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Abstract In this paper, we first present a full-Newton step feasible interior-point al-
gorithm for solving horizontal linear complementarity problems. We prove that the
full-Newton step to the central path is quadratically convergent. Then, we generalize
an infeasible interior-point method for linear optimization to horizontal linear com-
plementarity problems based on new search directions. This algorithm starts from
strictly feasible iterates on the central path of a perturbed problem that is produced
by a suitable perturbation in the horizontal linear complementarity problem. We use
the so-called feasibility steps that find strictly feasible iterates for the next perturbed
problem. By using centering steps for the new perturbed problem, we obtain a strictly
feasible iterate close enough to the central path of the new perturbed problem. The
complexity of the algorithm coincides with the best known iteration bound for infea-
sible interior-point methods.

Keywords Horizontal linear complementarity problem · Infeasible interior-point
methods · Full-Newton step · Complexity analysis

1 Introduction

Since Karmarkar’s ground-breaking paper [1], interior-point methods (IPMs) be-
came one of the most active research areas. They have been widely used to obtain
strong theoretical results for solving linear optimization (LO), linear complementarity
(LCP), semidefinite optimization (SDO) and many other problems. In [2], the authors
proved that different formulations of LCP, such as horizontal LCP (HLCP) and the
mixed LCP, can be transformed into a standard LCP. In 1995, Miao [3] extended the
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Mizuno–Todd–Ye (MTY) predictor–corrector method [4] for P∗(κ)-LCPs. The class
of all P∗(κ) matrices is called P∗. This class was extensively studied in the 1991
monograph of Kojima et al. [5]. Gurtuna et al. [6] generalized the MTY method to
HLCP and presented a class of corrector–predictor IPMs for solving sufficient HLCP.
Wang and Bai [7] presented a class of polynomial interior-point algorithms for P∗(κ)-
HLCP based on parametric kernel functions. Darvay [8] proposed a full-Newton step
primal–dual path-following interior-point algorithm for LO. Later on, Achache [9]
and Asadi and Mansouri [10] respectively extended Darvay’s algorithm to LCP and
P∗(κ)-HLCP. Recently, Kheirfam [11] presented a predictor–corrector interior-point
algorithm for P∗(κ)-HLCP based on Darvay’s technique. Infeasible IPMs (IIPMs)
start with an arbitrary positive point, and feasibility is reached as optimality is ap-
proached. In 1990, Lustig [12] proposed an IIPM for the first-time. Kojima et al. [13]
proved the global convergence, whereas Zhang [14] and Mizuno [15] presented poly-
nomial iteration complexity results for variants of this algorithm. Potra and Sheng
[16] proposed an infeasible interior-point algorithm for the P∗(κ)-matrix LCP. This
algorithm does not depend on the handicap κ of the problem. It operates in a larger
neighborhood of the central path than the algorithm of [3] and has high order conver-
gence for non-degenerate problems. For more details about IIPMs, one is referred to
[17]. In 2006, Roos [18] proposed a full-Newton step IIPM for LO and proved that
the complexity of the algorithm coincides with the best-known iteration bound for
IIPMs. Mansouri et al. [19] extended the algorithm from LO to LCP, and obtained
similar polynomial complexity results. Later on, Kheirfam [20, 21] presented some
variants the algorithm for SDO and for LCP [22]. Recently, Kheirfam and Mahdavi-
Amiri [23] extended the algorithm from LO to symmetric cone linear complementar-
ity problems, and obtained similar polynomial complexity results. Zhang et al. [24]
presented a full-Newton step IIPM for SDO based on a new proximity measure and
simplified the complexity analysis of the algorithm.

The goal of the paper is to present a full-Newton step IPM and an IIPM for P∗(κ)-
HLCP. We develop a different analysis from the mentioned works for full-Newton
step IPMs and IIPMs by using the proximity measure introduced in [24]. We provide
search directions and show that the iteration bound coincides with the best known
bound for IPMs and IIPMs, while tendering to a simple and interesting analysis.

The remainder of our work is organized as follows: Section 2 is devoted to the
analysis of full-Newton step IPMs. We provide some tools and obtain the best known
iteration bound for IPMs. Section 3 is used to describe the IIPM for P∗(κ)-HLCP
in more details. Section 4 deals with the analysis of the feasibility step of IIPM, and
finally, we obtain the best known complexity bound for IIPMs. We conclude the paper
in Sect. 5.

2 Feasible Full-Newton Step Interior-Point Method

In this section, we introduce a full-Newton step feasible interior-point algorithm for
P∗(κ)-HLCP based on the proximity measure introduced in [24].
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2.1 The P∗(κ)-HLCP and Its Central Path

Given two matrices Q,R ∈R
n×n, and a vector q ∈ R

n, the HLCP consists in finding
a pair of vectors (x, s) ∈ R

2n such that

(P) Qx + Rs = q, xT s = 0, (x, s) ≥ 0.

The standard monotone linear complementarity problem (LCP) is obtained by taking
R = −I and a positive semidefinite matrix Q. There are other formulations of the
LCPs as well but, as shown in [25], all popular formulations are equivalent, and the
behavior of a large class of IPMs is identical on those formulations. Let κ ≥ 0 be a
given constant. We say that (P) is a P∗(κ)-HLCP iff

Qx + Rs = 0 implies xT s ≥ −4κ
∑

i∈I+
xisi , I+ = {i : xisi ≥ 0}.

If the above condition is satisfied, then we say that (Q,R) is a P∗(κ)-pair. Finding an
approximate solution of P∗(κ)-HLCP is equivalent to solving the following system

Qx + Rs = q, xs = 0, x, s ≥ 0.

The basic idea of primal–dual IPMs is to replace the complementarity condition xs =
0 by the parameterized equation xs = μe with μ > 0 and with e = (1,1, . . . ,1)T .
This leads to the following system

Qx + Rs = q, xs = μe, x, s ≥ 0. (1)

Under the assumption that P∗(κ)-HLCP satisfies the interior-point condition (IPC),
i.e., there exists (x0, s0) > 0 such that Qx0 + Rs0 = q , system (1) has a unique
solution for each μ > 0 [5, 14]. This solution is denoted as (x(μ), s(μ)) and we call
(x(μ), s(μ)) the μ-center of P∗(κ)-HLCP. The set of μ-centers is called the central
path of P∗(κ)-HLCP. If μ → 0, then the limit of the central path exists and since
the limit points satisfy the complementarity condition, the limit yields a solution for
P∗(κ)-HLCP [5, 14].

2.2 The Classic Newton Step

A natural way to define a search direction is to follow Newton’s approach and lin-
earize the second equation in (1). This leads to the following system

Q�x + R�s = 0, x�s + s�x = μe − xs. (2)

We use the following notations:

v :=
√

xs

μ
, dx := v�x

x
, ds := v�s

s
. (3)

It follows from (3) that the system (2) reduces to

Qdx + Rds = 0, dx + ds = v−1 − v, (4)
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where Q := QXV −1,R := RSV −1,X := diag(x), S := diag(s) and V := diag(v).
System (4) uniquely defines the search direction (dx, ds), and the Newton direction
(�x,�s) can be easily obtained from (3). The new iterates are given by

x+ := x + �x, s+ := s + �s.

From the second equation of system (4), we have

v(dx + ds) = e − v2.

2.3 The Proximity Measure and Its Properties

We use the following proximity measure σ(x, s;μ) to show the closeness of iterates
to the central path, which has been considered for SDO for the first time in [24]:

σ(v) := σ(x, s;μ) := ‖e − v2‖. (5)

The proof of the following lemma is similar to the proof of Lemma 3.1 in [24].

Lemma 2.1 Let σ := σ(x, s;μ). Then

√
1 − σ ≤ vi ≤ √

1 + σ, i = 1,2, . . . , n.

2.4 The Full-Newton Step Feasible IPM for P∗(κ)-HLCP

Here, we obtain lower and upper bounds for the inner product of the scaled directions,
dT
x ds . For this propose, we consider system (4). Since (Q,R) is a P∗(κ)-pair, we have

dT
x ds ≥ −4κ

∑

i∈I+
[dx]i[ds]i ≥ −κ

∑

i∈I+

([dx]i + [ds]i
)2

≥ −κ

n∑

i=1

([dx]i + [ds]i
)2 = −κ‖dx + ds‖2

= −κ
∥∥v−1(e − v2)∥∥2 ≥ −κ

σ 2

v2
min

≥ −κ
σ 2

1 − σ
,

where I+ := {i : [dx]i[ds]i ≥ 0} and the last inequality follows by Lemma 2.1. On
the other hand, we have

‖dx + ds‖2 = ‖dx‖2 + ‖ds‖2 + 2dT
x ds = ‖dx − ds‖2 + 4dT

x ds,

which implies that

dT
x ds ≤ 1

4
‖dx + ds‖2 = 1

4
‖v−1 − v‖2 ≤ 1

4v2
min

‖e − v2‖2 ≤ σ 2

4(1 − σ)
. (6)
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We describe the generic primal–dual IPM for P∗(κ)-HLCP as follows:

Algorithm 1 : A full-Newton step IPM.

Input : accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter 0 < τ < 1;

strictly feasible pair (x0, s0) with μ0 > 0 such that σ(x0, s0;μ0) ≤ τ.

begin
x := x0; s := s0; μ := μ0;
while xT s > ε do

(x, s) := (x, s) + (�x,�s);
μ − update : μ := (1 − θ)μ;

endwhile
end.

2.5 Some Properties of the Classic Full-Newton Step

The following lemmas describe the effect on duality gap, the condition for feasibility
and the effect on σ(x, s;μ) of a full-Newton step. Using (3), we have

x+ = x + �x = x

v
(v + dx), s+ = s + �s = s

v
(v + ds).

Moreover, using the second equation of (4), we obtain

x+s+ = xs

v2
(v + dx)(v + ds) = μ

(
v2 + v(dx + ds) + dxds

) = μ(e + dxds). (7)

Lemma 2.2 (Lemma II.48 in [26]) The full-Newton step is strictly feasible if

e + dxds > 0.

Lemma 2.3 If σ := σ(x, s;μ) < 2
1+√

3+4κ
, then (x+, s+) is strictly feasible. Fur-

thermore, we have

σ
(
x+, s+;μ) ≤ (1 + 2κ)

σ 2

2(1 − σ)
.

Proof Using (5) and (7), we have

σ
(
x+, s+;μ) :=

∥∥∥∥
x+s+

μ
− e

∥∥∥∥ = ‖dxds‖

≤ 1

2

(‖dx‖2 + ‖ds‖2) = 1

2

(‖dx + ds‖2 − 2dT
x ds

)

= 1

2

(‖v−1 − v‖2 − 2dT
x ds

)

≤ 1

2

(
1

v2
min

‖e − v2‖2 + 2κ
σ 2

1 − σ

)

≤ (1 + 2κ)
σ 2

2(1 − σ)
.
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This completes the second part of the proof of the lemma. As for the first part, we
know that if σ < 2

1+√
3+4κ

, then

‖dxds‖ ≤ (1 + 2κ)
σ 2

2(1 − σ)
< 1,

which means that the new iterates are strictly feasible by Lemma 2.2. �

Corollary 2.1 If σ := σ(x, s;μ) ≤ 1
1+√

3+4κ
, then

σ
(
x+, s+;μ) ≤ (

√
1 + 2κσ)2,

which shows the quadratic convergence of the algorithm.

Proof From Lemma 2.3, it follows that

σ
(
x+, s+;μ) ≤ (1 + 2κ)σ 2 1 + √

3 + 4κ

2
√

3 + 4κ
≤ (

√
1 + 2κσ)2.

This proves the corollary. �

Lemma 2.4 Let x, s be strictly feasible and σ := σ(x, s;μ). If μ+ := (1 − θ)μ for
0 < θ < 1, then

σ
(
x, s;μ+) ≤ σ + θ

√
n

1 − θ
.

Proof Using σ+ := σ(x, s;μ+), the definition of σ and the triangle inequality, we
have

σ+ =
∥∥∥∥

v2

1 − θ
− e

∥∥∥∥ = 1

1 − θ

∥∥v2 − (1 − θ)e
∥∥ ≤ 1

1 − θ
(σ + θ

√
n). (8)

This proves the lemma. �

From Lemmas 2.3 and 2.4, one can conclude that after one full-Newton step and
one μ update, an upper bound for the proximity measure is

σ
(
x+, s+;μ+) ≤ σ(x+, s+;μ) + θ

√
n

1 − θ
≤ 1

1 − θ

(
(1 + 2κ)

σ 2

2(1 − σ)
+ θ

√
n

)
.

Suppose that the initial iterate (x, s) satisfies σ(x, s;μ) ≤ τ . To restore the condition
σ(x+, s+;μ+) ≤ τ , the following condition for θ should be satisfied

1

1 − θ

(
(1 + 2κ)

τ 2

2(1 − τ)
+ θ

√
n

)
≤ τ. (9)
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Note that in the process of iteration, all the iterates must be strictly feasible. By
Lemma 2.3, an upper bound for τ is as follows:

τ <
2

1 + √
3 + 4κ

.

In this condition, if τ = 1
3(1+2κ)

and θ = 2
11(1+2κ)

√
n

, then (9) holds.

Lemma 2.5 Suppose that x0 and s0 are strictly feasible, and σ(x0, s0;μ0) ≤
1

1+√
3+4κ

with μ0 = (x0)T s0

n
. Let xk and sk be the iterates obtained after k iterations

of Algorithm 1. Then the inequality (xk)T sk ≤ ε is satisfied after at most

k ≥ 1

θ
log

21
20nμ0

ε

iterations.

Proof From (6), (7) and the fact that σ ≤ 1
1+√

3+4κ
, it follows that

(
x+)T

s+ = μeT (e + dxds) = μ
(
n + dT

x ds

)

≤ μ

(
n + σ 2

4(1 − σ)

)
≤ μ

(
n + 1

20

)
≤ 21

20
nμ.

Thus, we have

(
xk

)T
sk ≤ 21

20
nμk = 21

20
n(1 − θ)kμ0.

Then, the inequality (xk)T sk ≤ ε holds if

21

20
n(1 − θ)kμ0 ≤ ε.

Taking logarithms of both sides of the above inequality, we obtain

k log(1 − θ) + log

(
21

20
nμ0

)
≤ ε.

Using the fact that − log(1 − θ) ≥ θ , we observe that the above inequality holds if

kθ ≥ log

(
21

20
nμ0

)
− log ε = log

21
20nμ0

ε
,

and the lemma follows. �

The following theorem gives an upper bound for the total number of iterations
produced by Algorithm 1.
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Theorem 2.1 Let τ = 1
3(1+2κ)

and θ = 2
11(1+2κ)

√
n

. Then, Algorithm 1 requires at
most

O

(
(1 + 2κ)

√
n log

nμ0

ε

)
,

iterations to obtain a solution of P∗(κ)-HLCP.

3 Full-Newton Step Infeasible Interior-Point Method

In the case of an IIPM, we call the pair (x, s) an ε-solution of P∗(κ)-HLCP if the
norm of the residual vector q − Qx − Rs does not exceed ε, and also xT s ≤ ε. As
usual for IIPMs, it is assumed that the initial iterates

(
x0, s0) = (ρpe,ρde) and μ0 = ρdρp, (10)

where ρp and ρd are positive such that

‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd, (11)

for some optimal solution (x∗, s∗).

3.1 The Perturbed Problem

Denote the initial residual vector r0
q as r0

q := q − Qx0 − Rs0. In general, r0
q 	= 0. For

any ν with 0 < ν ≤ 1, we consider the perturbed problem

(Pν) q − Qx − Rs = νr0
q , (x, s) ≥ 0.

Note that if ν = 1, then (x, s) = (x0, s0) yields a strictly feasible solution of (Pν). We
conclude that if ν = 1, then (Pν) is strictly feasible, which means that the perturbed
problem (Pν) satisfies the IPC. More generally, we have the following lemma, whose
proof is similar to the proof of Lemma 3.1 in [18].

Lemma 3.1 Let the original problem (P) be feasible and 0 < ν ≤ 1. Then, the per-
turbed problem (Pν) satisfies the IPC.

Assuming that problem (P) is feasible, it follows from Lemma 3.1 that the problem
(Pν) satisfies the IPC, for each ν ∈ (0,1], and hence its central path exists. This means
that the system

q − Qx − Rs = νr0
q , xs = μe, (x, s) ≥ 0, (12)

has a unique solution, for any μ > 0. For ν ∈ (0,1] and μ = νμ0, we denote this
unique solution as (x(μ, ν), s(μ, ν)). It is the μ-center of (Pν). In what follows,
the parameters μ and ν will always be in one-to-one correspondence, according to
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μ = νμ0. Therefore, we omit one of the parameters and denote the unique solution
by (x(μ), s(μ)).

We measure the proximity to the μ-center of the perturbed problem by the quan-
tity σ(x, s;μ) as defined in (7). Thus, initially x0 = ρpe, s0 = ρde and μ0 = ρpρd ,
whence v0 = e and σ(x0, s0;μ) = 0. In the sequel, it is assumed that at the start of
each iteration, σ(x, s;μ) ≤ τ , where τ is a positive threshold value. This certainly
holds at the start of the first iteration.

3.2 An Iteration of the Algorithm

Now, we describe one main iteration of full-Newton step IIPM, in essence we follow
the same chain of arguments as Roos in [18].

3.2.1 The Main Iteration of the Algorithm

Every main iteration consists of a feasibility step, a μ-update and a few centering
steps. The algorithm begins with an infeasible interior-point (x, s) such that (x, s) is
feasible for the perturbed problem (Pν), with μ = νμ0 and such that σ(x, s;μ) ≤ τ .
With ν replaced by ν+ = (1 − θ)ν, the feasibility step serves to get iterates (xf , sf )

that are strictly feasible for (Pν+), and close to μ+-centers. In fact, the feasibility
step is designed in such a way that σ(xf , sf ;μ+) ≤ 1

1+√
3+4κ

, that is, (xf , sf ) lies

in the quadratic convergence neighborhood with respect to the μ+-center of (Pν+).
Then, just by performing a few centering steps starting at (xf , sf ) and targeting at
the μ+-center of (Pν+), one can easily get iterates (x+, s+) that are strictly feasible
for (Pν+), and such that σ(x+, s+;μ+) ≤ τ .

3.2.2 The Feasibility Step

Here, we describe the feasibility step in details. Suppose that we have strictly feasible
iterate (x, s) for (Pν). This means that (x, s) satisfies the first equation in (12). With ν

replaced by ν+ = (1 − θ)ν, to find new iterates (xf , sf ) feasible for (Pν+), we need
search directions �f x and �f s that satisfy the first equation in the following system

Q�f x + R�f s = θνr0
q ,

x�f s + s�f x = (1 − θ)μe − xs.
(13)

The second equation is inspired by the second equation in the system (2) that we used
to define search directions for the feasible case, except that we target the μ+-centers
of (Pν+).

After the feasibility step the iterates are given by

xf := x + �f x, sf := s + �f s. (14)

We conclude that after the feasibility step, we have iterates (xf , sf ) that satisfy the
affine equation of the new perturbed problem (Pν+). In the analysis, we should also
guarantee that xf and sf are positive and belong to the region of quadratic conver-
gence of its μ+-center. In other words, we must have σ(xf , sf ;μ+) ≤ 1

1+√
3+4κ

.
Proving this is the crucial part in the analysis of the algorithm.
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3.3 Generic Infeasible Interior-Point Algorithm

Here, we summarize the steps of Sect. 3.2 as Algorithm 2 below.

Algorithm 2 : A full-Newton step IIPM.

Input : accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter 0 < τ < 1;

begin
x := ρpe; s := ρde; μ := ρpρd ; ν = 1;

while max(xT s,‖rq‖) > ε do
feasibility step :

(x, s) := (x, s) + (�f x,�f s);
μ and ν − update :

μ := (1 − θ)μ;
ν := (1 − θ)ν;

centering step :
while σ(x, s;μ) > τ do

(x, s) := (x, s) + (�x,�s);
endwhile

endwhile
end.

4 Analysis of the Method

According to (13), after the feasibility step the iterates satisfy the feasibility condition
for (Pν+). The hard part in the analysis will be to guarantee that xf , sf are positive
and to guarantee that the new iterate satisfies σ(xf , sf ;μ+) ≤ 1

1+√
3+4κ

.

4.1 Effect of the Feasibility Step

Let (x, s) be the iterate at the start of an iteration. We define

d
f
x := v�f x

x
, d

f
s := v�f s

s
, (15)

where v is defined in (3). One can easily check that the system (13), which defines
the search directions �f x and �f s, can be expressed in terms of the scaled search
directions d

f
x and d

f
s as follows:

Qd
f
x + Rd

f
s = θνr0

q ,

d
f
x + d

f
s = (1 − θ)v−1 − v,

(16)

where

Q = QXV −1, R = RSV −1.

Using (3) and (15), we may write

xf = x + �f x = x

v

(
v + d

f
x

)
, sf = s + �f s = s

v

(
v + d

f
s

)
.
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Therefore,

xf sf = μ
(
v + d

f
x

)(
v + d

f
s

) = μ
(
v2 + v

(
d

f
x + d

f
s

) + d
f
x d

f
s

)

= μ
(
(1 − θ)e + d

f
x d

f
s

)
. (17)

The proof of the following lemma is similar to the proof of Lemma 4.1 in [27].

Lemma 4.1 The new iterates (xf , sf ) are strictly feasible if (1 − θ)e + d
f
x d

f
s > 0.

Corollary 4.1 The new iterates (xf , sf ) are strictly feasible if ‖df
x d

f
s ‖∞ < 1 − θ .

Proof By Lemma 4.1, (xf , sf ) is strictly feasible if (1 − θ)e + d
f
x d

f
s > 0. Since the

last inequality holds if ‖df
x d

f
s ‖∞ < 1 − θ , the corollary follows. �

In the sequel, we denote

w(v) := 1

2

√∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2
,

which implies ‖df
x ‖ ≤ 2w(v) and ‖df

s ‖ ≤ 2w(v). Moreover, we have

∥∥d
f
x d

f
s

∥∥ ≤ ∥∥d
f
x

∥∥∥∥d
f
s

∥∥ ≤ 1

2

(∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2) = 2w(v)2, (18)

∥∥d
f
x d

f
s

∥∥∞ ≤ ∥∥d
f
x

∥∥∥∥d
f
s

∥∥ ≤ 1

2

(∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2) = 2w(v)2. (19)

Lemma 4.2 The new iterates (xf , sf ) are strictly feasible if w(v) <

√
1−θ

2 .

Proof By Corollary 4.1 and (19), the result easily follows. �

4.2 Upper Bound of σ(vf )

The following lemma gives an upper bound for σ(xf , sf ,μ+). Recall from defini-
tion (5) that

σ
(
vf

) := σ
(
xf , sf ;μ+) = ∥∥e − (

vf
)2∥∥, where vf :=

√
xf sf

μ+ . (20)

Lemma 4.3 Let (xf , sf ) be strictly feasible. Then we have

σ
(
vf

) ≤ 2

1 − θ
w(v)2.

Proof Dividing (17) by μ+ = (1 − θ)μ, we have

xf sf

μ+ = (1 − θ)e + d
f
x d

f
s

1 − θ
= e + d

f
x d

f
s

1 − θ
.
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Hence

σ
(
vf

) = ∥∥e − (
vf

)2∥∥ =
∥∥∥∥e −

(
e + d

f
x d

f
s

1 − θ

)∥∥∥∥ = 1

1 − θ

∥∥d
f
x d

f
s

∥∥ ≤ 2w(v)2

1 − θ
,

where the last inequality follows by (18), and the proof is complete. �

We want the new iterate (xf , sf ) to be within the neighborhood where the Newton
process targeting the μ+-center of (Pν+) is quadratically convergent, that is, σ(vf ) ≤

1
1+√

3+4κ
. According to Lemma 4.3, it suffices to have

w(v)2 ≤ 1 − θ

2(1 + √
3 + 4κ)

. (21)

4.3 Upper Bound for w(v)

In this section, we obtain an upper bound for w(v) which will enable us to find a
default value for θ . For this purpose, consider system (16) which defines the search
directions �f x and �f s in terms of the scaled search directions d

f
x and d

f
s .

Lemma 4.4 (Lemma 3.3 in [28]) If HLCP is P∗(κ), then for any a, b̃ ∈ R
n and any

z = (xT , sT )T ∈ R
2n++ the linear system

Qu + Rv = b̃, su + xv = a,

has a unique solution w := (uT , vT )T and the following inequality is satisfied:

‖w‖z ≤ √
1 + 2κ‖ã‖2 + (1 + √

2 + 4κ)ζ(z, b̃),

where

ã = (xs)−
1
2 a, D = X− 1

2 S
1
2 , ‖w‖2

z = ∥∥(
uT , vT

)T ∥∥2
z
= ‖Du‖2

2 + ‖D−1v‖2
2,

and

ζ(z, b̃)2 = min
{∥∥(

ũT , ṽT
)T ∥∥2

z
: Qũ + Rṽ = b̃

} = b̃T
(
QD−2QT + RD2RT

)−1
b̃.

Due to Lemma 4.4, from system (13) we have

‖D�f x‖2
2 + ‖D−1�f s‖2

2

≤ (√
1 + 2κ

∥∥(xs)−
1
2
(
(1 − θ)μe − xs

)∥∥
2 + (

1 + √
2(1 + 2κ)

)
ζ
(
z, θνr0

q

))2

= (√
1 + 2κ

∥∥√
μ

(
(1 − θ)v−1 − v

)∥∥
2 + (

1 + √
2(1 + 2κ)

)
θνζ

(
z, r0

q

))2

≤
(√

μ(1 + 2κ)
θ
√

n + σ√
1 − σ

+ (
1 + √

2(1 + 2κ)
)
θνζ

(
z, r0

q

))2

. (22)
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Let (x∗, s∗) be the optimal solution of (P) that satisfies (11) and the algorithm starts
with (x0, s0) = (ρpe,ρde). Then, we have

x∗ − x0 ≤ ρpe, s∗ − s0 ≤ ρde, (23)

and also

r0
q = q − Qx0 − Rs0 = Q

(
x∗ − x0) + R

(
s∗ − s0). (24)

Now, by definition of ζ(z, r0
q ), (23) and (25), we have

ζ
(
z, r0

q

)2 ≤ ∥∥D
(
x∗ − x0)∥∥2 + ∥∥D−1(s∗ − s0)∥∥2

≤ ρ2
p‖De‖2 + ρ2

d‖D−1e‖2 = ρ2
p

∥∥∥∥

√
s

x

∥∥∥∥
2

+ ρ2
d

∥∥∥∥

√
x

s

∥∥∥∥
2

≤ ρ2
p

μ

∥∥∥∥
s

v

∥∥∥∥
2

1
+ ρ2

d

μ

∥∥∥∥
x

v

∥∥∥∥
2

1
≤ 1

μ(1 − σ)

(
ρ2

p‖s‖2
1 + ρ2

d‖x‖2
1

)
. (25)

Using D�f x = √
μd

f
x ,D−1�f s = √

μd
f
s , and substituting (25) into (22) and using

the definition of w(v), we obtain

w(v) ≤ 1

2

(√
1 + 2κ

θ
√

n + σ√
1 − σ

+ (1 + √
2(1 + 2κ))θ

μ0

√
ρ2

p‖s‖2
1 + ρ2

d‖x‖2
1

1 − σ

)
. (26)

In the sequel, we obtain upper bounds for ‖x‖1 and ‖s‖1.

Lemma 4.5 (Lemma 12 in [29]) Let (x, s) be feasible for the perturbed problem (Pν)

and (x0, s0) = (ρpe,ρde). Then, for any optimal solution (x∗, s∗), we have

ν
(
sT x0 + xT s0) ≤ (1 + 4κ)

(
ν2(x0)T s0 + ν(1 − ν)

(
(x0)T s∗ + (s0)T x∗) + xT s

)
.

Lemma 4.6 Let (x, s) be feasible for the perturbed problem (Pν) and let (x∗, s∗) be
as defined in (11) and (x0, s0) = (ρpe,ρde). Then, we have

‖x‖1 ≤ (1 + 4κ)(3 + σ)nρp, ‖s‖1 ≤ (1 + 4κ)(3 + σ)nρd.

Proof Since x0 = ρpe, s0 = ρde,‖x∗‖∞ ≤ ‖x∗‖ ≤ ρp and ‖s∗‖∞ ≤ ‖s∗‖ ≤ ρd , we
have

(
x0)T

s∗ + (
s0)T

x∗ ≤ 2nρpρd,
(
x0)T

s0 = nρpρd.

Hence, by Lemma 4.5, we get

sT x0 + xT s0 ≤ (1 + 4κ)

(
nνρpρd + 2(1 − ν)nρpρd + xT s

ν

)

≤ (1 + 4κ)

(
2nρpρd + xT s

ν

)
= (1 + 4κ)

(
2nρpρd + μ0‖v‖2)

≤ (1 + 4κ)
(
2 + (1 + σ)

)
nρpρd.
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Since x and s are positive, we obtain

‖x‖1 ≤ (1 + 4κ)(3 + σ)nρp, ‖s‖1 ≤ (1 + 4κ)(3 + σ)nρd.

This completes the proof. �

Substituting the bounds of ‖x‖1 and ‖s‖1 into (26), we have

w(v) ≤ 1

2

(√
1 + 2κ

θ
√

n + σ√
1 − σ

+ (1 + √
2(1 + 2κ))

√
2(1 + 4κ)(3 + σ)nθ√

1 − σ

)
. (27)

4.4 Fixing θ

From the analysis of inequality (21), we know that if inequality (21) is satisfied then
σ(vf ) ≤ 1

1+√
3+4κ

certainly holds. It follows from (27) that if

1

2

(√
1 + 2κ

θ
√

n + σ√
1 − σ

+ (1 + √
2(1 + 2κ))

√
2(1 + 4κ)(3 + σ)nθ√

1 − σ

)

≤
√

1 − θ

2(1 + √
3 + 4κ)

,

then inequality (21) certainly holds. Note that the left-hand side of the above in-
equality is monotonically increasing with respect to σ . Given a threshold τ , for
σ ≤ τ ≤ 1

1+√
3+4κ

, the above inequality holds if

1

2

(√
1 + 2κ

θ
√

n + τ√
1 − τ

+ (1 + √
2(1 + 2κ))

√
2(1 + 4κ)(3 + τ)nθ√

1 − τ

)

≤
√

1 − θ

2(1 + √
3 + 4κ)

,

holds, then the new iterates (xf , sf ) are strictly feasible and within the quadratic
convergence region. At this stage, we assume that τ = 1

6(1+2κ)
. Substituting τ into

the above inequality, after some calculations, the inequality holds for

θ = 1

20n(1 + 2κ)2
.

Note that, by Lemma 4.2, to keep the iterate (xf , sf ) feasible, the following condition
must be satisfied:

w(v) <

√
1 − θ

2
.

It follows from (27) that the above inequality certainly holds if

1

2

(√
1 + 2κ

θ
√

n + σ√
1 − σ

+ (1 + √
2(1 + 2κ))

√
2(1 + 4κ)(3 + σ)nθ√

1 − σ

)
<

√
1 − θ

2
.
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Using θ = 1
20n(1+2κ)2 and τ = 1

6(1+2κ)
, an upper bound for the left-hand side of in-

equality is 0.4148, while a lower bound for the right-hand side of inequality is 0.6892.
In this case, we conclude that the iterates (xf , sf ) are strictly feasible.

4.5 Iteration Bound

Let σ(xf , sf ;μ+) ≤ 1
3(1+2κ)

, which is in agreement with Corollary 2.1. Starting at

(xf , sf ), we perform centering steps in order to get iterates (x+, s+) that satisfy
δ(x+, s+,μ+) ≤ τ . We can estimate the required number of centering steps by using
Corollary 2.1. Hence, after k centering steps we will have the iterate (x+, s+) that is
still feasible for (Pν+) and satisfies

δ
(
x+, s+;μ+) := δ

(
vk

) ≤ (√
1 + 2κδ

(
vk−1))2

≤ (√
1 + 2κ

[(√
1 + 2κδ

(
vk−2))2])2

...

≤ (
√

1 + 2κ)2+22+23+···+2k

δ
(
vf

)2k = (
√

1 + 2κ)2k+1−2δ
(
vf

)2k

= 1

(
√

1 + 2κ)2

(
(1 + 2κ)δ

(
vf

))2k ≤ (
(1 + 2κ)δ

(
vf

))2k ≤
(

1

3

)2k

.

Hence δ(x+, s+;μ+) ≤ τ will hold if k satisfies ( 1
3 )2k ≤ τ . This implies that at most

⌈
log2

(
log2

1
τ

log2 3

)⌉
(28)

centering steps are needed. Substituting the value of τ = 1
6(1+2κ)

in (28) gives that in

the algorithm at most log2(
log2 6(1+2κ)

log2 3 ) centering steps are need.

In each main iteration, both the value of xT s and the norm of the residual vector
are reduced by the factor of 1 − θ . Hence, the total number of main iterations is
bounded above by

1

θ
log

max{(x0)T s0,‖r0
q‖}

ε
.

Since θ = 1
20n(1+2κ)2 , the total number of inner iterations is bounded above by

20n(1 + 2κ)2 log2

(
log2 6(1 + 2κ)

log2 3

)
log

max{(x0)T s0,‖r0
q‖}

ε
.

In the following, we state our main result without further proof.

Theorem 4.1 If (P) has an optimal solution (x∗, s∗) such that

‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd,
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then after at most

20n(1 + 2κ)2 log2

(
log2 6(1 + 2κ)

log2 3

)
log

max{(x0)T s0,‖r0
q‖}

ε
,

inner iterations, the algorithm finds an ε-optimal solution of (P).

5 Conclusions

Based on a proximity measure, we generalize the full-Newton step infeasible interior
point method for linear optimization of Roos [18] to horizontal linear complementar-
ity problems. Underlined method has many good properties. First, it uses full steps,
so there is no need to calculate the step length. Second, the iterates always lie in the
quadratic convergence neighborhood with respect to some perturbed problems. Third,
during the solution process, both feasibility and optimality are improved at the same
rate. Finally, the iteration bound coincides with the currently best-known iteration
bound for infeasible interior-point methods. An interesting topic for further research
may be the development of the analysis to the linear complementarity problems over
symmetric cones.
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