final coplanar elliptic orbit, with specified, non-coaxial mutual
orientation.

The terminal elliptic orbits have semi-major axes a0 and af and eccentricities e0

and ef , respectively. The angle ϕ formed by the apsidal lines of the two ellipses
(shown in Fig. 1) defines their mutual orientation. The locations of the departure
and arrival points along the initial and final orbit are identified by the true anomalies
f0 and ff , respectively. Let vr , vθ , and r represent the radial and the horizontal
components of the velocity, and the radius. If μ denotes the gravitational parameter
of the attracting body, the initial conditions (at t0) and the final conditions (at tf ) are
given by

vr(t0) =
√

μ

a0(1 − e2
0)

e0 sinf0, vθ (t0) =
√

μ

a0(1 − e2
0)

(1 + e0 cosf0),

r(t0) = a0(1 − e2
0)

1 + e0 cosf0
, ξ(t0) = f0,

(25)

vr(tf ) =
√

μ

af (1 − e2
f )

ef sinff , vθ (tf ) =
√

μ

af (1 − e2
f )

(1 + ef cosff ),

r(tf ) = af (1 − e2
f )

1 + ef cosff

, ξ(tf ) = ϕ + ff .

(26)

The symbol ξ denotes the spacecraft angular displacement from the inertial axis X,
which is aligned with the apsidal line of the initial ellipse, as illustrated in Fig. 2.
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As the spacecraft employs a constant (low) thrust during the entire time of flight the
thrust-to-mass ratio (T /m) has the expression

T

m
= T

m0 − T
c
(t − t0)

= cn0

c − n0(t − t0)
. (27)

In Eq. (27), m0 is the initial spacecraft mass, and therefore n0 represents the thrust
acceleration at t0, whereas c is the effective exhaust velocity of the propulsive system.

The spacecraft equations of motion (also referred to as the state equations) involve
the two components of the velocity, the radius r , and the angle ξ :

v̇r = −μ − rv2
θ

r2
+ T

m
sin δ, v̇θ = −vrvθ

r
+ T

m
cos δ, ṙ = vr , ξ̇ = vθ

r
.

(28)

The angle δ is the thrust-pointing-angle (relative to the local horizontal). The state
vector is x := [x1 x2 x3 x4 ]T = [vr vθ r ξ ]T , whereas the control vector includes δ

only: u := u = δ. If t0 is set to 0, the objective function to be minimized is given by
J = tf .

3.1 Solution Process

For this problem the Hamiltonian H and the function Φ are

H := λT f = λ1

[
−μ − x3x

2
2

x2
3

+ T

m
sin δ

]
+ λ2

[
−x1x2

x3
+ T

m
cos δ

]

+ λ3x1 + λ4
x2

x3
, (29)

Φ := tf + υT ψ

= υ1

[
x10 −

√
μ

a0(1 − e2
0)

e0 sinf0

]
+ υ2

[
x20 −

√
μ

a0(1 − e2
0)

(1 + e0 cosf0)

]

+ υ3

[
x30 − a0(1 − e2

0)

1 + e0 cosf0

]
+ υ4[x40 − f0]

+ υ5

[
x1f −

√
μ

af (1 − e2
f )

ef sinff

]

+ υ6

[
x2f −

√
μ

af (1 − e2
f )

(1 + ef cosff )

]
+ υ7

[
x3f − af (1 − e2

f )

1 + ef cosff

]

+ υ8[x4f − ϕ − ff ] + tf (30)

where xk0 := xk(t0) and xkf := xk(tf ) (k = 1,2,3,4). The necessary conditions for
optimality (7) through (10) yield the following relationships:

cosu∗ = − λ∗
2√

(λ∗
1)

2 + (λ∗
2)

2
and sinu∗ = − λ∗

1√
(λ∗

1)
2 + (λ∗

2)
2
, (31)
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λ̇∗
1 = −λ∗

3 + x∗
2λ∗

2

x∗
3

, λ̇∗
2 = −2x∗

2λ∗
1 + x∗

1λ∗
2 − λ∗

4

x∗
3

,

λ̇∗
3 = (x∗

2 )2λ∗
1 − x∗

1x∗
2λ∗

2 + λ∗
4x

∗
2

(x∗
3 )2

− 2μSλ∗
1

(x∗
3 )3

, λ̇∗
4 = 0

(32)

λ∗
10 = −υ1, λ∗

20 = −υ2, λ∗
30 = −υ3, λ∗

40 = −υ4, (33)

λ∗
1f = υ5, λ∗

2f = υ6, λ∗
3f = υ7, λ∗

4f = υ8 (34)

where λk0 := λk(t0) and λkf := λk(tf ) (k = 1,2,3,4). Equations (33)–(34) reflect
the fact that Propositions 2.2 and 2.3 hold. From Eq. (31) it is apparent that the op-
timal thrust direction is aligned with the vector [−λ∗

2 −λ∗
1 ]T at any time. This result

is consistent with the primer vector theory, developed by Lawden [33] about 50 years
ago. Two further necessary conditions, arising from Eq. (11), are related to the un-
known true anomalies f0 and ff :

√
μ

a0(1 − e2
0)

(
λ∗

10e0 cosf0 − λ∗
20e0 sinf0

) + λ∗
30

a0(1 − e2
0)

(1 + e0 cosf0)2
+ λ∗

40 = 0, (35)

√
μ

af (1 − e2
f )

(
λ∗

2f ef sinff − λ∗
1f ef cosff

) − λ∗
3f

af (1 − e2
f )

(1 + ef cosff )2
− λ∗

4f = 0.

(36)

In Eqs. (35)–(36), the relations (33)–(34) have been employed. Due to the adjoint
equation for λ4 (λ̇∗

4 = 0, cf. Eq. (32)) λ∗
40 = λ∗

4f = λ∗
4, and Eqs. (35)–(36) can be

rewritten as

λ∗
4 =

√
μ

a0(1 − e2
0)

(
λ∗

20e0 sinf0 − λ∗
10e0 cosf0

) − λ∗
30

a0(1 − e2
0)

(1 + e0 cosf0)2
, (37)

√
μ

af (1 − e2
f )

(
λ∗

2f ef sinff − λ∗
1f ef cosff

) − λ∗
3f

af (1 − e2
f )

(1 + ef cosff )2
− λ∗

4 = 0.

(38)

Equation (37) can be used to express the constant λ4 as a function of {λ1, λ2, λ3, f0}.
Lastly, as the final time tf is unspecified, the transversality condition (13) holds, i.e.,

(
λ∗

f

)T ff + 1 = 0, (39)

where the subscript “f ” refers to the final time.
As mentioned previously, equality constraints reduce the search space where fea-

sible solutions can be located. However, the following proposition holds.

Proposition 3.1 (Ignorability of the transversality condition) For the problem at
hand, the optimal control u∗(t) can be determined by neglecting the transversality
condition (39), which is ignorable.

Proof First, the costate equations (32) are homogeneous in λ, as well as the related
boundary conditions (37)–(38). Hence, if certain initial values of the components of λ

such that λ10 = kλλ
∗
10, λ20 = kλλ

∗
20, λ30 = kλλ

∗
30, and λ4 = kλλ

∗
4 (kλ > 0) are found,
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then the same proportionality holds between λ and the optimal λ∗ at any t , due to
homogeneity of Eq. (32). Second, the control law can be expressed as a function of
the non-optimal costate λ through Eq. (31),

cosu = − λ2√
λ2

1 + λ2
2

and sinu = − λ1√
λ2

1 + λ2
2

, (40)

and, as the proportionality condition λ = kλλ
∗ holds, one obtains

cosu = − λ2√
λ2

1 + λ2
2

= − kλλ
∗
2

kλ

√
(λ∗

1)
2 + (λ∗

2)
2

= − λ∗
2√

(λ∗
1)

2 + (λ∗
2)

2
≡ cosu∗, (41)

sinu = − λ1√
λ2

1 + λ2
2

= − kλλ
∗
1

kλ

√
(λ∗

1)
2 + (λ∗

2)
2

= − λ∗
1√

(λ∗
1)

2 + (λ∗
2)

2
≡ sinu∗. (42)

Equations (41)–(42) mean that the optimal control law u∗(t) can be expressed as
a function of the non-optimal costate λ (through Eq. (31)), provided that the pro-
portionality condition λ = kλλ

∗ holds. Third, at the final time the Hamiltonian can
be evaluated by using the optimal control (yielding the optimal state variables), ex-
pressed as a function of the non-optimal adjoint vector λ,

Hf :=
{
λ1

[
−μ − x∗

3 (x∗
2 )2

(x∗
3 )2

− T

m

λ1√
λ2

1 + λ2
2

]
+ λ2

[
−x∗

1x∗
2

x∗
3

− T

m

λ2√
λ2

1 + λ2
2

]

+ λ3x
∗
1 + λ4

x∗
2

x∗
3

}
t=tf

. (43)

The fact that λ = kλλ
∗ leads to

Hf = kλ

[(
λ∗

f

)T ff
]
. (44)

Then, due to Eq. (39),

Hf = −kλ (�= −1). (45)

Equation (45) definitely implies that the optimal control u∗(t) can be determined
regardless of the transversality condition, which is thus proven to be ignorable. �

Ignorability of the transversality condition was already demonstrated by the same
authors [21] with a similar approach and is also proven by Hull [34, 35].

In summary, the set of unknown parameters and initial conditions includes the
initial values of three adjoint variables and the initial true anomaly f0, X0 =
[λ10 λ20 λ30 f0 ]T (with λk0 := λk(t0)), and, as the initial time is specified, the vector
χ is given by

χ = [
λ10 λ20 λ30 f0 tf

]T
. (46)

Due to ignorability of the transversality condition, the three equality constraints (26)
(related with the terminal conditions for orbit injection) and Eq. (38) are to be con-
sidered while solving the problem at hand. Hence, the function J̃ is defined as

J̃ =
4∑

k=1

|dk|. (47)
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In consideration of the fact that ff is given by the last equation of Eq. (26), the terms
{dk}k=1,2,3,4 are

d1 = vr(tf ) −
√

μ

af (1 − e2
f )

ef sinff ,

d2 = vθ (tf ) −
√

μ

af (1 − e2
f )

(1 + ef cosff ),

d3 = r(tf ) − af (1 − e2
f )

1 + ef cosff

,

d4 =
√

μ

af (1 − e2
f )

(
λ∗

2f ef sinff − λ∗
1f ef cosff

) − λ∗
3f

af (1 − e2
f )

(1 + ef cosff )2
− λ∗

4

(48)

3.2 Numerical Results

The problem is solved by employing canonical units: the distance unit (DU) is ar-
bitrary, whereas the time unit (TU) is such that μ = 1 DU3/TU2. The optimal val-
ues of the unknown parameters are sought in the following ranges: −1 ≤ λk0 ≤ 1
(k = 1,2,3), −π ≤ f0 ≤ π , and 1 TU ≤ tf ≤ 50 TU. It is worth remarking that the
constraint reduction allows arbitrarily defining the search space for the initial val-
ues of the Lagrange multipliers. This means that they can be sought in the interval
−1 ≤ λk0 ≤ 1 by the PSO algorithm, and only a posteriori their correct values (ful-
filling also the transversality condition (39)) can be recovered.

Two test cases have been considered (c = 1.5 DU/TU for both of them):

Case 1: a0 = 1.8 DU, e0 = 0.6, af = 3.5 DU, ef = 0.8, ϕ = 120 deg,

n0 = 0.03 DU/TU2

Case 2: a0 = 2.0 DU, e0 = 0.2, af = 3.0 DU, ef = 0.3, ϕ = 30 deg,

n0 = 0.01 DU/TU2

After 3000 iterations with 100 particles (NP = 100 and NIT = 3000), the follow-
ing results (in canonical units) have been attained:

Case 1: t∗f = 19.718 TU, |d1| = 4.121 · 10−7, |d2| = 6.896 · 10−8,

|d3| = 2.798 · 10−10, |d4| = 2.563 · 10−6

Case 2: t∗f = 11.628 TU, |d1| = 4.076 · 10−6, |d2| = 1.596 · 10−8,

|d3| = 3.440 · 10−8, |d4| = 4.211 · 10−7

Figures 2 and 3 illustrate the adjoint variables, the optimal control laws, and the opti-
mal trajectories for the cases of interest, as well as the time histories of the osculating
orbital elements.
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Fig. 2 Transfers between elliptic orbits: adjoint variables, optimal control time histories, and optimal
trajectories for case 1 (a) and for case 2 (b)

4 Low-Thrust Orbital Rendezvous

This section is focused on the determination of the optimal rendezvous trajectory
of a pursuing spacecraft, i.e., the low-thrust trajectory that leads the pursuing vehi-
cle (denoted with “P” henceforward) to rendezvous with a target spacecraft (denoted
with “T” henceforth) in a specified time. More specifically, the problem that is be-
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Fig. 3 Transfers between elliptic orbits: orbital elements for case 1 (a) and for case 2 (b)

ing addressed consists in determining the portion of the orbit of T that the pursuing
spacecraft can reach (with appropriate velocity for orbit insertion) in a specified time.
The attainable portion of orbit identifies the possible positions of T with which P can
rendezvous within a specified time.

Both P and T are assumed to be placed in the same circular orbit of radius R1.
The portion of orbit reachable by P in a specified time tf through propulsion can be
sought by determining its extremal points. These points are denoted with A and B in
Fig. 5. A target located ahead with respect to A or behind B (at tf ) cannot be reached
by P before the time tf has elapsed. Conversely, if T is placed on any point belonging
to arc AB (at tf ), then it can be reached by P before the time tf has elapsed. Points
A and B can be determined by maximizing (point A) or minimizing (point B) the
angular displacement �ξ that identifies the final position of P along the terminal orbit
with respect to the position that P would reach in the absence of propulsion, identified

by ξorb(tf )(= tf

√
μ/R3

1) (cf. Fig. 5). Hence, the determination of A and B consists
in solving two optimization problems: (i) point A: maximize �ξ = ξ(tf ) − ξorb(tf ),
(ii) point B: minimize �ξ = ξ(tf ) − ξorb(tf ), or equivalently,

(i) Point A: minimize J = −ξ(tf ) (ii) Point B: minimize J = ξ(tf )

As the terminal orbits are identical for both vehicles, a spacecraft located in the
generic position R at tf is in S at t0 (cf. Fig. 4) and ξR(tf ) − ξorb(tf ) = ξS(t0). This
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Fig. 4 Geometry of the orbital
rendezvous problem

means that determining the arc AB at tf is equivalent to identifying the reachable arc
A′B′ at t0, that is, the geometrical locus where the target vehicle can be located at t0
(= 0) so that the rendezvous can occur within the time tf .

Let vr , vθ , and r represent respectively the radial and the horizontal components
of the velocity, and the radius of P. If μ denotes the gravitational parameter of the
attracting body, the pursuer initial conditions (at t0) and final conditions (at tf ) are
given by

vr(t0) = vr(tf ) = 0, θ (t0) = vθ (tf ) =
√

μ

R1
,

r(t0) = r(tf ) = R1, ξ(t0) = 0.

(49)

As the spacecraft employs a constant (low) thrust during the entire time of flight,
the thrust-to-mass ratio (T /m) has the expression (27). The spacecraft equations of
motion (also referred to as the state equations) involve the two components of the
velocity, the radius r , and the angle ξ . They are identical to those of the preceding
section (Eq. (32)) and are not reported for the sake of brevity. Thus, the state vector is
x := [x1 x2 x3 x4 ]T = [vr vθ r ξ ]T . The thrust-pointing-angle δ (relative to the local
horizontal) is the only control variable; therefore, u := u = δ. The initial time t0 is
set to 0 and the rendezvous time tf is specified. If xkf := xk(tf ) (k = 1,2,3,4), the
objective function is represented either by J = −x4f (problem (i)) or by J = x4f

(problem (ii)).

4.1 Solution Process

For this problem the Hamiltonian H and the function Φ are

H := λ1

[
−μ − x3x

2
2

x2
3

+ T

m
sin δ

]
+ λ2

[
−x1x2

x3
+ T

m
cos δ

]
+ λ3x1 + λ4

x2

x3
, (50)

Φ := υ1x1f + υ2

[
x2f −

√
μ

R1

]
+ υ3[x3f − R1] ± x4f

(− for problem (i)
+ for problem (ii)

)

(51)
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where xk0 := xk(t0) and xkf := xk(tf ) (k = 1,2,3,4). The adjoint equations are the
same as those reported in the previous section (cf. Eq. (32)), as well as the expressions
that relate the optimal thrust-pointing-angle u∗ to the costate (Eq. (31)). On the other
hand, for the problem under consideration equations (10) yield the following final
conditions for λ:

λ1f = υ1, λ2f = υ2, λ3f = υ3, λ4 = ±1(− for problem (i) + for problem (ii)
)

(52)

where λkf := λk(tf ) (k = 1,2,3,4). Equation (52) imply that three out of four final
values of the adjoint are unspecified, whereas the constant component λ4 equals 1 or
−1, depending on the problem under consideration ((i) or (ii)). It is worth noticing
that no transversality condition holds because the final time tf is specified.

In summary, the set of unknown parameters and initial conditions includes only
three initial values of the adjoint variables,X0 = [λ10 λ20 λ30 ]T (with λk0 := λk(t0))
and, as the initial and final times are specified, the vector χ is given by

χ = [
λ10 λ20 λ30

]T
. (53)

The three equality constraints (26) (related with the terminal conditions for orbit in-
jection) must be satisfied for the problem at hand. Hence, the function J̃ is defined
as

J̃ =
3∑

k=1

|dk| with d1 = vr(tf ), d2 = vθ (tf ) −
√

μE

R1
, d3 = r(tf ) − R1. (54)

4.2 Numerical Results

The problem is solved by employing canonical units: the radius of the initial or-
bit, R1, represents the distance unit (DU), whereas the time unit (TU) is such that
μ = 1 DU3/TU2. The optimal values of the three unknown parameters are sought
in the following ranges: −100 ≤ λk(0) ≤ 100 (k = 1,2,3). The following propul-
sive data are used: n0 = 0.005 DU/TU2 and c = 1.5 DU/TU. The rendezvous time
tf is set to 25 TU. Thus, ξorb(tf ) = 25 rad = 1432.4 deg = 352.4 deg. The angle
�ξ := ξmax/min(tf ) − ξorb(tf ) equals the maximum angular displacement (ahead or
behind) of T from P at t0 and tf and identifies the geometrical locus of T such that
interception can occur within the time tf .

After 500 iterations with 100 particles (NP = 100and NIT = 500), the following
results (in canonical units) have been attained:

Problem (i) : �ξ = 147.2 deg, |d1| = 6.174 · 10−6,

|d2| = 1.045 · 10−6, |d3| = 3.708 · 10−6

Problem (ii) : �ξ = −135.2 deg, |d1| = 3.746 · 10−6,

|d2| = 5.409 · 10−6, |d3| = 5.138 · 10−6.

(55)

Figures 5 and 6 portray the pursuer radii, adjoint variables, and optimal control laws
for problems (i) and (ii), whose solution definitely identifies the reachable arc of the
trajectory, i.e., the possible positions of a target vehicle that can be reached by P
within the specified time tf .
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Fig. 5 Orbital rendezvous: radius of P for problem (i) (left figure) and problem (ii) (right figure)

Fig. 6 Orbital rendezvous: adjoint variables and optimal control time histories of P for problem (i) (a)
and problem (ii) (b)

5 Conclusions

This work describes and successfully applies the indirect swarming technique to op-
timizing continuous-thrust space trajectories, namely orbit transfers and rendezvous.
The method at hand uses the analytical necessary conditions for optimality, in con-
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junction with a simple, easy-to-implement heuristic technique, i.e., the particle swarm
algorithm. Main advantages of employing the approach under consideration are in the
(i) absence of any guess, (ii) guarantee of optimality, without choosing any restric-
tive representation for the control variables, and (iii) reduced parameter set, used to
transcribe the optimal control problem into a parameter optimization problem. This
study employs also a standard, simple approach for treating equality constraints, and
shows the way of reducing their number, with regard to the orbit transfer optimization
problem. This helps avoiding possible convergence difficulties, which can arise for
heuristic techniques in the presence of equality constraints. In the end, the indirect
swarming approach proved to be capable of finding accurate solutions to both orbital
maneuvering problems considered in this research.

Several options are available for improving the performance attainable by the
method at hand. First, the number of particles and iterations can be increased to
achieve more satisfactory results. Second, the fine tuning of the weighting coeffi-
cients in the formula for velocity update could yield improved results, at least with
regard to specific cases. In the presence of qualitatively different and, possibly, more
challenging problems (e.g., minimum-fuel orbit transfers with multiple powered arcs
or space trajectories involving periodic orbits and invariant manifolds), different ver-
sions of the particle swarm algorithm or even different heuristic methods can be used,
in conjunction with the analytic conditions for optimality. Furthermore, as no guess
is required, the indirect swarming method can be employed also as a preprocess-
ing technique, capable of supplying a suitable first attempt approximate solution to
more efficient (direct or indirect) algorithms. The latter option appears as a promis-
ing research direction, which could lead—at least in principle—to developing novel,
efficient, and robust hybrid numerical optimization methodologies, based on the con-
tinuous interaction (or even the cyclic execution) of heuristic and deterministic algo-
rithms.
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