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Abstract In this paper, we present two Douglas–Rachford inspired iteration schemes
which can be applied directly to N -set convex feasibility problems in Hilbert space.
Our main results are weak convergence of the methods to a point whose nearest point
projections onto each of the N sets coincide. For affine subspaces, convergence is
in norm. Initial results from numerical experiments, comparing our methods to the
classical (product-space) Douglas–Rachford scheme, are promising.

Keywords Douglas–Rachford method · Convex feasibility problem · Projections ·
Firmly nonexpansive map · Nonexpansive map · Asymptotic regularity · Fixed
points · Parallelization

1 Introduction

Given N closed and convex sets with nonempty intersection, the N -set convex fea-
sibility problem asks for a point contained in the intersection of the N sets. Many
optimization and reconstruction problems can be cast in this framework, either di-
rectly or as a suitable relaxation if a desired bound on the quality of the solution is
known a priori.

A common approach to solving N -set convex feasibility problems is the use of
projection algorithms. These iterative methods assume that the projections onto each
of the individual sets are relatively simple to compute. Some well known projection
methods include von Neumann’s alternating projection method [1–8], the Douglas–
Rachford method [9–11] and Dykstra’s method [12–14]. Of course, there are many
variants. For a review, we refer the reader to any of [15–20].
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On certain classes of problems, various projection methods coincide with each
other, and with other known techniques. For example, if the sets are closed affine sub-
spaces, alternating projections = Dykstra’s method [13]. If the sets are hyperplanes,
alternating projections = Dykstra’s method = Kaczmarz’s method [17]. If the sets
are half-spaces, alternating projections = the method Agmon, Motzkin and Schoen-
berg (MAMS), and Dykstra’s method = Hildreth’s method [19, Chap. 4]. Applied
to the phase retrieval problem, alternating projections = error reduction, Dykstra’s
method = Fienup’s BIO, and Douglas–Rachford = Fienup’s HIO [21].

Continued interest in the Douglas–Rachford iteration is in part due to its
excellent—if still largely mysterious—performance on various problems involving
one or more non-convex sets. For example, in phase retrieval problems arising in
the context of image reconstruction [21, 22]. The method has also been successfully
applied to NP-complete combinatorial problems including Boolean satisfiability [23,
24] and Sudoku [23, 25]. In contrast, von Neumann’s alternating projection method
applied to such problems often fails to converge satisfactorily. For progress on the
behaviour of non-convex alternating projections, we refer the reader to [26–29].

Recently, Borwein and Sims [30] provided limited theoretical justification for non-
convex Douglas–Rachford iterations, proving local convergence for a prototypical
Euclidean case involving a sphere and an affine subspace. For the two-dimensional
case of a circle and a line, Borwein and Aragón [31] were able to give an explicit
region of convergence. Even more recently, a local version of firm nonexpansivity
has been utilized by Hesse and Luke [28] to obtain local convergence of the Douglas–
Rachford method in limited non-convex settings. Their results do not directly overlap
with the work of Aragón, Borwein and Sims (for details see [28, Example 43]).

Most projection algorithms can be extended in various natural ways to the N -set
convex feasibility problem without significant modification. An exception is the
Douglas–Rachford method, for which only the theory of 2-set feasibility problems
has so far been successfully investigated. For applications involving N > 2 sets, an
equivalent 2-set feasibility problem can, however, be posed in a product space. We
shall revisit this later in our paper.

The aim of this paper is to introduce and study the cyclic Douglas–Rachford and
averaged Douglas–Rachford iteration schemes. Both can be applied directly to the
N -set convex feasibility problem without recourse to a product space formulation.

The paper is organized as follows: In Sect. 2, we give definitions and preliminaries.
In Sect. 3, we introduce the cyclic and averaged Douglas–Rachford iteration schemes,
proving in each case weak convergence to a point whose projections onto each of the
constraint sets coincide. In Sect. 4, we consider the important special case when the
constraint sets are affine. In Sect. 5, the new cyclic Douglas–Rachford scheme is
compared, numerically, to the classical (product-space) Douglas–Rachford scheme
on feasibility problems having ball or sphere constraints. Initial numerical results for
the cyclic Douglas–Rachford scheme are quite positive.
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2 Preliminaries

Throughout this paper,

H is a real Hilbert space with inner product 〈·, ·〉

and induced norm ‖ · ‖. We use
w.
⇀ to denote weak convergence.

We consider the N -set convex feasibility problem:

Find x ∈
N⋂

i=1

Ci �= ∅ where Ci ⊆ H are closed and convex. (1)

Given a set S ⊆ H and point x ∈ H, the best approximation to x from S is a point
p ∈ S such that

‖p − x‖ = d(x,S) := inf
s∈S

‖x − s‖.

If for every x ∈ H there exists such a p, then S is said to be proximal. Additionally,
if p is always unique then S is said to be Chebyshev. In the latter case, the projection
onto S is the operator PS : H → S which maps x to its unique nearest point in S and
we write PS(x) = p. The reflection about S is the operator RS : H → H defined by
RS := 2PS − I where I denotes the identity operator which maps any x ∈H to itself.

Fact 2.1 Let C ⊆ H be non-empty closed and convex. Then:

1. C is Chebyshev.
2. (Characterization of projections)

PC(x) = p ⇐⇒ p ∈ C and 〈x − p, c − p〉 ≤ 0 for all c ∈ C.

3. (Characterization of reflections)

RC(x) = r ⇐⇒ 1

2
(r + x) ∈ C and 〈x − r, c − r〉 ≤ 1

2
‖x − r‖2

for all c ∈ C.

4. (Translation formula) For y ∈H, Py+C(x) = y + PC(x − y).
5. (Dilation formula) For 0 �= λ ∈R, PλC(x) = λPC(x/λ).
6. If C is a subspace then PC is linear.
7. If C is an affine subspace then PC is affine.

Proof See, for example, [32, Theorem 3.14, Proposition 3.17, Corollary 3.20], [19,
Theorem 2.8, Exercise 5.2(i), Theorem 3.1, Exercise 5.10] or [18, Theorems 2.1.3
and 2.1.6]. Note the equivalence of (ii) and (iii) by substituting r = 2p − x. �
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Given A,B ⊆ H we define the 2-set Douglas–Rachford operator TA,B : H → H
by

TA,B := I + RBRA

2
. (2)

Note that TA,B and TB,A are typically distinct, while for an affine set A we have
TA,A = I .

The basic Douglas–Rachford algorithm originates in [9] and convergence was
proven as part of [10].

Theorem 2.1 (Douglas–Rachford [9], Lions–Mercier [10]) Let A,B ⊆ H be closed
and convex with nonempty intersection. For any x0 ∈ H, the sequence T n

A,Bx0 con-
verges weakly to a point x such that PAx ∈ A ∩ B .

Theorem 2.1 gives an iterative algorithm for solving 2-set convex feasibility prob-
lems. For applications involving N > 2 sets, an equivalent 2-set formulation is posed
in the product space HN . This is discussed in detail in Remark 3.4.

Let T : H → H. We recall that T is asymptotically regular if T nx − T n+1x → 0,
in norm, for all x ∈H. We denote the set of fixed points of T by FixT = {x : T x = x}.
Let D ⊆ H and T : D →H. We say T is nonexpansive if

‖T x − Ty‖ ≤ ‖x − y‖ for all x, y ∈ D

(i.e. 1-Lipschitz). We say T is firmly nonexpansive if

‖T x − Ty‖2 + ∥∥(I − T )x − (I − T )y
∥∥2 ≤ ‖x − y‖2 for all x, y ∈ D.

It immediately follows that every firmly nonexpansive mapping is nonexpansive.

Fact 2.2 Let A,B ⊆ H be closed and convex. Then PA is firmly nonexpansive, RA is
nonexpansive and TA,B is firmly nonexpansive.

Proof See, for example, [32, Proposition 4.8, Corollary 4.10, Remark 4.24], or [18,
Theorem 2.2.4, Corollary 4.3.6]. �

The class of nonexpansive mappings is closed under convex combinations, com-
positions, etc. The class of firmly nonexpansive mappings is, however, not so well
behaved. For example, even the composition of two projections onto subspaces need
not be firmly nonexpansive (see [5, Example 4.2.5]).

A sufficient condition for firmly nonexpansive operators to be asymptotically reg-
ular is the following.

Lemma 2.1 Let T : H → H be firmly nonexpansive with FixT �= ∅. Then T is
asymptotically regular.

Proof See, for example, [33, Corollary 1], [18, Lemma 4.3.5] or [34, Corollary 1.1,
Proposition 2.1]. �
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The composition of firmly nonexpansive operators is always nonexpansive. How-
ever, nonexpansive operators need not be asymptotically regular. For example, reflec-
tion with respect to a singleton, clearly is not; nor are most rotations. The following
is a sufficient condition for asymptotic regularity.

Lemma 2.2 Let Ti : H → H be firmly nonexpansive, for each i, and define T :=
Tr · · ·T2 T1. If FixT �= ∅ then T is asymptotically regular.

Proof See, for example, [32, Theorem 5.22]. �

Remark 2.1 Recently Bauschke, Martín-Márquez, Moffat and Wang [35, Theo-
rem 4.6] showed that any composition of firmly nonexpansive, asymptotically regular
operators is also asymptotically regular, even when FixT = ∅.

The following lemma characterizes fixed points of certain compositions of firmly
nonexpansive operators.

Lemma 2.3 Let Ti : H → H be firmly nonexpansive, for each i, and define T :=
Tr . . . T2 T1. If

⋂r
i=1 FixTi �= ∅ then FixT = ⋂r

i=1 FixTi .

Proof See, for example, [32, Corollary 4.37] or [34, Proposition 2.1, Lemma 2.1]. �

There are many way to prove Theorem 2.1. One is to use the following well-known
theorem of Opial [36].

Theorem 2.2 (Opial) Let T : H → H be nonexpansive, asymptotically regular, and
FixT �= ∅. Then for any x0 ∈ H, T nx0 converges weakly to an element of FixT .

Proof See also, for example, [36] or [32, Theorem 5.13]. �

In addition, when T is linear, the limit can be identified and convergence is in
norm.

Theorem 2.3 Let T : H → H be linear, nonexpansive and asymptotically regular.
Then for any x0 ∈H, in norm,

lim
n→∞T nx0 = PFixT x0.

Proof See, for example, [32, Proposition 5.27]. �

Remark 2.2 A version of Theorem 2.3 was used by Halperin [2] to show that von
Neumann’s alternating projection, applied to finitely many closed subspaces, con-
verges in norm to the projection on the intersection of the subspaces.1

1Kakutani had earlier proven weak convergence for finitely many subspaces [37]. Von Neumann’s original
two-set proof does not seem to generalize.
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Summarizing we have the following:

Corollary 2.1 Let Ti : H → H be firmly nonexpansive, for each i, with
⋂r

i=1 FixTi �=
∅ and define T := Tr · · ·T2T1. Then for any x0 ∈H, T nx0 converges weakly to an ele-
ment of FixT = ⋂N

i=1 FixTi . Moreover, if T is linear, then T nx0 converges, in norm,
to PFixT x0.

Proof Since T is the composition of nonexpansive operators, T is nonexpansive. By
Lemma 2.3, FixT �= ∅. By Lemma 2.2, T is asymptotically regular. The result now
follows by Theorems 2.2 and 2.3. �

We note that the verification of many results in this section can be significantly
simplified for the special cases we require.

3 Cyclic Douglas–Rachford Iterations

We are now ready to introduce our first new projection algorithm, the cyclic Douglas–
Rachford iteration scheme. Let C1,C2, . . . ,CN ⊆ H and define T[C1 C2 ...CN ] : H →
H by

T[C1 C2 ...CN ]

:= TCN,C1TCN−1,CN
· · ·TC2,C3TC1,C2

=
(

I + RC1RCN

2

)(
I + RCN

RCN−1

2

)
· · ·

(
I + RC3RC2

2

)(
I + RC2RC1

2

)
.

Given x0 ∈H, the cyclic Douglas–Rachford method iterates by repeatedly setting

xn+1 = T[C1 C2 ...CN ]xn.

Remark 3.1 In the two set case, the cyclic Douglas–Rachford operator becomes

T[C1 C2] = TC2,C1TC1,C2 =
(

I + RC1RC2

2

)(
I + RC2RC1

2

)
.

That is, it does not coincide with the classic Douglas–Rachford scheme.

Where there is no ambiguity, we take indices modulo N,

and abbreviate TCi,Cj
by Ti,j , and T[C1 C2 ...CN ] by T[1 2 ...N ].

In particular, T0,1 := TN,1, TN,N+1 := TN,1,C0 := CN and CN+1 := C1.
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Recall the following characterization of fixed points of the Douglas–Rachford op-
erator.

Lemma 3.1 Let A,B ⊆ H be closed and convex with nonempty intersection. Then

PA FixTA,B = A ∩ B.

Proof See, for example, [21, Fact A1] or [11, Corollary 3.9]. �

We are now ready to present our main result regarding convergence of the cyclic
Douglas–Rachford scheme.

Theorem 3.1 (Cyclic Douglas–Rachford) Let C1,C2, . . . ,CN ⊆ H be closed and
convex sets with a nonempty intersection. For any x0 ∈ H, the sequence T n

[1 2 ...N ]x0
converges weakly to a point x such that PCi

x = PCj
x, for all indices i, j . Moreover,

PCj
x ∈ ⋂N

i=1 Ci , for each index j .

Proof By Fact 2.2, Ti,i+1 is firmly nonexpansive, for each i. Further,

N⋂

i=1

FixTi,i+1 ⊇
N⋂

i=1

Ci �= ∅.

By Corollary 2.1, T n
[1 2 ...N ]x0 converges weakly to a point x ∈ FixT[1 2 ...N ] =

⋂N
i=1 FixTi,i+1. By Lemma 3.1, PCi

x ∈ Ci+1, for each i. Now we compute

1

2

N∑

i=1

‖PCi
x − PCi−1x‖2

= 〈x,0〉 + 1

2

N∑

i=1

(‖PCi
x‖2 − 2〈PCi

x,PCi−1x〉 + ‖PCi−1x‖2)

=
〈
x,

N∑

i=1

(PCi−1x − PCi
x)

〉
−

N∑

i=1

〈PCi
x,PCi−1x〉 +

N∑

i=1

‖PCi
x‖2

=
N∑

i=1

〈x − PCi
x,PCi−1x − PCi

x〉 Fact 2.1≤ 0.

Thus, PCi
x = PCi−1x, for each i; and we are done. �

Again by invoking Opial’s theorem, a more general version of Theorem 3.1 can
be abstracted.

Theorem 3.2 Let C1,C2, . . . ,CN ⊆ H be closed and convex sets with nonempty
intersection, let Tj : H → H, for each j , and define T := TN · · ·T2T1. Suppose the
following three properties hold.
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1. T = TM · · ·T2T1, is nonexpansive and asymptotically regular,
2. FixT = ⋂M

j=1 FixTj �= ∅,
3. PCj

FixTj ⊆ Cj+1, for each j .

Then, for any x0 ∈ H, the sequence T nx0 converges weakly to a point x such that
PCi

x = PCj
x for all i, j . Moreover, PCj

x ∈ ⋂N
i=1 Ci , for each j .

Proof By Theorem 2.2, T nx0 converges weakly to point x ∈ FixT . The remainder
of the proof is the same as Theorem 3.1. �

Remark 3.2 We give a sample of examples of operators which satisfy the three con-
ditions of Theorem 3.2.

1. T[A1 A2 ...AM ] where Aj ∈ {C1,C2 , . . . ,CN }, and is such that each Ci appear in the
sequence A1,A2, . . . ,AM at least once.

2. T is any composition of PC1 ,PC2 , . . . ,PCN
, such that each projection appears

in said composition at least once. In particular, setting T = PCN
· · ·PC2PC1 we

recover Bregman’s seminal result [3].
3. Tj = (I + Pj )/2 where Pj is any composition of PC1 ,PC2 , . . . ,PCN

such that,
for each i, there exists a j such that Pj = PCi

Qj for some composition of projec-
tions Qj . A special case is,

T =
(

I + PC1PCN

2

)
· · ·

(
I + PC3PC2

2

)(
I + PC2PC1

2

)
.

4. If T1, T2 . . . , TM are operators satisfying the conditions of Theorem 3.2, replacing
Tj with the relaxation αj I + (1 − αj )Tj where αj ∈]0,1/2], for each i. Note the
relaxations are firmly nonexpansive [32, Remark 4.27].

Of course, there are many other applicable variants. For instance, Krasnoselski–
Mann iterations (see [32, Theorem 5.14] and [38]).

We now investigate the cyclic Douglas–Rachford iteration in the special-but-
common case where the initial point lies in one of the target sets; most especially
the first target set.

Corollary 3.1 Let C1,C2, . . . ,CN ⊆ H be closed and convex sets with a nonempty
intersection. If y ∈ Ci then Ti,i+1y = PCi+1y. In particular, if x0 ∈ C1, the cyclic
Douglas–Rachford trajectory coincides with that of von Neumann’s alternating pro-
jection method.

Proof For any y ∈ H, Ti,i+1y = PCi+1y ⇐⇒ RCi+1y = RCi+1RCi
y. If y ∈ Ci then

RCi
y = y. In particular, if x0 ∈ C1 then

T[1 2 ...N ]x0 = TN,1 · · ·T2,3T1,2y = PC1PCN
· · ·PC2x0 ∈ C1,

and the result follows. �
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Fig. 1 An interactive
Cinderella applet showing a
cyclic Douglas–Rachford
trajectory differing from von
Neumann’s alternating
projection method. Each green
dot represents a 2-set
Douglas–Rachford iteration
(Color figure online)

Remark 3.3 If x0 �∈ C1, then the cyclic Douglas–Rachford trajectory need not coin-
cide with von Neumann’s alternating projection method. We give an example involv-
ing two closed subspaces with codimension 1 (see Fig. 1). Define

C1 := {
x ∈H : 〈a1, x〉 = 0

}
, C2 := {

x ∈H : 〈a2, x〉 = 0
}
,

where a1, a2 ∈ H such that 〈a1, a2〉 �= 0. By scaling if necessary, we may assume that
‖a1‖ = ‖a2‖ = 1. Then one has,

PC1x = x − 〈a1, x〉a1, PC2x = x − 〈a2, x〉a2,

and

T1,2x = x + 2PC2PC1x − (PC1x + PC2x)

= x − 〈a1, x〉a1 − 〈a2, x〉a2 + 2〈a1, a2〉〈a1, x〉a2.

Similarly,

T2,1x = x − 〈a1, x〉a1 − 〈a2, x〉a2 + 2〈a1, a2〉〈a2, x〉a1.

By Remark 4.1,

2〈a1, T[1 2]x〉 = 〈a1, T1,2x〉 + 〈a1, T2,1x〉
= 〈a1, x〉 − 〈a1, x〉‖a1‖2 − 〈a2, x〉〈a2, a1〉 + 2〈a1, a2〉2〈a1, x〉

+ 〈a1, x〉 − 〈a1, x〉‖a1‖2 − 〈a2, x〉〈a2, a1〉 + 2〈a1, a2〉〈a2, x〉
= 2〈a1, a2〉2〈a1, x〉.

Hence, 〈a1, T[1 2]x〉 = 〈a1, a2〉2〈a1, x〉. Similarly, 〈a2, T[1 2]x〉 = 〈a1, a2〉2〈a2, x〉.
Thus, if 〈ai, x〉 �= 0, for each i, then 〈ai, T[1 2]x〉 �= 0, for each i. In particular, if

x0 �∈ C1 ∪ C2, then none of the cyclic Douglas–Rachford iterates lie in C1 or C2.
A second example, involving a ball and an affine subspace is illustrated in Fig. 2.
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Fig. 2 An interactive
Cinderella applet showing a
cyclic Douglas–Rachford
trajectory differing from von
Neumann’s alternating
projection method. Each green
dot represents a 2-set
Douglas–Rachford iteration
(Color figure online)

Remark 3.4 (A product version) We now consider the classical product formulation
of (1). Define two subsets of HN :

C :=
N∏

i=1

Ci, D := {
(x, x, . . . , x) ∈HN : x ∈H

}
, (3)

which are both closed and convex (in fact, D is a subspace). Consider the 2-set convex
feasibility problem

Find x ∈ C ∩ D ⊆ HN. (4)

Then (1) is equivalent to (4) in the sense that

x ∈
N⋂

i=1

Ci ⇐⇒ (x, x, . . . , x) ∈ C ∩ D.

Further the projections, and hence reflections, are easily computed since

PCx =
N∏

i=1

PCi
xi , PDx =

N∏

i=1

(
1

N

N∑

j=1

xj

)
.

Let x0 ∈ D and define xn := T[D C]xn−1. Then Corollary 3.1 yields

T[D C]xn = PDPCxn =
(

1

N

N∑

i=1

PCi
,

1

N

N∑

i=1

PCi
, . . . ,

1

N

N∑

i=1

PCi

)
.

That is, if—as is reasonable—we start in D, the cyclic Douglas–Rachford method
coincides with averaged projections.

In general, the iteration is based on

T[D C]x = x − PDx + 2PDPCTD,Cx − PCTD,Cx + PCRDx − PDPCRDx. (5)
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If x = (x1, x2, . . . , xN), then the ith coordinate of (5) can be expressed as

(T[D C]x)i = xi − 1

N

N∑

j=1

xj + 2

N

N∑

j=1

PCj
(TD,Cx)j − PCi

(TD,Cx)i

+ PCi

(
2

N

N∑

j=1

xj − xi

)
− 1

N

N∑

j=1

PCj

(
2

N

N∑

k=1

xk − xj

)
,

where

(TD,Cx)j = xj − 1

N

N∑

k=1

xk + PCj

(
2

N

N∑

k=1

xk − xj

)
,

which is a considerably more complex formula.

Let A,B ⊆ H. Recall that points (x, y) ∈ A × B form a best approximation pair
relative to (A,B) if

‖x − y‖ = d(A,B) := inf
{‖a − b‖ : a ∈ A,b ∈ B

}
.

Remark 3.5 (a) Consider C1 = BH := {x ∈ H : ‖x‖ ≤ 1} and C2 = {y}, for some
y ∈ H. Then

T[1 2]x = x − PC1x + PC1(y − x + PC1x),

where PC1z = z if z ∈ C1, and z/‖z‖ otherwise. Now,

x ∈ FixT[1 2] ⇐⇒ PC1x = PC1(y − x + PC1x). (6)

Thus,

• If x ∈ C1 then x = PC1y.
• If y − x + PC1x ∈ C1 then x = y.
• Else, ‖x‖ > 1 and ‖y − x + PAx‖ > 1. By (6),

x = λy where λ =
( ‖x‖

‖y − x + PC1x‖ + ‖x‖ − 1

)
∈]0,1[.

Moreover, since 1 < ‖x‖ = λ‖y‖, we obtain λ ∈]1/‖y‖,1[.
In each case, PC1x = PC1y and PC2x = y. Therefore, (PC1x,PC2x) is a best ap-
proximation pair relative to (C1,C2) (see Fig. 3). In particular, if C1 ∩ C2 �= ∅, then
PC1y = y and, by Theorem 3.1, the cyclic Douglas–Rachford scheme weakly con-
verges to y, the unique element of C1 ∩ C2.

When C1 ∩ C2 = ∅, Theorem 3.1 cannot be invoked to guarantee convergence.
However, the above analysis provides the information that

FixT[1 2] ⊆ {
λPC1y + (1 − λ)y : λ ∈ [0,1]}.
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Fig. 3 An interactive
Cinderella applet showing the
behaviour described in
Remark 3.5. Each green dot
represents a cyclic
Douglas–Rachford iteration
(Color figure online)

Fig. 4 An interactive Cinderella applet showing the cyclic Douglas–Rachford method applied to the case
of a non-intersecting ball and a line. The method appears convergent to a point whose projections onto
the constraint sets form a best approximation pair. Each green dot represents a cyclic Douglas–Rachford
iteration (Color figure online)

(b) Suppose instead, C1 = SH := {x ∈ H : ‖x‖ = 1}. A similar analysis can be
performed. If y �= 0 and x ∈ FixT[1 2] are such that x, y − x + PC1x �= 0, then

• If x ∈ C1 then x = PC1y.
• If y − x + PC1x ∈ C1 then x = y.
• Else, x = λy where

λ =
( ‖x‖

‖y − x + PC1x‖ + ‖x‖ − 1

)
≥

( ‖x‖
‖y − x‖ + ‖PC1x‖ + ‖x‖ − 1

)
> 0.

Again, (PC1x,PC2x) is a best approximation pair relative to (C1,C2).

Experiments with interactive Cinderella2 dynamic geometry applets suggest sim-
ilar behaviour of the cyclic Douglas–Rachford method applied to many other prob-
lems for which C1 ∩ C2 = ∅. For example, see Fig. 4. This suggests the following
conjecture.

Conjecture 3.1 Let C1,C2 ⊆ H be closed and convex with C1 ∩ C2 = ∅. Suppose
that a best approximation pair relative to (C1,C2) exists. Then the two-set cyclic
Douglas–Rachford scheme converges weakly to a point x such that (PC1x,PC2x) is
a best approximation pair relative to the sets (C1,C2).

Remark 3.6 If there exists an integer n such that either T n
[1 2]x0 ∈ C1 or T1,2T

n
[1 2]x0 ∈

C2, by Corollary 3.1, the cyclic Douglas–Rachford scheme coincides with von Neu-

2See http://www.cinderella.de/.

http://www.cinderella.de/
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mann’s alternating projection method. In this case, Conjecture 3.1 holds by [39, The-
orem 2]. In this connection, we also refer the reader to [4, 14].

It is not hard to think of non-convex settings in which Conjecture 3.1 is false. For
example, in R, let C1 = [0,1] and C2 = {0, 11

10 }. If x0 = 1 then T[1 2]x0 = x0, but

(
PC1(1),PC2(1)

) =
(

1,
11

10

)
,

which is not a best approximation pair relative to (C1,C2).

We now present an averaged version of our cyclic Douglas–Rachford iteration.

Theorem 3.3 (Averaged Douglas–Rachford) Let C1,C2, . . . ,CN ⊆ H be closed and
convex sets with a nonempty intersection. For any x0 ∈H, the sequence defined by

xn+1 :=
(

1

N

N∑

i=1

Ti,i+1

)
xn

converges weakly to a point x such that PCi
x = PCj

x for all indices i, j . Moreover,

PCj
x ∈ ⋂N

i=1 Ci , for each index j .

Proof Consider C,D ⊆ HN as (3) and define T := PD(
∏N

i=1 Ti,i+1). By Fact 2.2,
PD is firmly nonexpansive. By Fact 2.2, Ti,i+1 is firmly nonexpansive in H, for each
i, hence

∏N
i=1 Ti,i+1 is firmly nonexpansive in HN . Further, Fix(

∏N
i=1 Ti,i+1)∩PD ⊇

C ∩ D �= ∅. By Corollary 2.1, xn converges weakly to a point x ∈ FixT .
Let x0 = (x0, x0, . . . , x0) ∈ HN . Since T xn ∈ D, for each n, we write xn =

(xn, xn, . . . , xn) for some xn ∈ H. Then

xn+1 = (T xn+1)i =
(

1

N

N∑

i=1

Ti,i+1

)
xn,

independent of i. Similarly, since x ∈ FixPD = D, we write x = (x, x, . . . , x) ∈ HN

for some x ∈ H. Since x ∈ Fix(
∏N

i=1 Ti,i+1), x ∈ FixTi,i+1, for each i, and hence
PCi

x ∈ Ci+1. The same computation as in Theorem 3.1 now completes the proof. �

Since each 2-set Douglas–Rachford iteration can be computed independently, the
averaged iteration is easily parallelizable.

4 Affine Constraints

In this section, we observe that the conclusions of Theorems 3.1 and 3.3 can be
strengthened when the constraints are affine.
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Lemma 4.1 (Translation formula) Let C′
1,C

′
2, . . . ,C

′
N ⊆ H be closed and convex

sets with a nonempty intersection. For fixed y ∈ H, define Ci := y + C′
i , for each i.

Then

TCi,Ci+1x = y + TC′
i ,C

′
i+1

(x − y),

and

T[C1 C2 ...CN ]x = y + T[C′
1 C′

2 ...C′
N ](x − y).

Proof By the translation formula for projections (Fact 2.1), we have

RCi
x = y + RC′

i
(x − y), for each i.

The first result follows since

TCi,Ci+1x = x + RCi+1RCi
x

2

= x + RCi+1(y + RC′
i
(x − y))

2

=
x + y + RC′

i+1
RC′

i
(x − y)

2

= y +
(x − y) + RC′

i+1
RC′

i
(x − y)

2
= y + TC′

i ,C
′
i+1

(x − y).

Iterating gives

TC2,C3TC1,C2 = TC2,C3

(
y + TC′

1,C
′
2
(x − y)

) = y + TC′
2,C

′
3
TC′

1,C
′
2
(x − y),

from which the second result follows. �

Theorem 4.1 (Norm convergence) Let C1,C2, . . . ,CN ⊆ H be closed affine sub-
spaces with a nonempty intersection. Then, for any x0 ∈ H,

lim
n→∞T n

[C1 C2 ...CN ]x0 = PFixT[C1 C2 ...CN ]x0,

is norm convergent.

Proof Let c ∈ ⋂N
i=1 Ci . Since Ci are affine we write Ci = c+C′

i , where C′
i is a closed

subspace. Since TC′
i ,C

′
i+1

is linear, for each i, so is T[C′
1 C′

2 ...C′
N ]. By Fact 2.2, for

each i, TC′
i ,C

′
i+1

is firmly nonexpansive. Further,
⋂N

i=1 FixTC′
i ,C

′
i+1

⊇ ⋂N
i=1 C′

i �= ∅.
By Lemma 4.1 and Corollary 2.1,

T n
[C1 C2 ...CN ]x = c + T n

[C′
1 C′

2 ...C′
N ](x − c)

→ c + PFixT[C′
1 C′

2 ...C′
N

](x − c) = PFixT[C1 C2 ...CN ]x.

This completes the proof. �
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Remark 4.1 For closed affine A, RA is affine (a consequence of Fact 2.1) and R2
A = I .

Thus, for the case of two affine subspaces,

T[AB] = TB,ATA,B

= 1

2

(
TA,B + RARBTA,B

)

= 1

2

(
TA,B + RA

(
RB + RBRBRA

2

))

= 1

2

(
TA,B +

(
RARB + RARBRBRA

2

))

= TA,B + TB,A

2
.

That is, the cyclic Douglas–Rachford and averaged Douglas–Rachford methods co-
incide. For N > 2 closed affine subspaces, the two methods do not always coincide.
For instance, when N = 3,

T2,3T1,2 = 1

2

(
T1,2 + RC3RC2T1,2

)

= 1

2

(
T1,2 + RC3RC2 + RC3RC2RC2RC1

2

)

= 1

4

(
I + RC2RC1 + RC3RC2 + RC3RC1

)
,

hence,

T[1 2 3] = T3,1T2,3T1,2

= 1

2

(
T2,3T1,2 + RC1RC3T2,3T1,2

)

= 1

2

(
T2,3T1,2

+ RC1RC3 + RC1RC3RC2RC1 + RC1RC3RC3RC2 + RC1RC3RC3RC1

4

)

= 1

8

(
2I + RC2RC1 + RC3RC2

+ RC3RC1 + RC1RC3 + RC1RC3RC2RC1 + RC1RC2

)
.

This includes a term which is the composition of four reflection operators whereas
the averaged iteration can be expressed as a linear combination of terms which are
the composition of at most two reflection operators.
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Theorem 4.2 (Averaged norm convergence) Let C1,C2, . . . ,CN ⊆ H be closed
affine subspaces with a nonempty intersection. Then, in norm

lim
n→∞

(
1

M

N∑

i=1

TCi,Ci+1

)n

x0 = PFixT[C1 C2 ...CN ]x0.

Proof Let C,D ⊆ HN as in (3). Let c ∈ ⋂N
i=1 Ci and define c = (c, c, . . . , c) ∈ HN .

Since Ci are affine we may write Ci = c + C′
i , where C′

i is a closed subspace, and

hence C = c + C′ where C′ = ∏N
i=1 C′

i .

For convenience, let Q denote
∏N

i=1 TC′
i ,C

′
i+1

and let T = PDQ. Since C′ and D

are subspaces, T is linear. By Fact 2.2, TC′
i ,C

′
i+1

is firmly nonexpansive, hence so is

Q. Further, FixT ⊇ FixQ ∩ FixPD ⊇ FixQ ∩ D �= ∅ since
⋂N

i=1 C′
i �= ∅.

As a consequence of Lemma 4.1, we have the translation formula

T x = c + T (x − c), for any x ∈ HN.

As in the proof of Theorem 4.1, the translation formula, together with Corollary 2.1,
shows T nx0 → PkerT x0 =: z where x0 = (x0, x0, . . . , x0) ∈ HN . As xn ∈ D, we may
write xn = (xn, xn, . . . , xn) for some xn ∈ H. Similarly, we write z = (z, z, . . . , z).
Then

√
N‖x0 − z‖ = ‖x0 − z‖ = d(x0,FixT )

≤ d

(
x0,

(
N⋂

i=1

FixTi,i+1

)N)
= √

N d

(
x0,

N⋂

i=1

FixTi,i+1

)
.

Hence, z = P⋂N
i=1 FixTi,i+1

x0. By Lemma 2.3, FixT[C1 C2 ...CN ] = ⋂N
i=1 FixTi,i+1, and

the proof is complete. �

5 Numerical Experiments

In this section, we present the results of computational experiments comparing the
cyclic Douglas–Rachford and (product-space) Douglas–Rachford schemes—as serial
algorithms. These are not intended to be a complete computational study, but simply
a first demonstration of viability of the method. From that vantage-point, our initial
results are promising.

Two classes of feasibility problems were considered, the first convex and the sec-
ond non-convex:

(P1) Find x ∈
N⋂

i=1

Ci ⊆ R
n where Ci = xi + riBH := {y : ‖xi − y‖ ≤ ri},

(P2) Find x ∈
N⋂

i=1

Ci ⊆ R
n where Ci = xi + riSH := {y : ‖xi − y‖ = ri}.
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Here BH (resp., SH) denotes the closed unit ball (resp., unit sphere).
To ensure all problem instances were feasible, constraint sets were randomly gen-

erated using the following criteria:

• Ball constraints: Randomly choose xi ∈ [−5,5]n and ri ∈ [‖xi‖,‖xi‖ + 0.1].
• Sphere constraints: Randomly choose xi ∈ [−5,5]n and set ri = ‖xi‖.

In each case, by design, the non-empty intersection contains the origin. We consider
both over- and under-constrained instances.

Note, if Ci is a sphere constraint then PCi
(xi) = Ci (i.e. nearest points are not

unique), and PCi
a set-valued mapping. In this situation, a random nearest point was

chosen from Ci . In every other case, PCi
is single valued.

For the comparison, the classical Douglas–Rachford scheme was applied to the
equivalent feasibility problem (4), which is formulated in the product space (Rn)N .

Computations were performed using Python 2.6.6 on an Intel Xeon E5440 at 2.83
GHz (single threaded) running 64-bit Red Hat Enterprise Linux 6.4. The following
conditions were used:

• Choose a random x0 ∈ [−10,10]n. Initialize the cyclic Douglas–Rachford scheme
with x0, and the parallel Douglas–Rachford scheme with (x0, x0, . . . , x0) ∈ (Rn)N .

• Iterate by setting

xn+1 = T xn where T = T[1 2 ...N ] or TC,D.

An iteration limit of 1000 was enforced.
• Stopping criterion:

‖xn − xn+1‖ < ε where ε = 10−3 or 10−6.

• After termination, the quality of the solution was measured by

error =
N∑

i=2

‖PC1x − PCi
x‖2.

Results are tabulated in Tables 1, 2, 3, and 4. A “0” error (without decimal place)
represents zero within the accuracy the numpy.float64 data type. Illustrations of
low dimensional examples are shown in Figs. 5, 6 and 7.

We make some comments on the results.

• The cyclic Douglas–Rachford method easily solves both problems.
Solutions for 1000 dimensional instances, with varying numbers of constraints,

could be obtained in under half-a-second, with worst case errors in the order of
10−13. Many instances of the (P1) where solved without error. Instances involv-
ing fewer constraints required a greater number of iterations before termination.
This can be explained by noting that each application of T[1 2 ...N ] applies a 2-set
Douglas–Rachford operator N times, and hence iterations for instances with a
greater number of constraints are more computationally expensive.
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Table 1 Results for N ball constraints in R
n with ε = 10−3. The mean (max) from 10 trials are reported

for the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 4.6 (5) 22.9 (45) 0.004 (0.005) 0.022 (0.041) 0 (0) 7.91e–34
(1.65e–33)

100 20 3.4 (4) 42.4 (113) 0.006 (0.007) 0.071 (0.183) 0 (0) 1.59e–33
(6.11e–33)

100 50 2.3 (3) 75.3 (241) 0.008 (0.011) 0.288 (0.907) 2.03e–14
(2.02e–13)

6.37e–08
(6.37e–07)

100 100 2.1 (3) 97.9 (151) 0.014 (0.019) 0.717 (1.096) 0 (0) 5.51e–33
(3.85e–32)

100 200 2.0 (2) 186.2 (329) 0.025 (0.025) 2.655 (4.656) 9.68e–15
(9.68e–14)

2.17e–08
(2.17e–07)

100 500 2.0 (2) 284.2 (372) 0.059 (0.060) 9.968 (12.989) 0 (0) 2.70e–07
(9.51e–07)

100 1000 2.0 (2) 383.0 (507) 0.118 (0.119) 26.656 (35.120) 0 (0) 4.30e–07
(9.42e–07)

100 1100 2.0 (2) 380.7 (471) 0.129 (0.130) 29.160 (36.001) 0 (0) 8.35e–07
(1.79e–06)

100 1200 2.0 (2) 372.3 (537) 0.141 (0.144) 31.140 (44.886) 0 (0) 8.08e–07
(1.79e–06)

100 1500 2.0 (2) 466.0 (631) 0.178 (0.181) 49.282 (66.533) 0 (0) 5.38e–05
(5.34e–04)

100 2000 2.0 (2) 529.3 (725) 0.232 (0.234) 74.878 (102.148) 9.31e–19
(5.29e–18)

4.79e–06
(4.00e–05)

200 10 6.3 (7) 22.1 (35) 0.007 (0.008) 0.023 (0.036) 0 (0) 1.89e–33
(6.18e–33)

200 20 4.2 (5) 23.8 (56) 0.008 (0.010) 0.045 (0.103) 0 (0) 6.61e–33
(2.55e–32)

200 50 2.8 (3) 66.4 (144) 0.012 (0.013) 0.283 (0.604) 0 (0) 1.48e–32
(7.12e–32)

200 100 2.2 (3) 81.5 (132) 0.016 (0.021) 0.673 (1.083) 0 (0) 3.20e–32
(1.03e–31)

200 200 2.0 (2) 149.9 (301) 0.027 (0.028) 2.413 (4.801) 7.84e–16
(7.84e–15)

5.97e–08
(5.97e–07)

200 500 2.1 (3) 245.6 (354) 0.067 (0.095) 9.739 (14.055) 0 (0) 2.20e–07
(8.42e–07)

200 1000 2.0 (2) 323.4 (417) 0.124 (0.125) 26.429 (34.023) 0 (0) 4.10e–07
(9.43e–07)

200 1100 2.1 (3) 358.1 (434) 0.140 (0.201) 32.481 (39.289) 0 (0) 4.06e–07
(8.92e–07)

200 1200 2.0 (2) 337.0 (455) 0.145 (0.146) 33.662 (45.415) 0 (0) 8.51e–07
(1.63e–06)

200 1500 2.0 (2) 379.1 (495) 0.181 (0.183) 48.070 (62.778) 2.94e–19
(2.94e–18)

6.70e–07
(1.36e–06)

200 2000 2.0 (2) 422.6 (569) 0.239 (0.240) 74.611 (100.490) 0 (0) 7.28e–05
(7.22e–04)
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Table 1 (Continued)

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

500 10 9.1 (11) 17.0 (37) 0.012 (0.014) 0.023 (0.049) 0 (0) 3.19e–33
(8.23e–33)

500 20 6.1 (7) 16.9 (31) 0.014 (0.016) 0.042 (0.076) 0 (0) 2.35e–32
(6.76e–32)

500 50 3.0 (3) 66.3 (184) 0.016 (0.017) 0.373 (1.024) 0 (0) 4.55e–32
(2.23e–31)

500 100 2.6 (3) 81.5 (167) 0.023 (0.026) 0.892 (1.804) 0 (0) 2.64e–31
(1.21e–30)

500 200 2.3 (3) 142.5 (251) 0.037 (0.046) 3.068 (5.367) 0 (0) 6.58e–32
(1.90e–31)

500 500 2.0 (2) 267.3 (354) 0.071 (0.072) 15.687 (20.713) 0 (0) 2.40e–07
(1.22e–06)

500 1000 2.2 (3) 318.6 (413) 0.151 (0.204) 42.107 (54.312) 0 (0) 4.33e–07
(9.15e–07)

500 1100 2.0 (2) 338.4 (402) 0.149 (0.152) 49.911 (59.818) 0 (0) 2.45e–07
(5.58e–07)

500 1200 2.1 (3) 356.5 (478) 0.171 (0.240) 57.385 (76.217) 0 (0) 3.60e–07
(9.01e–07)

500 1500 2.0 (2) 345.7 (407) 0.203 (0.205) 70.272 (82.803) 0 (0) 6.39e–07
(9.77e–07)

500 2000 2.0 (2) 358.3 (404) 0.271 (0.273) 97.104 (110.421) 0 (0) 5.34e–07
(1.12e–06)

1000 10 15.0 (16) 12.4 (26) 0.024 (0.026) 0.023 (0.048) 2.12e–19
(2.12e–18)

1.24e–32
(3.34e–32)

1000 20 8.2 (9) 20.4 (71) 0.024 (0.027) 0.069 (0.237) 0 (0) 3.02e–32
(6.98e–32)

1000 50 4.3 (5) 38.8 (112) 0.028 (0.031) 0.311 (0.884) 2.67e–19
(2.67e–18)

1.24e–31
(5.29e–31)

1000 100 3.3 (4) 80.8 (222) 0.037 (0.042) 1.260 (3.436) 0 (0) 2.15e–31
(6.84e–31)

1000 200 2.4 (3) 138.5 (270) 0.048 (0.058) 4.730 (9.446) 0 (0) 6.50e–31
(2.52e–30)

1000 500 2.0 (2) 201.3 (313) 0.085 (0.086) 20.356 (31.166) 3.90e–20
(3.90e–19)

2.10e–30
(6.11e–30)

1000 1000 2.0 (2) 348.8 (518) 0.162 (0.164) 73.420 (108.493) 0 (0) 1.36e–06
(1.20e–05)

1000 1100 2.1 (3) 334.4 (550) 0.183 (0.260) 77.174 (126.896) 0 (0) 1.10e–07
(7.62e–07)

1000 1200 2.0 (2) 353.8 (518) 0.190 (0.193) 89.153 (128.683) 0 (0) 1.74e–07
(9.63e–07)

1000 1500 2.1 (3) 403.9 (607) 0.245 (0.346) 126.707 (189.011) 1.33e–19
(1.33e–18)

3.17e–07
(8.94e–07)

1000 2000 2.0 (2) 487.0 (593) 0.307 (0.312) 239.210 (374.390) 0 (0) 3.58e–07
(1.11e–06)
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Table 2 Results for N ball constraints in R
n with ε = 10−6. The mean (max) from 10 trials are reported

for the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 4.7 (6) 22.9 (45) 0.005 (0.005) 0.023 (0.044) 0 (0) 7.91e–34
(1.65e–33)

100 20 3.6 (5) 42.4 (113) 0.006 (0.008) 0.077 (0.199) 0 (0) 1.59e–33
(6.11e–33)

100 50 2.6 (4) 77.4 (262) 0.010 (0.014) 0.320 (1.068) 0 (0) 1.24e–32
(5.96e–32)

100 100 2.1 (3) 97.9 (151) 0.015 (0.020) 0.781 (1.195) 0 (0) 5.51e–33
(3.85e–32)

100 200 2.3 (3) 187.1 (329) 0.029 (0.038) 2.909 (5.077) 0 (0) 5.89e–33
(2.30e–32)

100 500 2.3 (3) 329.6 (661) 0.071 (0.093) 12.554 (24.975) 0 (0) 1.81e–32
(6.37e–32)

100 1000 2.3 (3) 427.4 (635) 0.141 (0.184) 32.431 (47.903) 0 (0) 2.21e–32
(8.10e–32)

100 1100 2.3 (3) 467.4 (714) 0.153 (0.199) 38.936 (59.259) 0 (0) 3.92e–32
(3.17e–31)

100 1200 2.1 (3) 451.8 (698) 0.154 (0.218) 41.059 (63.259) 0 (0) 1.12e–31
(8.08e–31)

100 1500 2.1 (3) 507.2 (712) 0.193 (0.277) 58.578 (81.907) 0 (0) 2.66e–31
(8.15e–31)

100 2000 2.3 (3) 627.8 (808) 0.276 (0.361) 96.554 (124.880) 0 (0) 1.50e–31
(7.53e–31)

200 10 6.3 (7) 22.1 (35) 0.007 (0.008) 0.026 (0.040) 0 (0) 1.89e–33
(6.18e–33)

200 20 4.4 (5) 23.8 (56) 0.009 (0.010) 0.050 (0.116) 0 (0) 6.61e–33
(2.55e–32)

200 50 2.8 (3) 66.4 (144) 0.012 (0.014) 0.323 (0.691) 0 (0) 1.48e–32
(7.12e–32)

200 100 2.4 (3) 81.5 (132) 0.018 (0.022) 0.772 (1.242) 0 (0) 3.20e–32
(1.03e–31)

200 200 2.1 (3) 152.5 (301) 0.030 (0.040) 2.825 (5.547) 0 (0) 3.04e–32
(1.63e–31)

200 500 2.5 (3) 263.8 (435) 0.081 (0.098) 12.074 (19.831) 0 (0) 4.32e–32
(2.69e–31)

200 1000 2.1 (3) 427.9 (703) 0.135 (0.192) 40.025 (65.394) 0 (0) 6.64e–32
(2.66e–31)

200 1100 2.2 (3) 426.0 (545) 0.153 (0.209) 44.161 (56.724) 0 (0) 5.92e–32
(1.86e–31)

200 1200 2.2 (3) 442.9 (633) 0.166 (0.225) 50.678 (72.862) 0 (0) 5.98e–32
(2.81e–31)

200 1500 2.1 (3) 470.1 (882) 0.196 (0.279) 69.261 (128.978) 1.00e–25
(1.00e–24)

1.71e–31
(6.88e–31)

200 2000 2.0 (2) 578.4 (894) 0.248 (0.252) 117.575 (179.883) 0 (0) 4.82e–32
(1.04e–31)
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Table 2 (Continued)

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

500 10 9.1 (11) 17.0 (37) 0.012 (0.015) 0.028 (0.060) 0 (0) 3.19e–33
(8.23e–33)

500 20 6.1 (7) 16.9 (31) 0.015 (0.017) 0.052 (0.093) 0 (0) 2.35e–32
(6.76e–32)

500 50 3.1 (4) 66.3 (184) 0.017 (0.019) 0.467 (1.285) 0 (0) 4.55e–32
(2.23e–31)

500 100 2.6 (3) 81.5 (167) 0.024 (0.027) 1.132 (2.287) 0 (0) 2.64e–31
(1.21e–30)

500 200 2.7 (4) 142.5 (251) 0.043 (0.060) 3.979 (6.824) 0 (0) 6.58e–32
(1.90e–31)

500 500 2.1 (3) 277.5 (399) 0.078 (0.108) 20.528 (29.207) 0 (0) 4.06e–31
(2.22e–30)

500 1000 2.3 (3) 358.3 (540) 0.162 (0.210) 59.290 (88.063) 0 (0) 8.30e–32
(3.91e–31)

500 1100 2.1 (3) 372.7 (458) 0.163 (0.231) 67.065 (83.951) 0 (0) 6.41e–32
(3.21e–31)

500 1200 2.2 (3) 416.4 (604) 0.184 (0.246) 82.461 (119.456) 0 (0) 4.81e–32
(2.22e–31)

500 1500 2.1 (3) 461.7 (691) 0.220 (0.313) 114.836 (175.009) 0 (0) 2.28e–31
(1.36e–30)

500 2000 2.0 (2) 483.9 (785) 0.278 (0.283) 159.287 (259.033) 0 (0) 6.06e–31
(2.92e–30)

1000 10 15.1 (17) 12.4 (26) 0.024 (0.027) 0.030 (0.063) 0 (0) 1.24e–32
(3.34e–32)

1000 20 8.2 (9) 20.4 (71) 0.025 (0.027) 0.095 (0.330) 0 (0) 3.02e–32
(6.98e–32)

1000 50 4.5 (6) 38.8 (112) 0.029 (0.035) 0.434 (1.249) 0 (0) 1.24e–31
(5.29e–31)

1000 100 3.3 (4) 80.8 (222) 0.038 (0.043) 1.761 (4.730) 0 (0) 2.15e–31
(6.84e–31)

1000 200 2.5 (3) 138.5 (270) 0.051 (0.059) 6.224 (12.089) 0 (0) 6.50e–31
(2.52e–30)

1000 500 2.3 (3) 201.3 (313) 0.099 (0.125) 26.108 (40.534) 0 (0) 2.10e–30
(6.11e–30)

1000 1000 2.1 (3) 388.7 (905) 0.174 (0.241) 103.839 (243.085) 0 (0) 2.17e–30
(1.79e–29)

1000 1100 2.3 (3) 354.4 (660) 0.205 (0.264) 120.706 (220.612) 0 (0) 2.26e–30
(9.82e–30)

1000 1200 2.3 (3) 376.3 (620) 0.223 (0.288) 161.133 (260.857) 0 (0) 1.61e–30
(1.26e–29)

1000 1500 2.2 (3) 526.0 (1000) 0.265 (0.358) 276.095 (541.502) 2.68e–22
(2.68e–21)

1.08e–09
(5.98e–09)

1000 2000 2.1 (3) 595.0 (894) 0.332 (0.469) 427.933 (646.182) 0 (0) 4.48e–31
(1.97e–30)
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Table 3 Results for N sphere constraints in R
n with ε = 10−3. The mean (max) from 10 trials are

reported for the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 16.8 (17) 219.1 (327) 0.021 (0.021) 0.272 (0.421) 4.46e–13
(7.24e–13)

8.29e–06
(1.06e–05)

100 20 9.0 (9) 247.8 (314) 0.022 (0.022) 0.669 (0.873) 5.94e–14
(1.12e–13)

1.54e–05
(1.70e–05)

100 50 5.0 (5) 375.1 (481) 0.031 (0.031) 2.559 (3.307) 6.59e–18
(1.00e–17)

2.86e–05
(3.29e–05)

100 100 3.0 (3) 471.6 (806) 0.037 (0.037) 6.185 (10.904) 1.30e–20
(2.62e–20)

4.30e–05
(4.98e–05)

100 200 2.0 (2) 747.7 (1000) 0.050 (0.050) 19.932 (26.634) 3.60e–26
(4.50e–26)

5.66e–05
(6.12e–05)

100 500 2.0 (2) 1000.0 (1000) 0.127 (0.128) 64.046 (65.562) 2.56e–26
(5.32e–26)

1.18e–04
(1.40e–04)

100 1000 2.0 (2) 1000.0 (1000) 0.253 (0.255) 130.475 (138.540) 3.87e–26
(8.28e–26)

2.43e–04
(2.70e–04)

100 1100 2.0 (2) 1000.0 (1000) 0.278 (0.281) 143.022 (149.895) 5.28e–26
(8.95e–26)

2.53e–04
(2.95e–04)

100 1200 2.0 (2) 1000.0 (1000) 0.304 (0.306) 156.653 (158.918) 7.16e–26
(1.65e–25)

3.12e–04
(3.74e–04)

100 1500 2.0 (2) 1000.0 (1000) 0.380 (0.386) 197.801 (210.661) 1.02e–25
(2.27e–25)

3.50e–04
(3.84e–04)

100 2000 2.0 (2) 1000.0 (1000) 0.504 (0.511) 261.535 (267.483) 9.91e–26
(2.42e–25)

4.82e–04
(6.04e–04)

200 10 23.0 (23) 123.1 (222) 0.030 (0.030) 0.183 (0.334) 2.50e–13
(7.46e–13)

6.33e–06
(8.72e–06)

200 20 12.8 (13) 115.2 (171) 0.033 (0.034) 0.329 (0.507) 1.48e–14
(4.39e–14)

1.05e–05
(1.46e–05)

200 50 6.0 (6) 110.6 (124) 0.038 (0.038) 0.790 (0.874) 2.56e–16
(4.47e–16)

1.42e–05
(2.09e–05)

200 100 4.0 (4) 120.1 (128) 0.051 (0.052) 1.726 (1.825) 2.49e–20
(3.71e–20)

1.70e–05
(2.21e–05)

200 200 3.0 (3) 134.9 (139) 0.077 (0.078) 3.749 (4.088) 2.88e–26
(6.69e–26)

2.31e–05
(2.98e–05)

200 500 2.0 (2) 156.4 (161) 0.130 (0.131) 11.106 (11.715) 8.53e–26
(1.71e–25)

4.37e–05
(5.16e–05)

200 1000 2.0 (2) 175.6 (182) 0.262 (0.264) 26.888 (30.935) 1.53e–25
(3.33e–25)

7.27e–05
(8.71e–05)

200 1100 2.0 (2) 179.5 (191) 0.286 (0.290) 31.161 (33.273) 1.71e–25
(2.77e–25)

7.97e–05
(9.82e–05)

200 1200 2.0 (2) 179.0 (184) 0.309 (0.316) 31.547 (35.242) 2.02e–25
(4.76e–25)

7.86e–05
(8.59e–05)

200 1500 2.0 (2) 190.0 (200) 0.394 (0.400) 43.207 (47.057) 2.29e–25
(3.91e–25)

9.97e–05
(1.15e–04)

200 2000 2.0 (2) 230.3 (295) 0.522 (0.525) 72.760 (94.718) 3.96e–25
(7.53e–25)

1.34e–04
(1.58e–04)
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Table 3 (Continued)

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

500 10 35.3 (36) 51.6 (67) 0.051 (0.052) 0.093 (0.121) 4.81e–14
(1.13e–13)

1.46e–06
(2.86e–06)

500 20 19.1 (20) 72.3 (85) 0.055 (0.057) 0.254 (0.300) 8.32e–15
(1.21e–14)

2.02e–06
(3.29e–06)

500 50 9.0 (9) 96.8 (107) 0.064 (0.064) 0.888 (0.991) 1.82e–16
(2.72e–16)

2.03e–06
(2.36e–06)

500 100 5.0 (5) 120.5 (127) 0.070 (0.071) 2.271 (2.475) 1.21e–17
(1.75e–17)

2.39e–06
(2.98e–06)

500 200 3.0 (3) 143.0 (148) 0.085 (0.085) 5.579 (6.072) 4.29e–20
(5.80e–20)

2.84e–06
(3.79e–06)

500 500 2.0 (2) 171.3 (176) 0.145 (0.146) 17.719 (21.106) 3.30e–25
(8.09e–25)

4.14e–06
(4.50e–06)

500 1000 2.0 (2) 195.1 (197) 0.295 (0.296) 47.771 (51.291) 8.61e–25
(1.37e–24)

6.18e-06
(6.64e–06)

500 1100 2.0 (2) 198.1 (202) 0.327 (0.329) 50.934 (54.122) 1.02e–24
(2.28e–24)

6.93e–06
(8.30e–06)

500 1200 2.0 (2) 199.8 (204) 0.359 (0.362) 56.155 (60.472) 1.01e–24
(2.17e–24)

6.69e–06
(7.56e–06)

500 1500 2.0 (2) 208.5 (213) 0.445 (0.451) 73.848 (78.355) 1.34e–24
(2.66e–24)

7.96e–06
(8.62e–06)

500 2000 2.0 (2) 217.8 (221) 0.590 (0.598) 100.538 (111.140) 1.61e–24
(3.00e–24)

1.00e–05
(1.09e–05)

1000 10 49.2 (50) 9.1 (29) 0.083 (0.085) 0.023 (0.072) 1.32e–14
(2.44e–14)

3.15e–07
(7.11e–07)

1000 20 27.0 (27) 30.0 (66) 0.092 (0.092) 0.127 (0.276) 1.96e–15
(3.11e–15)

4.88e–07
(7.90e–07)

1000 50 12.0 (12) 73.1 (86) 0.100 (0.100) 0.779 (0.946) 1.85e–16
(2.37e–16)

4.98e–07
(6.57e–07)

1000 100 7.0 (7) 103.7 (113) 0.117 (0.117) 2.248 (2.513) 4.22e–18
(5.49e–18)

5.51e–07
(7.17e–07)

1000 200 4.0 (4) 136.8 (143) 0.133 (0.134) 8.869 (10.028) 8.89e–20
(1.1e–19)

6.28e–07
(7.86e–07)

1000 500 3.0 (3) 178.9 (182) 0.258 (0.260) 31.706 (34.394) 2.17e–24
(5.88e–24)

7.86e–07
(9.48e–07)

1000 1000 2.0 (2) 211.7 (215) 0.343 (0.344) 73.182 (78.028) 2.16e–24
(3.71e–24)

1.04e–06
(1.15e–06)

1000 1100 2.0 (2) 215.3 (221) 0.379 (0.383) 84.584 (92.095) 4.01e–24
(9.45e–24)

1.07e–06
(1.21e–06)

1000 1200 2.0 (2) 218.7 (220) 0.411 (0.414) 94.408 (99.951) 3.91e–24
(8.19e–24)

1.14e–06
(1.27e–06)

1000 1500 2.0 (2) 228.6 (232) 0.518 (0.524) 124.265 (132.683) 5.73e–24
(1.58e–23)

1.29e–06
(1.48e–06)

1000 2000 2.0 (2) 242.3 (245) 0.681 (0.684) 176.575 (191.354) 6.06e–24
(1.5e–23)

1.53e–06
(1.67e–06)
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Table 4 Results for N sphere constraints in R
n with ε = 10−6. The mean (max) from 10 trials are

reported for the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 27.4 (28) 1000.0 (1000) 0.035 (0.036) 1.302 (1.419) 1.21e–18
(2.25e–18)

9.10e–08
(2.16e–07)

100 20 14.1 (15) 1000.0 (1000) 0.036 (0.038) 2.463 (2.750) 1.21e–19
(2.65e–19)

1.26e–06
(1.78e–06)

100 50 7.0 (7) 1000.0 (1000) 0.044 (0.045) 6.760 (7.052) 1.02e–23
(1.81e–23)

8.51e–06
(1.07e–05)

100 100 4.0 (4) 1000.0 (1000) 0.052 (0.052) 13.823 (14.145) 2.02e–26
(3.73e–26)

2.17e–05
(3.00e–05)

100 200 3.0 (3) 1000.0 (1000) 0.078 (0.078) 25.239 (27.594) 8.97e–27
(1.69e–26)

4.39e–05
(5.93e–05)

100 500 2.0 (2) 1000.0 (1000) 0.131 (0.132) 66.159 (68.491) 2.56e–26
(5.32e–26)

1.18e–04
(1.40e–04)

100 1000 2.0 (2) 1000.0 (1000) 0.262 (0.263) 131.165 (139.166) 3.87e–26
(8.28e–26)

2.43e–04
(2.70e–04)

100 1100 2.0 (2) 1000.0 (1000) 0.290 (0.293) 149.386 (154.285) 5.28e–26
(8.95e–26)

2.53e–04
(2.95e–04)

100 1200 2.0 (2) 1000.0 (1000) 0.317 (0.322) 162.476 (171.252) 7.16e–26
(1.65e–25)

3.12e–04
(3.74e–04)

100 1500 2.0 (2) 1000.0 (1000) 0.395 (0.399) 205.210 (214.347) 1.02e–25
(2.27e–25)

3.50e–04
(3.84e–04)

100 2000 2.0 (2) 1000.0 (1000) 0.524 (0.527) 284.740 (295.621) 9.91e–26
(2.42e–25)

4.82e–04
(6.04e–04)

200 10 37.8 (39) 1000.0 (1000) 0.051 (0.053) 1.787 (1.801) 5.36e–19
(9.86e–19)

9.14e–08
(1.73e–07)

200 20 20.0 (20) 1000.0 (1000) 0.053 (0.054) 3.422 (3.452) 2.01e–20
(3.49e–20)

9.56e–07
(1.46e–06)

200 50 9.0 (9) 1000.0 (1000) 0.059 (0.060) 8.384 (8.615) 1.53e–22
(3.08e–22)

4.52e–06
(6.27e–06)

200 100 5.0 (5) 1000.0 (1000) 0.067 (0.067) 15.429 (17.471) 1.61e–24
(2.45e–24)

8.05e–06
(1.09e–05)

200 200 3.0 (3) 1000.0 (1000) 0.080 (0.080) 31.967 (33.857) 2.88e–26
(6.69e–26)

1.39e–05
(1.8e–05)

200 500 2.0 (2) 1000.0 (1000) 0.135 (0.135) 81.272 (85.423) 8.53e–26
(1.71e–25)

3.07e–05
(3.64e–05)

200 1000 2.0 (2) 1000.0 (1000) 0.272 (0.273) 166.615 (177.342) 1.53e–25
(3.33e–25)

5.49e–05
(6.55e–05)

200 1100 2.0 (2) 1000.0 (1000) 0.297 (0.299) 168.501 (184.769) 1.71e–25
(2.77e–25)

6.05e–05
(7.36e–05)

200 1200 2.0 (2) 1000.0 (1000) 0.320 (0.323) 195.997 (204.751) 2.02e–25
(4.76e–25)

6.03e–05
(6.58e–05)

200 1500 2.0 (2) 1000.0 (1000) 0.411 (0.416) 250.555 (257.482) 2.29e–25
(3.91e–25)

7.77e–05
(9.00e–05)

200 2000 2.0 (2) 1000.0 (1000) 0.540 (0.543) 333.273 (340.514) 3.96e–25
(7.53e–25)

1.06e–04
(1.29e–04)
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Table 4 (Continued)

n N Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

500 10 58.0 (59) 1000.0 (1000) 0.085 (0.087) 2.135 (2.220) 1.46e–19
(3.30e–19)

7.50e–08
(1.05e–07)

500 20 30.8 (31) 1000.0 (1000) 0.091 (0.091) 3.658 (3.691) 1.04e–20
(2.56e–20)

4.45e–07
(6.81e–07)

500 50 13.1 (14) 1000.0 (1000) 0.095 (0.102) 9.321 (10.090) 8.52e–22
(1.38e–21)

1.05e–06
(1.21e–06)

500 100 7.8 (8) 1000.0 (1000) 0.114 (0.117) 18.124 (19.334) 8.23e–24
(4.40e–23)

1.65e–06
(2.04e–06)

500 200 5.0 (5) 1000.0 (1000) 0.147 (0.147) 41.555 (45.159) 1.60e–25
(2.81e–25)

2.25e–06
(2.95e–06)

500 500 3.0 (3) 1000.0 (1000) 0.224 (0.225) 118.550 (125.955) 3.31e–25
(8.15e–25)

3.60e–06
(3.91e–06)

500 1000 2.0 (2) 1000.0 (1000) 0.305 (0.306) 256.931 (276.971) 8.61e–25
(1.37e–24)

5.57e–06
(5.97e–06)

500 1100 2.0 (2) 1000.0 (1000) 0.336 (0.338) 279.305 (295.475) 1.02e–24
(2.28e–24)

6.26e–06
(7.46e–06)

500 1200 2.0 (2) 1000.0 (1000) 0.369 (0.371) 299.386 (318.799) 1.01e–24
(2.17e–24)

6.06e–06
(6.85e–06)

500 1500 2.0 (2) 1000.0 (1000) 0.459 (0.465) 379.780 (394.991) 1.34e–24
(2.66e–24)

7.28e–06
(7.89e–06)

500 2000 2.0 (2) 1000.0 (1000) 0.610 (0.618) 513.325 (526.365) 1.61e–24
(3.00e–24)

9.24e–06
(1.01e–05)

1000 10 81.1 (82) 1000.0 (1000) 0.140 (0.141) 3.181 (3.250) 4.17e–20
(8.76e–20)

3.62e–08
(9.00e–08)

1000 20 42.9 (43) 1000.0 (1000) 0.148 (0.149) 6.256 (6.973) 3.33e–21
(5.35e–21)

1.65e–07
(2.59e–07)

1000 50 18.8 (19) 1000.0 (1000) 0.161 (0.164) 15.651 (17.205) 1.26e–22
(4.37e–22)

3.17e–07
(4.18e–07)

1000 100 10.0 (10) 1000.0 (1000) 0.172 (0.172) 32.247 (36.360) 9.71e–24
(1.23e–23)

4.33e–07
(5.66e–07)

1000 200 6.0 (6) 1000.0 (1000) 0.207 (0.208) 71.902 (79.069) 6.31e–25
(1.43e–24)

5.46e–07
(6.82e–07)

1000 500 3.0 (3) 1000.0 (1000) 0.261 (0.263) 199.425 (211.841) 2.17e–24
(5.88e–24)

7.24e–07
(8.72e–07)

1000 1000 2.0 (2) 1000.0 (1000) 0.352 (0.354) 366.672 (403.696) 2.16e–24
(3.71e–24)

9.80e–07
(1.08e–06)

1000 1100 2.0 (2) 1000.0 (1000) 0.391 (0.393) 388.322 (396.817) 4.01e–24
(9.45e–24)

1.01e–06
(1.14e–06)

1000 1200 2.0 (2) 1000.0 (1000) 0.426 (0.427) 426.523 (436.721) 3.91e–24
(8.19e–24)

1.08e–06
(1.20e–06)

1000 1500 2.0 (2) 1000.0 (1000) 0.526 (0.535) 533.574 (546.055) 5.73e–24
(1.58e–23)

1.22e–06
(1.41e–06)

1000 2000 2.0 (2) 1000.0 (1000) 0.697 (0.700) 725.869 (733.381) 6.06e–24
(1.50e–23)

1.46e–06
(1.59e–06)
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Fig. 5 An interactive
Cinderella applet using the
cyclic Douglas–Rachford
method to solve a feasibility
problem with two sphere
constraints. Each green dot
represents a 2-set
Douglas–Rachford iteration
(Color figure online)

Fig. 6 Cyclic Douglas–Rachford algorithm applied to a 3-set feasibility problem in R
2. The constraint

sets are coloured in blue, red and yellow. Each arrow represents a 2-set Douglas–Rachford iteration (Color
figure online)

Fig. 7 Cyclic
Douglas–Rachford algorithm
applied to a 3-set feasibility
problem in R

3. The constraint
sets are coloured in blue, red and
yellow. Each arrow represents a
2-set Douglas–Rachford
iteration (Color figure online)

• When the number of constraints was small, relative to the dimension of the prob-
lem, the Douglas–Rachford method was able to solve (P1) in a comparable time to
the cyclic Douglas–Rachford method.

For larger numbers of constraints the method required significantly more time.
This is a consequence of working in the product space, and would be ameliorated
in a parallel implementation.
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• Applied to (P2), the original Douglas–Rachford method encountered difficulties.
While it was able to solve (P2) reliably when ε = 10−3, when ε = 10−6 the

method failed to terminate in every instance. However, in these cases the final it-
erate still yielded a point having a satisfactory error. The number of iterations and
time required, for the Douglas–Rachford method was significantly higher com-
pared to the cyclic Douglas–Rachford method. As with (P1), the difference was
most noticeable for problems with greater numbers of constraints.

• Both methods performed better on (P1) compared to (P2).
This might well be predicted. For in (P1), all constraint sets are convex, hence

convergence is guaranteed by Theorems 3.1 and 2.1, respectively. However, in
(P2), the constraints are non-convex, thus neither theorem can be evoked. Our re-
sults suggest that the cyclic Douglas–Rachford as a heuristic.

• We note that there are some difficulties in using the number of iterations as a com-
parison between two methods.

Each cyclic Douglas–Rachford iteration requires the computation of 2N reflec-
tions, and each Douglas–Rachford iteration (N +1). Even taking this into account,
performance of the cyclic Douglas–Rachford method was superior to the original
Douglas–Rachford method on both (P1) and (P2). However, in light of the “no
free lunch” theorems of Wolpert and Macready [40], we are heedful about assert-
ing dominance of our method.

Remark 5.1 Applied to combinatorial feasibility problems, experimental evidence
suggests that unlike the Douglas–Rachford scheme, the cyclic Douglas–Rachford
scheme fails to converge satisfactorily. For details, see [41].

6 Conclusions

Two new projection algorithms, the cyclic Douglas–Rachford and averaged Douglas–
Rachford iteration schemes, were introduced and studied. Applied to N -set convex
feasibility problems in Hilbert space, both weakly converge to point whose projec-
tions onto each of the N -set coincide. This behaviour is analogous to that of the classi-
cal Douglas–Rachford scheme. For inconsistent 2-set problems, it is conjectured that
the two set cyclic Douglas–Rachford scheme yields best approximation pairs. This is
known to be true in a number of non-trivial cases, as outlined in Sect. 3. Numerical
experiments suggest that that the cyclic Douglas–Rachford scheme outperforms the
classical Douglas–Rachford scheme, which suffers as a result of the product formu-
lation. An advantage of our schemes is that they can be used in the original space,
without recourse to this formulation. It would be interesting to numerically compare
the two schemes on a wider range of feasibility problems.

HTML versions of the interactive Cinderella applets are available at:

– http://carma.newcastle.edu.au/tam/cycdr/2lines.html
– http://carma.newcastle.edu.au/tam/cycdr/circleline.html
– http://carma.newcastle.edu.au/tam/cycdr/2circles.html
– http://carma.newcastle.edu.au/tam/cycdr/circlepoint.html.

http://carma.newcastle.edu.au/tam/cycdr/2lines.html
http://carma.newcastle.edu.au/tam/cycdr/circleline.html
http://carma.newcastle.edu.au/tam/cycdr/2circles.html
http://carma.newcastle.edu.au/tam/cycdr/circlepoint.html
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