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Abstract This paper presents a study on solutions to the global minimization of
polynomials. The backward differential flow by the K–T equation with respect to
the optimization problem is introduced to deal with a ball-constrained optimization
problem. The unconstrained optimization is reduced to a constrained optimization
problem which can be solved by a backward differential flow. Some examples are
illustrated with an algorithm for computing the backward flow.
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1 Introduction

In this paper, we focus on finding global minimizers of polynomials of even de-
gree. J. Lasserre [1, 2] showed that if a polynomial of even degree has a global
minimizer inside a closed ball then the global minimum can be approximated as
closely as desired by solving a finite sequence of positive semi-definite programs.
Recently, J. Zhu [3] obtained a ball containing the global minimizers of such a poly-
nomial. In [3], the unconstrained minimization of a polynomial is reduced to some
constrained optimizations. In this paper, when global minimizers of the polynomial
are inside a closed ball, the global minimization of the polynomial is solved by a
backward differential flow.

The paper is organized as follows. In Sect. 2, we briefly mention the main result
in [3] on obtaining a closed ball containing all global minimizers of the polynomial
and reducing the global unconstrained minimization to a constrained optimization
problem. We introduce the backward differential flow by the K–T equation (the K–
T equation is defined by the K-T optimality condition in optimization theory) with
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respect to a ball-constrained optimization problem in Sect. 3. In Sect. 4, we solve the
global minimization of a polynomial by a backward differential flow. Some examples
are provided and an algorithm is given in Sect. 5. In the last section, we present
concluding remarks.

2 The Bounds of Global Minimizers

Given a real-valued polynomial P(x) : Rn −→ R, we are interested in solving the
problem (P ):

P ∗ := min
{
P(x) | x ∈ R

n
}
, (1)

that is, finding the global minimum P ∗ of P(x) and, if possible, a global minimizer
x∗ [1, 2]. In this paper, we focus on the polynomial having the form:

P(x) = x2m
1 + · · · + x2m

n + g(x1, x2, . . . , xn). (2)

where g(x1, x2, . . . , xn) is a real-valued polynomial of degree less than or equal to
2m − 1.

In this section, we briefly introduce the result in [3] for estimating a bounds of
global minimizers.

For a given positive integer m, we pose the constrained optimization as follows:

min J2m(s) :=
∑

{1≤k1,k2,...,k2m≤n}

∂2mP (0)

∂xk1∂xk2 · · · ∂xkl

sk1sk2 · · · sk2m

s.t. ‖s‖2 = s2
1 + s2

2 + · · · + s2
n = 1.

(3)

Let I2m denote the minimum of the optimization problem (3).

Theorem 2.1 ([3]) If I2m > 0, then all global minimizers of problem (1) stay in

‖x‖ < σ2m, where σ2m := max{1,
(2m)!(n+ n2

2! +···+ n2m−1
(2m−1)! )M2m−1

I2m
} and

M2m−1 = max

{∣∣∣∣
∂lP (0)

∂xk1∂xk2 · · · ∂xkl

∣∣∣∣ : 0 ≤ l ≤ 2m − 1;1 ≤ k1, . . . , kl ≤ n

}
. (4)

Clearly, if there is a global minimizer such that ‖x‖ < a for some a > 0, then (1)
is equivalent to the following constrained optimization:

min P(x)

s.t. ‖x‖ ≤ a.
(5)
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3 The Backward Differential Flow

In this section, we introduce the backward differential flow to find the global mini-
mizers to the following optimization problem (P 1):

min P(x)

s.t. x ∈ D := {
x ∈ R

n | ‖x‖ ≤ a
} (6)

where P(x) is a twice continuously differentiable function on R
n.

In what follows, we construct the differential system [4, 5] to deal with the global
optimization (6).

We consider the function P(x) to be twice continuously differentiable in R
n. De-

fine the set

G = {
ρ ≥ 0 | [∇2P(x) + ρI

]
> 0,∀x ∈ D

}
. (7)

Clearly, if ρ̂ ∈ G then ρ ∈ G for ∀ρ ≥ ρ̂.
When there is a pair (ρ̂, x̂) ∈ G × D satisfying the following equation

∇P(x̂) + ρ̂x̂ = 0, (8)

we focus on the flow x̂(ρ) which is well-defined near ρ̂ by the initial value problem

dx̂

dρ
+ [∇2P(x̂) + ρI

]−1
x̂ = 0, (9)

x̂(ρ̂) = x̂. (10)

As long as the ∇2P(x̂(ρ))+ρI > 0, by the theory of ordinary differential equations,
the flow x̂(ρ) can be extended for ρ in an interval I ⊂ [0,+∞[. The dual function
with respect to the given flow x̂(ρ) is defined as follows:

Pd(ρ) = P
(
x̂(ρ)

) + ρ

2

[
x̂T (ρ)x̂(ρ) − a2]. (11)

Lemma 3.1 For a given flow defined by (9) and (10), we have

dPd(ρ)

dρ
= 1

2
x̂T (ρ)x̂(ρ) − a2

2
, (12)

d2Pd(ρ)

dρ2
= −

(
dx̂(ρ)

dρ

)T [∇2P
(
x̂(ρ)

) + ρI
]dx̂(ρ)

dρ
. (13)

Proof Since Pd(ρ) is differentiable,

dPd(ρ)

dρ
= dP (x̂(ρ))

dρ
+ 1

2
x̂T (ρ)x̂(ρ) + 1

2
ρ

d(x̂T (ρ)x̂(ρ))

dρ
− a2

2

= ∇P
(
x̂(ρ)

)d(x̂(ρ))

dρ
+ 1

2
x̂T (ρ)x̂(ρ) + 1

2
ρ

d(x̂T (ρ)x̂(ρ))

dρ
− a2

2



J Optim Theory Appl (2014) 161:828–836 831

= −ρx̂T (ρ)
d(x̂(ρ))

dρ
+ 1

2
x̂T (ρ)x̂(ρ) + 1

2
ρ

d(x̂T (ρ)x̂(ρ))

dρ
− a2

2

= −1

2
ρ

d(x̂T (ρ)x̂(ρ))

dρ
+ 1

2
x̂T (ρ)x̂(ρ) + 1

2
ρ

d(x̂T (ρ)x̂(ρ))

dρ
− a2

2

= 1

2
x̂T (ρ)x̂(ρ) − a2

2
.

Further, since P(x) is twice continuously differentiable, by (12) we have

d2Pd(ρ)

dρ2
= x̂T (ρ)

dx̂(ρ)

dρ

= −
(

dx̂(ρ)

dρ

)T [∇2P
(
x̂(ρ)

) + ρI
]dx̂(ρ)

dρ
. �

Lemma 3.2 Let x̂(ρ) be a given flow defined by (9) and (10), and let Pd(ρ) be the

corresponding dual function defined by (11). We have: (i) For every ρ ∈ G, d2Pd(ρ)

dρ2 ≤
0; (ii) If ρ̂ ∈ G, then dPd(ρ)

dρ
monotonously decreases in [ρ̂,+∞[; (iii) If ρ̂ ∈ G, in

]ρ̂,+∞[, Pd(ρ) is monotonously decreasing.

Proof When ρ ∈ G, by the definition of G, we have ∇2P(x̂(ρ)) + ρI > 0. It

follows from (13) that d2Pd(ρ)

dρ2 ≤ 0. Consequently, by Lemma 3.1, we see that
dPd(ρ)

dρ
monotonously decreases in [ρ̂,+∞[ when ρ̂ ∈ G. Finally, since x̂(ρ̂) ∈ D,

dPd(ρ̂)
dρ

≤ 0 by (12). It follows from ρ̂ ∈ G that dPd(ρ)
dρ

≤ 0 in [ρ̂,+∞) because dPd(ρ)
dρ

monotonously decreases. Thus, Pd(ρ) is monotonously decreasing in ]ρ̂,+∞[. �

Definition 3.1 Let x̂(ρ) be a flow defined by (9) and (10). We call x̂(ρ), ρ ∈ [0, ρ̂] the
backward differential flow iff x̂(ρ) is well-defined on [0, ρ̂] such that ∇2P(x̂(ρ)) +
ρI > 0 on [0, ρ̂].

In other words, the backward differential flow x̂(ρ), ρ ∈]0, ρ̂] is the solution
which solves (9) backwards from ρ̂.

4 Finding a Global Minimizer by the Backward Differential Flow

In this section, we use the backward differential flow to find a global minimizer of
the function P(x) in (6) over D. Since D is a closed ball with the center at the origin
of Rn and P(x) is twice continuously differentiable, we can choose a large positive
parameter ρ∗ such that ∇2P(x) + ρ∗I > 0, ∀x ∈ D and ρ∗ > supD{‖∇2P(x)‖}. If

∇P(0) �= 0, noting that ‖∇2P(x)
ρ∗ ‖ < 1 uniformly on D, then there is a unique nonzero

fixed point x∗ ∈ D such that

−∇P(x∗)
ρ∗ = x∗ (14)
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by Brown’s fixed-point theorem [6]. It means that, for the pair (x∗, ρ∗),

∇P
(
x∗) + ρ∗x∗ = 0, ∇2P(x) + ρ∗I > 0, ∀x ∈ D. (15)

We solve

dx̂(ρ)

dρ
+ [∇2P

(
x̂(ρ)

) + ρI
]−1

x̂(ρ) = 0, (16)

x̂
(
ρ∗) = x∗ (17)

backwards from ρ∗ to get the flow x̂(ρ), ρ ∈ [0, ρ∗].
By Theorem 2.1 in Sect. 2, we can take a positive real a such that all global

minimizers of P(x) over Rn staying inside ‖x‖ < a. Particularly, there is no global
minimizer of P(x) on the boundary ‖x‖ = a.

In the following, we assume that ∇P(0) �= 0. If this is not the case, we can carry
out a coordinate conversion by selecting a vector z with ‖z‖ < a to make the function
Q(y) := P(y + z) such that ∇Q(0) = ∇P(z) �= 0 and get a bound b > 0 such that
a+‖z‖ < b. It follows that the global minimizers of Q(y) are all inside ‖y‖ < b since
the global minimizers of P(x) are all inside ‖x‖ < a. In fact, if Q(y) has a global
minimizer ȳ such that ‖ȳ‖ ≥ b, then x̄ := ȳ + z is a global minimizer of P(x) since
for every x ∈ R

n and y = x − z, P(x) = P(y + z) = Q(y) ≥ Q(ȳ) = P(ȳ + z) =
P(x̄). But ‖x̄‖ ≥ ‖ȳ‖ − ‖z‖ ≥ b − ‖z‖ > a. It contradicts to the fact that all global
minimizers of P(x) over Rn stay inside ‖x‖ < a.

By (16), when ∇2P(x̂(ρ)) + ρI > 0,

d(∇P(x̂(ρ)) + ρx̂(ρ))

dρ
= [∇2P

(
x̂(ρ)

) + ρI
]dx̂(ρ)

dρ
+ x̂(ρ) = 0, (18)

it follows from (15) and (17) that along the flow x̂(ρ)

∇P
(
x̂(ρ)

) + ρx̂(ρ) = 0. (19)

If the flow x̂(ρ) can be extended backwards to ρ = 0, then we have ∇P(x̂(0)) = 0.
In the following, we assume that the backward flow x̂(ρ) can be well defined on
[0, ρ∗].
Theorem 4.1 If the backward flow x̂(ρ) is located in ‖x‖ < a and on D, ∇2P(x) +
ρI > 0 holds on ]0, ρ∗], then x̂(0) is a global minimizer of P(x) over Rn.

Proof Since the backward flow x̂(ρ) is located in ‖x‖ < a and on D, ∇2P(x)+ρI >

0 holds on ]0, ρ∗], the dual function Pd(ρ) is well defined. It follows from Lemma 3.2
that Pd(ρ) is concave and monotonously decreasing on [0, ρ∗]. By the Lagrange
duality theory [5], from Lemma 3.1, we have

min
D

P (x) ≥ max
ρ∈[0,ρ∗]

Pd(ρ). (20)

Because Pd(ρ) is monotonously decreasing on [0, ρ∗],
Pd(0) = max

ρ∈[0,ρ∗]
Pd(ρ). (21)
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Thus for every x ∈ D

P(x) ≥ Pd(0) = P
(
x̂(0)

) + 0

2

(
x̂T (0)x̂(0) − a2) = P

(
x̂(0)

)
. (22)

Consequently, x̂(0) is a global minimizer of P(x) over D. Noting that the ball D con-
tains a global minimizer of P(x) over Rn, we deduce that x̂(0) is a global minimizer
of P(x) over Rn. �

5 Examples

Example 5.1 Let us take a look at the polynomial which is non-convex on R:

P(x) = x4

4
+ x3

3
− x2 − 2x. (23)

Consider the global optimization problem

min
{
P(x) | x ∈ R

1}. (24)

By Sect. 2, we may get bounds of the global minimizer of P(x) over R:

σ2m = max

{
1,

(2m)!(n + n2

2! + · · · + n2m−1

(2m−1)! )M2m−1

I2m

}

= 4!(1 + 1
2! + 1

3! )2
24

= 10

3

with

M3 = max{2,2,2,0} = 2 (25)

and

I4 = 4!min
{
s4

1 : s2
1 = 1

} = 24. (26)

The global optimization problem is equivalent to

min P(x)

s.t. ‖x‖ ≤ 10

3
.

(27)

Let us solve it with following steps:

Step 1. Choose ρ∗ = 100 and solve the equation

x3 + x2 − 2x − 2 + ρ∗x = 0

to get the unique real root x∗ = 0.0204 by using Matlab.
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Step 2. Solve the backward differential equation

dx

dt
= −x

3x2 + 2x − 2 + t
, x(100) = 0.0204,

with Matlab to get the value of its solution at t = 0

x̂(0) = 1.4141,

which is just an approximation to the global minimizer of problem (24).

Remark 5.1 By the statement in the first paragraph of Sect. 4, here we select ρ∗ = 100
due to an estimation

max
‖x‖≤ 10

3

{∥∥P ′′(x)
∥∥}

< 100.

Using Matlab, the backward differential equation gives the unique flow x̂(t) which
implies that

3x̂2(t) + 2x(t) − 2 + t > 0, t ∈ [0,100].

We see that x̂2(0) < 2.0164 < 10
3 . By Lemma 3.2, x̂2(t) is monotonously decreasing

on [0,100]. Thus the backward flow x̂(t) can be extended in [0,100] and kept such
that ‖x‖ ≤ 10

3 . By Theorem 4.1, x̂(0) is a global minimizer of problem (24).

Example 5.2 Consider the polynomial P(x) on R
2:

P(x) = x4
1 + x4

2 + 3x2
1 + 3x2

2 + 2x1x2 + 2x1 + 2x2 + 3. (28)

In this example, we discuss the global optimization problem

P ∗ := min
{
P(x) | x ∈ R

2}. (29)

Noting that, P ∗ = min{P(x) | x ∈ R
2} ≈ 2.5074,pmom ≈ −0.4926 (where pmom

stands for the lower bound of P ∗ by the moment relaxations [1]), it is shown in [1]
by J. Lasserre that the polynomial P(x)−P ∗ is not a sum of squares ([1], see Exam-
ple 1). Thus, it follows from the statement of M. Laurent (p. 113 in [7]) that the global
optimal value of this polynomial cannot be found by Lasserre’s SDP relaxation with
a finite relaxation order.

In the following, we solve the unconstrained optimization problem (29) by a back-
ward differential flow.

We may get the bound of the global minimizer of P(x) over R2 as follows. Noting
that n = m = 2, with

M3 = max{6,2,2,3} = 6 (30)

and

I4 = 4!min
{
s4

1 + s4
2 : s2

1 + s2
1 = 1

} = 12, (31)
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we have the bound

σ2m = max

{
1,

(2m)!(n + n2

2! + · · · + n2m−1

(2m−1)! )M2m−1

I2m

}

= 4!(2 + 22

2! + 23

3! )6
12

= 64.

The global optimization problem is equivalent to

min P(x)

s.t. ‖x‖ ≤ 64.
(32)

Using the method of the backward flow, we solve the global optimization problem
(29) with the following steps:

Step 1. Choose ρ∗ = 1000 and solve the system of equations

4x3
1 + 6x1 + 2x2 + 2 + 1000x1 = 0,

4x3
2 + 6x2 + 2x1 + 2 + 1000x2 = 0

to get the unique real root x∗
1 ≈ −0.00198, x∗

2 ≈ −0.00198 by using Matlab.
Step 2. Solve the backward differential equation

ẋ1 = 2x2 − x1(12x2
2 + 6 + ρ)

(12x2
1 + 6 + ρ)(12x2

2 + 6 + ρ) − 4
,

ẋ2 = 2x1 − x2(12x2
1 + 6 + ρ)

(12x2
1 + 6 + ρ)(12x2

2 + 6 + ρ) − 4
,

x1(1000) = −0.00198, x2(1000) = −0.00198

with Matlab to get the value of its solution at ρ = 0

x1(0) = −0.2428, x2(0) = −0.2428,

which is the global minimizer of problem (29).

Remark 5.2 For solving the differential equations which have no easy solutions, we
present an algorithm as follows. To compute the backward differential flow, we use
the following discrete format for �ρ > 0 and �ρ < ρ ≤ ρ∗,

x̂(ρ − �ρ) = x̂(ρ) + �ρ
(∇2P

(
x̂(ρ)

) + ρI
)−1

x̂(ρ).

Algorithm 5.1

Step 1. Given reals ε,μ > 0 and a positive integer N , choose ρ∗>maxD{‖∇2P(x)‖}.
Let h = ρ∗

N
.
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Step 2. Compute x∗ solving ∇P(x) + ρ∗x = 0. Denote xN = x∗.
Step 3. For i = 1,2, . . . ,N , ρi = ih. If ∇2P(xi) + ρiI > μI , then compute

xi−1 = xi + h
(∇2P(xi) + ρiI

)−1
xi.

Step 4. The case of i > 1: If ‖∇P(xi−1) + ρi−1xi−1‖ ≤ ε, then take i = i − 1 and
go to Step 3. If

∥∥∇P(xi−1) + ρi−1xi−1
∥∥ > ε,

then take N = 10N and go to Step 1.
Step 5. The case of i = 1: If ‖∇P(x0) + ρ0x0‖ > ε, then take N = 10N and go to

Step 1. If ‖∇P(x0)+ρ0x0‖ ≤ ε, then x0 is an approximation to a global minimizer.

To compute the global minimizer of problem (5) in Example 5.1, we choose D =
{|x| ≤ 10

3 }, ρ∗ = 100, ε = 10−4, μ = 10−2, and N = 1000. By using the algorithm
above, we obtain the global minimizer x̂(0) = 1.4141.

6 Conclusions

In this paper, a new approach to global optimization of polynomials is presented. We
focus on finding solutions to a class of problems with polynomials of even degree,
which is an important objective in the research of global optimization. As the first
step of this approach, we convert the original unconstrained optimization problem to
a ball-constrained optimization problem. Then a differential equation is established
by the K–T equation with the ball-constrained nonlinear programming. The main
contribution is the development of the constructive backward differential flow which
can be effectively used for finding a global minimizer. The numerical algorithm for
computing the flow developed in this work is based on the Euler’s method and the
K–T equality. This is also an attempt to deal with global optimization by using a
differential system. Further research on the backward differential flow is needed for
it to be applicable when solving other global optimization problems.
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