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Abstract The purpose of this paper is to study the weak subdifferential for set-valued
mappings, which was introduced by Chen and Jahn (Math. Methods Oper. Res.,
48:187–200, 1998). Two existence theorems of weak subgradients for set-valued
mappings are obtained. Moreover, some properties of the weak subdifferential for
set-valued mappings are derived. Our results improve the corresponding ones in the
literature. Some examples are given to illustrate our results.
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1 Introduction

It is well known that the subgradient plays an important role in optimization and
duality theory. The concept of subgradients for a convex function was considered
by Rockafellar [1] in finite-dimensional spaces. In recent years, the concept of
subgradients has been generalized to vector-valued mappings and set-valued map-
pings in abstract spaces by many authors; see [2–8]. In [9], Chen and Craven in-
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troduced the weak subgradient for a vector-valued mapping and discussed the ex-
istence of the weak subgradient. Yang [10] generalized the concept introduced by
Chen and Craven [9] to set-valued mappings. Chen and Jahn [2] defined another
weak subgradient, which is stronger than the weak subgradient introduced by Yang
[10]. They also proved the existence of the weak subgradient by the Eidelheit sep-
aration theorem. By the Hahn–Banach theorem, Peng et al. [11] proved the exis-
tence of the weak subgradient for set-valued mappings introduced by Yang [10].
Recently, Li and Guo [12] proved some existence theorems of two kinds of weak
subgradients for set-valued mappings by virtue of a Hahn–Banach extension the-
orem obtained by Zǎlinescu [13]. Very recently, Hernandez and Rodriguez-Marin
[14] considered the weak subgradient of set-valued mappings introduced by Chen
and Jahn [2] and also presented a new notion of the strong subgradient for set-
valued mappings. Moreover, they obtained some existence theorems of both sub-
gradients. Note that as mentioned above the assumptions that the cone-convexity
of the objective function and the upper semicontinuity of the objective function
at a given point are required. This paper is the effort in removing these restric-
tions.

Motivated by the work reported in [12, 14], in this paper, we consider the weak
subdifferential for set-valued mappings, which was introduced by Chen and Jahn [2].
Without any convexity and upper semicontinuity assumptions on objective functions,
we prove two existence theorems of weak subgradients for set-valued mappings.
Moreover, we derive some properties of the weak subdifferential for set-valued map-
pings. Our results improve the corresponding ones in [12, 14].

2 Preliminaries

Throughout this paper, let X and Y be two real locally convex topological vector
spaces, and L(X,Y ) be the set of all linear continuous operators from X into Y . Let
X′ := L(X,R) and C ⊂ Y be a proper (i.e. {0} �= C and C �= Y ) closed, convex and
pointed cone with nonempty interior intC. The origin of X and Y are denoted by
0X and 0Y , respectively. Let X∗ and Y ∗ be the topological dual spaces of X and Y ,
respectively. The dual cone of C is defined by

C∗ := {
f ∈ Y ∗ : f (x) ≥ 0, for all x ∈ C

}
.

We denote by (Y,C) the ordered topological vector space, where the ordering is
induced by C. For any y1, y2 ∈ Y , we define the following ordering relations:

y1 < y2 ⇔ y2 − y1 ∈ intC,

y1 ≮ y2 ⇔ y2 − y1 /∈ intC.

The relations > and ≯ are defined similarly.
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Let F : X ⇒ Y be a set-valued mapping. The domain, graph and epigraph of F

are, respectively, defined by

domF := {
x ∈ X : F(x) �= ∅}

,

GrF := {
(x, y) ∈ X × Y : x ∈ domF, y ∈ F(x)

}
,

epiF := {
(x, y) ∈ X × Y : x ∈ domF, y ∈ F(x) + C

}
,

where the symbol ∅ denotes the empty set.
Let K be a nonempty subset of X, F : K ⇒ Y be a set-valued mapping. In this

paper, we consider the following set-valued optimization problem (in short, SVOP):

minC F(x), subject to x ∈ K.

A pair (x0, y0) with x0 ∈ K and y0 ∈ F(x0) is called a weak efficient solution of
(SVOP) iff (F (K) − y0) ∩ (− intC) = ∅, where F(K) := ⋃

x∈K F(x).
Let A ⊂ Y . We denote by WMinA := {y ∈ A : (A − y) ∩ − intC = ∅} the set of

weak efficient elements of A.

Definition 2.1 [15] Let K be a nonempty subset of X and x0 ∈ clK . The contingent
cone T (K,x0) to K at x0 is the set of all h ∈ X for which there exist a net {tα : α ∈ I }
of positive real numbers and a net {xα : α ∈ I } ⊂ K such that

lim
α

xα = x0 and lim
α

tα(xα − x0) = h.

Remark 2.1 From Definition 2.1, we have that T (K,x0) ⊂ clcone(K − x0) and
T (K,x0) is a closed cone. Moreover, If K is convex, then T (K,x0) is a closed and
convex cone.

Remark 2.2 It is not difficult to see that h ∈ T (K,x0) if and only if there exist a net
{tα : α ∈ I } of positive real numbers and a net {hα : α ∈ I } with hα → h such that
tαhα → 0 and x0 + tαhα ∈ K .

Definition 2.2 [3] Let F : X ⇒ Y be a set-valued mapping. Let (x0, y0) ∈ GrF . The
contingent derivative DF(x0, y0) of F at (x0, y0) is a set-valued mapping from X to
Y defined by

Gr
(
DF(x0, y0)

) := T
(
Gr(F ); (x0, y0)

)
.

Remark 2.3 Let (x0, y0) ∈ GrF . It is easy to see that

(i) y ∈ DF(x0, y0)(x) if and only if there exist a net {(xα, yα) : α ∈ I } ⊂ GrF and
a net {tα : α ∈ I } of positive real numbers such that

lim
α

(xα, yα) = (x0, y0) and lim
α

tα(xα − x0, yα − y0) = (x, y);

(ii) the set-valued mapping DF(x0, y0) is positively homogeneous with closed
graphs;

(iii) [16] (0,0) ∈ Gr(DF(x0, y0)).
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Definition 2.3 [6] Let K be a convex subset of X. A set-valued mapping F : X ⇒ Y

is said to be C-convex on K iff, for any x1, x2 ∈ K and λ ∈ [0,1],
λF(x1) + (1 − λ)F (x2) ⊂ F

(
λx1 + (1 − λ)x2

) + C.

Remark 2.4 If the set-valued mapping F is C-convex on K , then F(K) + C is a
convex set.

Definition 2.4 [17] A set-valued mapping F : X ⇒ Y is said to be compactly ap-
proximable at (x0, y0) ∈ GrF iff, for each v0 ∈ X, there exists a set-valued mapping
H from X into the set of all nonempty compact subsets of Y , a neighborhood V of
x0 in X, and a function r : ]0,1[ × X → ]0,+∞) satisfying

(i) lim(t,v)→(0+,v0) r(t, v) = 0;
(ii) for each v ∈ V and t ∈ ]0,1],

F(x0 + tv) ⊂ y0 + t
(
H(v0) + r(t, v)BY

)
,

where BY is the closed unit ball around the origin of Y .

The following lemma will be used in the sequel which plays an important role in
proving our main results.

Lemma 2.1 [13] Let X, Y be separated locally convex topological vector spaces,
F : X ⇒ Y be a C-convex set-valued mapping, X0 ⊂ X be a linear subspace and
T0 ∈ L(X0, Y ). Suppose that int(epiF) �= ∅, X0 ∩ int(domF) �= ∅, and T0(x) ≯ y for
all (x, y) ∈ GrF ∩(X0 ×Y). If T0(x) = 〈x, x∗

0 〉y0 for every x ∈ X0 with fixed x∗
0 ∈ X∗

and y0 ∈ Y , then there exists T ∈ L(X,Y ) such that T |X0= T0 and T (x) ≯ y for all
(x, y) ∈ GrF .

By Lemma 2.5 in [18], it is easy to prove the following result.

Lemma 2.2 Let C ⊂ Y be a closed, convex and pointed cone with intC �= ∅, and let
S be a nonempty subset of Y . Then, for y ∈ Y ,

(S − y) ∩ − intC = ∅ ⇔ (S + intC − y) ∩ − intC = ∅.

3 Existence of Weak Subgradients

In this section, we establish two existence theorems of weak subgradients for set-
valued mappings. Denote W := Y\(− intC).

Definition 3.1 [2] Let K be a subset of X with x0 ∈ K . Let F : K ⇒ Y be a set-
valued mapping. T ∈ L(X,Y ) is called a weak subgradient of F at x0 iff

F(x) − F(x0) − T (x − x0) ⊂ W, ∀x ∈ K.

The set of all weak subgradients of F at x0, denoted by ∂wF(x0), is called the weak
subdifferential of F at x0.
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Theorem 3.1 Let K be a convex subset of X with intK �= ∅. Let F : K ⇒ Y be a
set-valued mapping with F(x) �= ∅ for any x ∈ K . Let x0 ∈ intK and y0 ∈ F(x0) ∩
WMinF(K). If the following conditions are satisfied:

(i) DF(x0, y0) is C-convex on K − {x0};
(ii) there exists a ∈ Y such that DF(x0, y0)(K − x0) ⊂ a − intC;

(iii) F(x) − F(x0) ⊂ DF(x0, y0)(x − x0) + C, ∀ x ∈ K ;

then, ∂wF(x0) �= ∅. Moreover, there exists T ∈ ∂wF(x0) such that for every x ∈ K ,

T (x − x0) /∈ − intC ⇔ T (x − x0) ∈ C.

Proof We define the set-valued mapping G : K ⇒ Y by

G(x) := DF(x0, y0)(x − x0).

We now prove that G is a C-convex set-valued mapping. Indeed, for any x1, x2 ∈ K

and λ ∈ [0,1], by the C-convexity of DF(x0, y0) on K − {x0}, we have

λG(x1) + (1 − λ)G(x2) = λDF(x0, y0)(x1 − x0) + (1 − λ)DF(x0, y0)(x2 − x0)

⊂ DF(x0, y0)
(
λ(x1 − x0) + (1 − λ)(x2 − x0)

) + C

= G
(
λx1 + (1 − λ)x2

) + C,

which implies that G is a C-convex set-valued mapping.
Let

M := {
(x, y) : x ∈ K,y ∈ G(x) + intC

}
.

Since K is a nonempty convex set and G is C-convex, M is a nonempty convex set.
The proof of the theorem is divided into the following three steps.

(I) We prove that intM �= ∅.
Suppose that there exists a ∈ Y such that

G(x) ⊂ a − intC, ∀x ∈ K. (1)

Let c ∈ intC and y0 = a + c. Then, y0 − a = c ∈ intC. It follows that there exists a
neighborhood U of 0Y such that

U + y0 − a ⊂ C. (2)

Let x0 ∈ intK . Then there exists a neighborhood V of 0X such that x0 + V ⊂ K .
From (1), for any x ∈ x0 + V and yx ∈ G(x), there exists cx ∈ intC such that

yx = a − cx.

This fact together with (2) yields

U + y0 − yx = U + y0 − a + cx ⊂ intC,
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which implies that

U + y0 ⊂ yx + intC ⊂ G(x) + intC. (3)

On the other hand, for any x ∈ x0 + V ,

y0 = a + c = yx + cx + c ∈ G(x) + intC + intC ⊂ G(x) + intC. (4)

Combining (3) and (4) yields

(x, y) ∈ M, ∀x ∈ x0 + V, ∀y ∈ U + y0.

It follows that intM �= ∅.

(II) We prove that (x0,0) /∈ M .
Indeed, if (x0,0) ∈ M , then 0 ∈ G(x0) + intC, and so G(x0) ∩ − intC �= ∅. This

implies that there exists c ∈ intC such that −c ∈ DF(x0, y0)(0). It follows that there
exist nets {λα : α ∈ I } of positive real numbers and {(xα, yα) : α ∈ I } ⊂ GrF satisfy-
ing

lim
α

(xα, yα) = (x0, y0) and lim
α

λα

[
(xα, yα) − (x0, y0)

] = (0,−c).

Therefore, there exists α0 ∈ I such that

λα(yα − y0) ∈ − intC, ∀α ≥ α0

and so

yα − y0 ∈ − intC, ∀α ≥ α0,

which contradicts the fact y0 ∈ WMinF(K).

(III) There exists T ∈ L(X,Y ) such that T ∈ ∂wF(x0).
Since M is a nonempty convex set with intM �= ∅ and (x0,0) /∈ M , by the separa-

tion theorem of convex sets, there exists (−x∗, y∗) ∈ X∗ × Y ∗\{(0,0)} such that

〈−x∗, x
〉 + 〈

y∗, y
〉 ≥ 〈−x∗, x0

〉 + 〈
y∗,0

〉
, ∀(x, y) ∈ M,

or equivalently,

〈−x∗, x
〉 + 〈

y∗, y
〉 ≥ 〈−x∗, x0

〉
, ∀(x, y) ∈ M. (5)

We claim that y∗ �= 0. In fact, if y∗ = 0, then 〈x∗, x〉 ≤ 〈x∗, x0〉,∀x ∈ K . Since x0 ∈
intK , there exists a symmetric neighborhood U of 0X such that x0 + U ⊂ K . It
follows that

〈
x∗, x0 ± u

〉 ≤ 〈
x∗, x0

〉
, ∀u ∈ U.

This implies x∗ = 0, which contradicts that (−x∗, y∗) �= (0,0). Therefore, y∗ �= 0.
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Note that 0 ∈ DF(x0, y0)(0). This fact together with (5) yields 〈y∗, c〉 > 0, ∀c ∈
intC. And so 〈y∗, c〉 ≥ 0, ∀c ∈ C, that is y∗ ∈ C∗. Then there exists some c0 ∈ intC
with 〈y∗, c0〉 = 1. We now define a mapping T : X → Y by

T (x) := 〈
x∗, x

〉
c0, ∀x ∈ K − {x0}.

Obviously, T is linear and continuous. Next we prove that for this mapping T satis-
fying

F(x) − F(x0) − T (x − x0) ⊂ W, ∀x ∈ K.

We now prove that

G(x) − T (x − x0) ⊂ W, ∀x ∈ K.

By Lemma 2.2, we only need to prove that
(
G(x) + intC − T (x − x0)

) ∩ − intC = ∅, ∀x ∈ K.

Suppose by contradiction that there exist x ∈ K and y ∈ G(x) + intC such that

y − T (x − x0) ∈ − intC.

Because of y∗ ∈ C∗\{0}, we have

0 >
〈
y∗, y − T (x − x0)

〉 = 〈
y∗, y

〉 − 〈
x∗, x − x0

〉〈
y∗, c0

〉 = 〈
y∗, y

〉 − 〈
x∗, x − x0

〉
,

which contradicts (5). Therefore, by condition (iii), T ∈ ∂wF(x0). Finally, for every
x ∈ K , we have

T (x − x0) /∈ − intC ⇔ 〈
x∗, x − x0

〉
c0 /∈ − intC ⇔ 〈

x∗, x − x0
〉 ≥ 0

⇔ T (x − x0) ∈ C.

This completes the proof. �

Remark 3.1 In [14], Hernandez and Modriguez-Marin obtained the existence theo-
rem of weak subgradients for set-valued mappings. The assumptions that F(x0) is
upper bounded and F is upper semicontinuous at x0 are required in [14]. However,
Theorem 3.1 does not require these assumptions. The following example is given
to illustrate the case that Theorem 3.1 is applicable, but Theorem 4.1 of [14] is not
applicable.

Example 3.1 Let X = Y = R, K = R, C = {y : y ≥ 0}, and let

F(x) =
{ {0}, if x ≤ 0,

{0,1}, if x > 0.

Let (x0, y0) = (0,0). Then,

T
(
Gr(F ); (0,0)

) = {
(x,0) : x ∈R

}
.
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It is easy to see that the assumptions of Theorem 3.1 are satisfied. Obviously, 0 ∈
∂wF(0). However, Theorem 4.1 in [14] is not applicable because F is not upper
semicontinuous at x0.

We now give a sufficient condition, which guarantees the assumption (i) in Theo-
rem 3.1 holds.

Proposition 3.1 Let K be a convex subset of X and F : K ⇒ Y be a C-convex set-
valued mapping. Let (x0, y0) ∈ GrF . If F is compactly approximable at (x0, y0), then
DF(x0, y0) is C-convex.

Proof Since F is compactly approximable at (x0, y0), by Proposition 2.2 in [19],

D(F + C)(x0, y0)(x) = D(F)(x0, y0)(x) + C, ∀x ∈ X.

Since F is C-convex, epiF is a convex set. It follows that T (epiF ; (x0, y0)) is a
convex set. And so D(F +C)(x0, y0) is convex. Therefore, DF(x0, y0) is C-convex.
This completes the proof. �

Theorem 3.2 Let X and Y be separated locally convex topological vector spaces,
and K be a convex subset of X with intK �= ∅. Let F : K ⇒ Y be a set-valued map-
ping with F(x) �= ∅ for any x ∈ K . Let x0 ∈ intK and y0 ∈ F(x0). If the following
conditions are satisfied:

(i) DF(x0, y0) is C-convex on K − {x0};
(ii) DF(x0, y0)(0) ∩ − intC = ∅;

(iii) F(x) − F(x0) ⊂ DF(x0, y0)(x − x0) + C, ∀x ∈ K ;

then, ∂wF(x0) �= ∅.

Proof Let S = K − {x0}. We define the set-valued mapping G : X ⇒ Y by

G(x) := DF(x0, y0)(x), ∀x ∈ S.

Similarly to the proof of Theorem 3.1, we can prove that G is C-convex on S.
By condition (ii), G(0) ∩ − intC = ∅. It follows that

0 ≯ y, ∀y ∈ G(0). (6)

We next consider the special subspace X0 = {0} and T0(0) := 0. Since x0 ∈ intK and
F(x) �= ∅ for any x ∈ K , it is easy to see that

int(epiG) �= ∅, X0 ∩ int(domG) �= ∅.

From (6), we have

T0(x) ≯ y, ∀(x, y) ∈ GrG ∩ (X0 × Y) = {
(0, y) : y ∈ G(0)

}
.

By Lemma 2.1, there exists T ∈ L(X,Y ) such that

T (x) ≯ y, ∀(x, y) ∈ GrG
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and so

T (x) /∈ DF(x0, y0)(x) + intC, ∀x ∈ S.

It follows that

T (x − x0) /∈ DF(x0, y0)(x − x0) + intC, ∀x ∈ K,

or

DF(x0, y0)(x − x0) − T (x − x0) ⊂ W, ∀x ∈ K,

which, together with condition (iii), yields

F(x) − F(x0) − T (x − x0) ⊂ DF(x0, y0)(x − x0) − T (x − x0) + C

⊂ W, ∀x ∈ K.

This implies T ∈ ∂wF(x0). This completes the proof. �

Remark 3.2 In [12, Theorem 3.2], Li and Guo obtained a existence theorem of
weak subgradients by using similar proof methods. It is important to note that our
assumptions are different from the ones used in [12]. First, the condition that F

is C-convex has been relaxed because we consider C-convexity of the contingent
derivative of F instead of F . Second, the assumptions that F(x0) − C is convex and
F(x0) ∩ (F (x0) − intC) = ∅ are required in [12], but Theorem 3.2 does not require
these assumptions.

Remark 3.3 In [2, Theorem 7] and [11, Theorem 4.1], the authors derived some exis-
tence theorems of weak subgradients for set-valued mappings. The assumptions that
−F(x0) is minorized, F is C-convex and upper semicontinuous at x0 are required in
[2, 11]. However, Theorem 3.2 does not require these assumptions.

Now, we give an example to illustrate Theorem 3.2.

Example 3.2 Let X = Y = R, K = R, C = {y : y ≥ 0}, and let

F(x) =
{ {0}, if x ≤ 0;

{2,−x}, if x > 0.

Let (x0, y0) = (0,0). Then,

T
(
Gr(F ); (0,0)

) = {
(x,0) : x ≤ 0

} ∪ {
(x,−y) : x = y, x > 0

}
.

It is easy to see that the assumptions of Theorem 3.2 are satisfied. Obviously, 0 ∈
∂wF(0). However, Theorem 3.2 in [12], Theorem 7 in [2] and Theorem 4.1 in [11]
are not applicable since F is not C-convex on K . Indeed, letting x1 = −4, x2 = 2 and
λ = 1

2 , we have

λF(x1) + (1 − λ)F (x2) = {−1,1}� F
(
λx1 + (1 − λ)x2

) +R+ = R+.
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4 Properties of Weak Subgradients

In this section, we obtain some properties of weak subgradients for set-valued map-
pings.

Theorem 4.1 Let K be a convex subset of X and x0 ∈ K . Let F : K ⇒ Y be a
C-convex set-valued mapping with nonempty values and F(x0) − C is convex. If
T ∈ ∂wF(x0), then there exists y∗ ∈ C∗\{0} such that

〈
y∗, y − y1 − T (x − x0)

〉 ≥ 0, ∀(x, y) ∈ GrF, ∀y1 ∈ F(x0).

Proof Let T ∈ ∂wF(x0). Then

(
F(x) − F(x0) − T (x − x0)

) ∩ − intC = ∅, ∀x ∈ K.

This implies that

(
F(x) + C − F(x0) − T (x − x0)

) ∩ − intC = ∅, ∀x ∈ K.

We define a set-valued mapping G : K ⇒ Y by

G(x) := F(x) − F(x0).

Since F is C-convex and F(x0) − C is convex, for any x1, x2 ∈ K and λ ∈ [0,1],
λG(x1) + (1 − λ)G(x2) = λF(x1) − λF(x0) + (1 − λ)F (x2) − (1 − λ)F (x0)

⊂ F
(
λx1 + (1 − λ)x2

) + C − F(x0) + C

⊂ G
(
λx1 + (1 − λ)x2

) + C.

It follows that G is a C-convex set-valued mapping. Note that T is a linear operator,
then

⋃

x∈K

(
F(x) + C − F(x0) − T (x − x0)

)

is a convex set. By the separation theorem of convex sets, there exists y∗ ∈ Y ∗\{0}
such that

〈
y∗, y + c − y1 − T (x − x0)

〉 ≥ 0, ∀x ∈ K,y ∈ F(x), y1 ∈ F(x0), c ∈ C. (7)

We claim that

〈
y∗, c

〉 ≥ 0, ∀c ∈ C.

In fact, if there exists c0 ∈ C such that 〈y∗, c0〉 < 0, then by letting x = x0 and y = y1
in (7), we have 〈y∗, c0〉 ≥ 0. This gives a contradiction. Thus, y∗ ∈ C∗\{0}. Letting
c = 0 in (7), we get the conclusion. This completes the proof. �
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Theorem 4.2 Let K be a nonempty subset of X and x0 ∈ K . Let F : K ⇒ Y be a
set-valued mapping with nonempty values. If ∂wF(x0) �= ∅, then ∂wF(x0) is a closed
set.

Proof Suppose by contradiction that there exists a net {Tα : α ∈ I } ⊂ ∂wF(x0) such
that Tα → T , but T /∈ ∂wF(x0). Thus, there exist x ∈ K , y ∈ F(x) and y0 ∈ F(x0)

such that

y − y0 − T (x − x0) ∈ − intC.

Note that

y − y0 − Tα(x − x0) → y − y0 − T (x − x0).

It follows that there exists α0 ∈ I such that

y − y0 − Tα(x − x0) ∈ − intC, ∀α ≥ α0,

which contracts the fact Tα ∈ ∂wF(x0). This completes the proof. �

Remark 4.1 Note that we prove Theorem 4.2 in locally convex topological vector
spaces. But a similar result has been proved by Li and Guo [12] in normed spaces.

5 Conclusions

In this paper, we have proved two existence theorems of weak subgradients for set-
valued mappings. These two results improve meaningfully the corresponding results
obtained by Hernandez and Rodriguez-Marin [14] and Li and Guo [12], respectively.
Moreover, two properties of the weak subdifferential for set-valued mappings are
derived. It would be interesting to consider the calculations of sum mapping and
composed mapping for weak subdifferentials as well as applications to set-valued
optimization problems. This may be the topic of some of our forthcoming papers.
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