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Abstract The purpose of this paper is to introduce a new instance of the Mesh Adap-
tive Direct Search (Mads) class of algorithms, which utilizes a more uniform distri-
bution of poll directions than do other common instances, such as OrthoMads and
LtMads. Our new implementation, called QrMads, bases its poll directions on an
equal area partitioning of the n-dimensional unit sphere and the QR decomposition
to obtain an orthogonal set of directions. While each instance produces directions
which are dense in the limit, QrMads directions are more uniformly distributed in the
unit sphere. This uniformity is the key to enhanced performance in higher dimensions
and for constrained problems. The trade-off is that QrMads is no longer deterministic
and at each iteration the set of polling directions is no longer orthogonal. Instead,
at each iteration, the poll directions are only ‘nearly orthogonal,’ becoming increas-
ingly closer to orthogonal as the mesh size decreases. Finally, we present a variety
of test results on smooth, nonsmooth, unconstrained, and constrained problems and
compare them to OrthoMads on the same set of problems.

Keywords Mesh adaptive direct search (Mads) algorithms · Derivative-free
optimization

1 Introduction

In [1], Audet and Dennis, introduced the Mesh Adaptive Direct Search (Mads) class
of algorithms for constrained, black-box optimization problems where derivative in-
formation for the objective function is either unavailable or unreliable and the set
of feasible points is determined by black-box constraint functions. In most cases the
objective function may not be smooth. Depending on assumptions made about the
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objective function, however, Mads is shown to converge to both first-order [1] and
second-order [2] stationary points in the Clarke sense [3], as well as, first-order [4]
stationary points in the Rockafellar sense [5].

Mads is a Search/Poll-based direct search method that was introduced as a means
of extending the Gps [6] class of algorithms by allowing for an infinite number of
polling directions (see Definition 2.1), in the limit, when exploring the space of vari-
ables. The first instance of Mads called LtMads [1] relied on a random lower trian-
gular matrix to generate the set of polling directions and probabilistic arguments to
obtain convergence results. This instance was later shown to have undesirably large
angles between some of the poll directions at each iteration.

To eliminate these large angles and the need for probabilistic arguments, as well
as make modifications for improved performance, a second instance of Mads called
OrthoMads [7] was introduced. This instance is deterministic and uses a maximal
orthogonal basis at each iteration for the set of polling directions. OrthoMads has
been shown to behave well in practice, but for larger n (for example, n ≥ 20), it has
been observed that the set of normalized directions taken over all iterations tend to
cluster around the coordinate directions, so that a small set of directions is slightly
favored over all other possible directions. This behavior was not apparent in [7], as
that paper only looked at the distribution of the polling directions for n = 2,3. In fact,
we can observe in Fig. 2 that, as n increases, the clustering behavior becomes more
pronounced and larger proportions of the directions cluster around the coordinate
directions.

The purpose of this paper is to introduce a new instance of Mads, which we call
QrMads, that eliminates the clustering of directions. To accomplish this goal we use
an equal area partition of the unit sphere and QR decomposition to find an orthogonal
set of directions at each iteration. The orthogonal set of directions is then projected
onto a hypercube centered at the origin with integer length and rounded to obtain a
‘nearly orthogonal’ integer set of directions. It can be observed that the set of nor-
malized directions taken over the set of all iterations from QrMads obtains a more
uniform distribution, as seen in Fig. 2.

There are trade-offs to this approach. First, QrMads is no longer deterministic.
Second, at each iteration the set of polling directions is no longer orthogonal, but is
instead only ‘nearly orthogonal’ becoming increasingly closer to orthogonal as the
mesh size decreases. We believe that this trade-off is minor and that maintaining
orthogonality is not a necessary feature, since in [7] it was only applied in an effort
to achieve better directions than those generated by LtMads. Third, there is a higher
computational cost associated with performing a QR decomposition to obtain a set of
polling directions. For this reason, our target application is directed towards expensive
objective functions where the QR decomposition will not significantly contribute to
the overall solve time.

Sections 2 and 3 give the method used by QrMads for constructing a polling set on
the current mesh and consisting of ‘nearly orthogonal’ polling directions. In Sect. 4,
we outline the QrMads algorithm and show that it is a valid Mads instance that shares
the theoretical convergence results of this class of algorithms. Finally, we give nu-
merical results to compare QrMads with OrthoMads on a set of 60 smooth, 62 nons-
mooth, and 28 constrained test problems taken from the optimization literature.
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2 Mesh Adaptive Direct Search

The Mads class of algorithms was developed to solve black-box optimization prob-
lems of the form

min
x∈Ω

f (x),

where Ω is the set of feasible points. Each iteration of Mads is characterized by two
steps, an optional Search and a local Poll, performed on a mesh whose fineness must
converge to zero in the limit. At each iteration, the mesh Mk is defined by

Mk := {
x + Δm

k Dz : x ∈ Vk, z ∈ N
nD

}
, (1)

where Vk is the set of all evaluated points at the start of iteration k, Δm
k is the mesh

size parameter at iteration k, and D ∈ R
n×nD is a matrix with nD directions in R

n.
The Poll step is executed if the Search step fails to find a lower objective function
value than the current best solution. The Poll step evaluates mesh points adjacent to
the current best solution in directions that form a positive spanning set for R

n. The
Poll step can be characterized by the following definition taken from [1]:

Definition 2.1 At iteration k, the set of poll trial points for the Mads algorithm is
defined to be:

Pk := {
xk + Δm

k d : d ∈ Dk

} ⊂ Mk,

where Dk is a positive spanning set such that 0 /∈ Dk and for each d ∈ Dk ,

• d can be written as a non-negative integer combination of the directions of D,
• the distance in �∞-norm from the poll center xk to a poll trial point is bounded

above by the poll size parameter Δ
p
k ,

• limits (as defined by Coope and Price [8]) of the normalized sets Dk are positive
spanning sets.

From [1] we find that the poll and mesh size parameters produced by a Mads
instance satisfy

lim inf
k→+∞Δ

p
k = lim inf

k→+∞Δm
k = 0. (2)

The OrthoMads variant of Mads uses the Halton sequence [9] and the scaled
Householder transformation, H = ‖q‖2(In − 2vvT ) with q ∈ R

n and v = q/‖q‖,
to construct an orthogonal basis for R

n at each iteration. It defines

Δ
p
k = 2−�k and Δm

k = min
{
1,4−�k

}
, (3)

where �k is the mesh index at iteration k, with �0 = 0 at the initial iteration.
For high dimensions, the directions produced by OrthoMads tend to cluster around

the coordinate directions. The primary reason for this seems to be that the use of the
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Householder transformation,

H := ‖q‖2(In − 2vvT
) = ‖q‖2

⎡

⎢⎢⎢
⎣

1 − 2v2
1 −2v1v2 . . . −2v1vn

−2v1v2 1 − 2v2
2 . . . −2v2vn

...
...

. . .
...

−2v1vn −2v2vn . . . 1 − 2v2
n

⎤

⎥⎥⎥
⎦

,

will cause a higher concentration of directions to occur near the axes. This is the case
because if any of the coordinates of the vector v are small, then the corresponding
column of the resulting matrix H will tend to have small coordinates off the diagonal
and be nearly one on the diagonal. This behavior becomes more pronounced in high
dimensions (and occurs in all the columns) since the coordinates of most unit vectors
will naturally be small.

3 Equal Area Partition of the Unit Sphere

In [10] and [11], Leopardi introduced the recursive zonal equal area (EQ) sphere par-
titioning algorithm for partitioning the unit sphere S

n−1 ⊂ R
n into regions of equal

area and small diameter. An equal area partition P is defined to be a nonempty
finite set of closed Lebesgue measurable subsets R of S

n−1, called regions, such
that

⋃
R∈P R = S

n−1 and any two regions may only share points on their bound-
aries. The regions have equal area in the sense of the Lebesgue measure Ln−1,
with Ln−1(R) = Ln−1(Sn−1)/N , where N is the number of partitions and the
boundary of each region has measure zero. The diameter of a region is defined by
diam R := sup{‖x − y‖ : x, y ∈ R}.

In [12], Leopardi proved two useful results about this algorithm for n ≥ 2 and
N ≥ 1 partitions. First, he showed that the EQ partition algorithm produces an equal
area partition of S

n−1. Second, he showed that the set of EQ partitions has diameter
bound K ∈ R+ in the following sense:

for any partition P and for each R ∈ P,diamR ≤ KN−1/(n−1). (4)

As a consequence of the EQ partition algorithm, each region is defined to be a
Cartesian product of spherical caps (the set of points of S

d , 1 ≤ d ≤ n − 1, whose
spherical distance to a given point x is at most θ , for some value of θ ) and intervals
in spherical coordinates. The center of each region can then be defined to be the point
that corresponds to the center of each spherical cap and/or interval. This leads to the
following useful proposition which will be used to find a dense set of directions for
the QrMads instance:

Proposition 3.1 Let {Pj }∞j=1 be a sequence of EQ partitions such that the number of
partitions Nj → ∞. Next, build a sequence of points {ci}∞i=1 from the region centers
by exhausting the centers from all the regions of a single partition, in any order, before
taking centers from the next partition in the sequence. Then the resulting sequence,
{ci}∞i=1, will be dense in S

n−1.
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Proof Let w ∈ S
n−1 and ε > 0 be arbitrary. Then for each partition Pj there exists a

region Rj ∈ Pj with center cj such that w ∈ Rj . If w is on the boundary of two or
more such regions, then we may choose any one. We can then apply (4) to get

‖cj − w‖ ≤ diamRj ≤ KN
−1/(n−1)
j < ε,

for large enough j . �

4 Constructing a Basis

At each iteration of the Mads algorithm a positive spanning set Dk is required. In
the previous section we discussed a method for finding a dense set of directions, but
not a dense set of positive spanning sets. In this section, we discuss a method for
taking a single direction and forming an orthogonal basis that includes the original
direction. We can then take the negatives of all the directions in the basis to form
a positive spanning set. Since one of the directions from the dense set is included in
each positive spanning set, we will then find that

⋃∞
k=1 Dk is dense in the unit sphere.

To generate an orthogonal basis from a given partition center ck , we will employ
the QR decomposition of an n × m matrix (n < m) Ak of full rank. This matrix Ak

can be created by augmenting ck with any matrix of full rank (e.g. the identity or a
rotation matrix). The QR decomposition then generates an orthogonal matrix Qk and
an upper trapezoidal matrix Rk such that QkRk = Ak . It is important to note that the
first column of Qk will be a scaler multiple of ck , since Rk is upper trapezoidal, and
its first column will therefore be equal to [a,0, . . . ,0]T , for some constant a ∈ R.
Thus the resulting matrix Qk will give an orthogonal basis with the first direction
corresponding to ck .

To obtain a ‘nearly orthogonal’ integer basis, we will take each column vector qi

of Qk , project it onto the hypercube centered at the origin with integer side length
2 · 2|�k |+2�n , and then round each component to the nearest integer as follows:

di = round

(
2|�k |+2�n

qi

‖qi‖∞

)
, (5)

where round(·) refers to the rounding operation applied to each component of the
vector and �k is as in (3). We then generate the new basis Hk , with column vectors
di , and define Dk := [Hk −Hk ] to obtain a positive spanning set.

We add the positive constant 2�n to the exponent in (5) in order to ensure that Hk

will be nonsingular. We do this because for small values of 2|�k |, it is possible that the
set of vectors {di = round(2|�k | qi

‖qi‖∞ ) : 1 ≤ i ≤ n} will not form a basis. To find the
constant �n, we use the fact that the distance from a matrix A to the nearest singular
matrix B (in Frobenius norm) is bounded below by the smallest singular value of A,
that is, if B is singular then ‖B − A‖ ≥ σn(A). We let A be the matrix with column
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vectors 2|�k |+2�nqi/‖qi‖∞,

A = 2|�k |+2�n

⎡

⎢⎢⎢⎢⎢
⎣

q11‖q1‖∞
q21‖q2‖∞ · · · qn1‖qn‖∞

q12‖q1‖∞
q22‖q2‖∞ · · · qn2‖qn‖∞

...
...

. . .
...

q1n‖q1‖∞
q2n‖q2‖∞ · · · qnn‖qn‖∞

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

q11 q21 · · · qn1

q12 q22 · · · qn2
...

...
. . .

...

q1n q2n · · · qnn

⎤

⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢
⎣

2|�k |+2�n

‖q1‖∞ 0 · · · 0

0 2|�k |+2�n

‖q2‖∞ · · · 0
...

...
. . .

...

0 0 · · · 2|�k |+2�n

‖qn‖∞

⎤

⎥⎥
⎥⎥⎥
⎦

.

Then A = QkT , where T is the diagonal matrix above. To find the singular values of
A, we need to find the eigenvalues of AT A:

AT A = (QkT )T (QkT ) = T T QT
k QkT = T T InT = T T T

=

⎡

⎢⎢
⎣

( 2|�k |+2�n

‖q1‖∞ )2 · · · 0
...

. . .
...

0 · · · ( 2|�k |+2�n

‖qn‖∞ )2

⎤

⎥⎥
⎦ .

This has eigenvalues (2|�k |+2�n/‖qi‖∞)2, 1 ≤ i ≤ n. Thus the singular values of A are
given by 2|�k |+2�n/‖qi‖∞, 1 ≤ i ≤ n. Next, we note that 2|�k |+2�n/‖qi‖∞ ≥ 2|�k |+2�n

and so for A + E to be nonsingular, we need

‖A + E − A‖ = ‖E‖ < 2|�k |+2�n ,

where E represents the perturbation matrix resulting from rounding. As a conse-
quence of the projection and the rounding, the matrix E satisfies eij ≤ 1/2 for all but

n choices of i and j , and eij = 0 for the remaining n choices. Then ‖E‖ ≤
√

n2−n
2

and so we require
√

n2 − n

2
< 2|�k |+2�n ,

for all values of �k . Then letting �k = 0, we obtain the following requirement for the
constant �n determined only by the dimension n:

√
n2 − n < 22�n+1. (6)

The following proposition will be useful for showing our new version of Mads is
a valid instance and for establishing convergence results.

Proposition 4.1 If w ∈ S
n−1 and ε > 0 are arbitrary, d = round(αw/‖w‖∞), and

α > 0 is large; then ‖ d/‖d‖ − w ‖ < ε/2.
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Proof In Proposition 3.4 of [7] it is shown that there exists β > 0 such that
∥∥∥∥

q

‖q‖ − w

∥∥∥∥ <
ε

2
,

when q = round(αw) and α > β . Then for any given w ∈ S
n−1 with α

‖w‖∞ > β , we
have

∥∥∥∥
d

‖d‖ − w

∥∥∥∥ <
ε

2
.

Now, since ‖w‖∞ ≤ 1 for all w ∈ S
n−1, we can observe that α

‖w‖∞ ≥ α. Thus for

α > β , the result follows for all w ∈ S
n−1. �

Although QrMads uses a ‘nearly orthogonal’ basis in place of an orthogonal set
of directions at each iteration, we believe that it has two potential advantages over
OrthoMads. First, the distribution of directions taken over all iterations is more uni-
form when QrMads is used in place of OrthoMads (see Fig. 2). Second, the method
described above forces the distance in �∞-norm from the poll center to a poll trial
point to equal 2|�k |+2�n instead of only being bounded above by such value, ensuring
that the step size taken will not be unintentionally small.

5 The QrMads Instance of Mads

The QrMads algorithm differs from the LtMads and OrthoMads algorithms only in
the construction of the poll directions Dk and the poll set Pk . For all three instances,
the mesh Mk is defined by the set of directions D := [In −In ]. For QrMads, the
choices of the mesh and poll size parameters are

Δ
p
k = 2−�k and Δm

k = min
{
4−�k−�n ,4−�n

}
, (7)

with �n defined as in (6), so that Δ
p
k /Δm

k = 2|�k |+2�n for all k, as in (5). The update
rules for the mesh index �k are given in Fig. 1, which describes the QrMads algorithm.

This algorithm is essentially the same as the algorithm from [7], with tk and ctk

in place of the Halton directions utk and qtk,�k
, respectively. The integer tk and the

update rules are chosen so that there will be a subsequence of unsuccessful iterations
with Δm

k → 0 and such that the directions used in the subsequence will correspond
to the entire sequence of partition centers as in [7].

The poll directions Dk are determined using a sequence of partition centers as
described in Sect. 2, the mesh index �k , a sequence of n × n matrices of full rank,
and the index tk . At each iteration, a center ctk is taken from the sequence of partition
centers, this is then augmented with a random orthogonal matrix to form an n × (n +
1) matrix, and then QR decomposition is used to find an orthogonal basis matrix with
the direction from the first column corresponding to ctk , as described in Sect. 3. The
columns of the resulting matrix Qk are then projected onto the hypercube centered
at zero with side length 2 · 2|�k |+2�n and rounded. The resulting matrix Hk will then
be ‘nearly orthogonal’ with the length of each column in �∞-norm equal to Δ

p
k /Δm

k .
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Fig. 1 The QrMads algorithm

This then forces the trial point xk + Δm
k Dkei to be exactly Δ

p
k from the poll center

in �∞-norm. Finally, Hk is completed to a maximal positive basis composed of 2n

directions, Dk = [Hk −Hk ].
The following lemma will be useful to show that QrMads has the same conver-

gence properties as in [1].

Lemma 5.1 The set of normalized directions {di,�k
/‖di,�k

‖}∞i=1, with di,�k
=

round(2|�k |+2�nci/‖ci‖∞) as in (5), is dense on S
n−1.

Proof Let w ∈ S
n−1 and ε > 0 be arbitrary. From Proposition 3.1, there exist a subse-

quence {cij }∞j=1 of region centers of the sequence of partitions and a constant N > 0
such that ‖w − cij ‖ < ε/2, for all ij > N . From Proposition 4.1, for large values

of |�k| we have ‖cij − dij ,�k

‖dij ,�k
‖‖ < ε/2. Then by applying the triangle inequality we

obtain
∥∥
∥∥w − dij ,�k

‖dij ,�k
‖
∥∥
∥∥ ≤ ‖w − cij ‖ +

∥∥
∥∥cij − dij ,�k

‖dij ,�k
‖
∥∥
∥∥ <

ε

2
+ ε

2
= ε,

for some ij > N and for some large |�k|. �

We are now ready for the main result:

Theorem 5.1 QrMads is a valid Mads instance with the convergence properties
from [1].

Proof We need to show that the poll directions for QrMads satisfy the following five
properties from [1, 13]:
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• Each Dk is a positive spanning set: This follows from the use of the constant �n to
ensure that the round procedure on Qk results in a basis.

• Any direction Dkei (1 ≤ i ≤ 2n) can be written as a non-negative integer combi-
nation of the directions of D: This is true by construction since D = [In −In ] and
Dkei is an integer vector on the hypercube centered at the origin with side length
2 · 2|�k |+2�n .

• The distance from the poll center xk to a poll trial point in �∞-norm is bounded
above by Δ

p
k : This is true by construction since we ensured ‖Dkei‖∞ = 2|�k |+2�n

and so ‖Δm
k Dkei‖∞ = Δm

k 2|�k |+2�n = Δ
p
k .

• The set of normalized directions used over all failed iterations is dense on the unit
sphere: This follows from the strategy chosen for updating Dk so that the entire
sequence of partition centers corresponds to the sequence of failed iterates, by
Lemma 5.1, and (2), which ensures the existence of large |�k|.

• Limits (as defined by [8]) of convergent subsequences of the normalized sets
Dk = { d

‖d‖ : d ∈ Dk} are positive spanning sets: For this property we need to show

det(Hk) > τ for all k, for some constant τ > 0. The result will then follow as
in [13].

First, note that the set O = {A ∈ R
n×n : A is an orthogonal matrix} is a bounded

set since O ⊂ {A ∈ R
n×n : ‖A‖ = √

n} ⊂ B(0,
√

n + ε), where ‖ · ‖ denotes the
Frobenius norm on R

n×n and B(0,
√

n + ε) is the ball of radius
√

n + ε centered
around the matrix of zeros. Furthermore, the set Vδ = {B : ‖A−B‖ ≤ nδ for any A ∈
O} is bounded since any such B would satisfy ‖B‖ ≤ √

n + nδ and so Vδ ⊂
B(0,

√
n + nδ + ε). Now, since the determinant function is C1 on R

n×n, it is Lip-
schitz on the bounded set Vδ . That is, for any B,C ∈ Vδ there exists a constant K > 0
such that

∣∣det(C) − det(B)
∣∣ ≤ K‖C − B‖.

This then yields
∣∣det(B)

∣∣ ≥ ∣∣det(C)
∣∣ − K‖C − B‖.

So, in particular, if we take C ∈ O (since O ⊂ Vδ) and B such that ‖C − B‖ ≤ nδ we
get

∣∣det(B)
∣∣ ≥ ∣∣det(C)

∣∣ − K‖C − B‖ ≥ 1 − Knδ.

Now, note that for any k, Qk ∈ O and Hk ∈ Vδk
for some δk > 0, since Hk = Qk +Ek

for some perturbation matrix Ek resulting from rounding. Next, we choose δ small
enough so that 1 − Knδ > 0. Then by Proposition 4.1, we can choose |�k| large
enough, say |�k| > �δ , so that ‖Hk − Qk‖ ≤ nδ and conclude

∣∣det(Hk)
∣∣ ≥ 1 − Knδ, for all k such that |�k| > �δ.

Next, let Hk have columns di and note that by construction det(Hk) 
= 0. Since
Hk has integer components, we know |det(Hk)| ≥ 1. Also, note ‖di‖ ≤ √

n2|�k |+2�n ,
1 ≤ i ≤ n, since each di is on the hypercube with side length 2 · 2|�k |+2�n . We then
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get the following estimate

∣∣det(Hk)
∣∣ =

∣∣∣∣∣∣∣∣

det

⎡

⎢⎢
⎣

d11‖d1‖ · · · dn1‖dn‖
...

. . .
...

d1n‖d1‖ · · · dnn‖dn‖

⎤

⎥⎥
⎦

= |det(Hk)|∏n
i=1 ‖di‖ ≥ |det(Hk)|

nn/22n(|�k |+2�n)
≥ n−n/22−n(|�k |+2�n).

Finally, we note that n−n/22−n(|�k |+2�n) is decreasing as |�k| increases. Then
|det(Hk)| ≥ n−n/22−n(�δ+2�n), if |�k| ≤ �δ , where �δ is defined above. We then let

τ = min
{
1 − Knδ,n−n/22−n(�δ+2�n)

}

and conclude det(Hk) > τ for all k. �

6 Numerical Tests

In this section, we compare QrMads and OrthoMads on 150 problems taken from
the optimization literature. Each test was performed using our own MATLAB imple-
mentation. The test problems fall into three categories. The first category consists of
60 smooth test functions taken from [14]. The second category consists of 62 nons-
mooth test functions taken from [15] and [16], where many of the problems in [16] are
variable dimension generalizations of the problems from [15]. Lastly, 28 constrained
test problems are also taken from [15] and [16], with the problems from [16] being
constrained generalizations of some of the nonsmooth problems. Many of the con-
strained problems from [16] were chosen to correspond to unconstrained problems
where OrthoMads performed better than QrMads.

The choices for Δm
k and Δ

p
k correspond to (3) and (7). For both instances the

mesh index �k is allowed to be negative. For both instances, the initial mesh size Δm
0

is set to one. If either the number of function evaluations reaches 1000n or Δ
p
k drops

below 10−10, then the stopping criteria are satisfied. For both implementations, an
opportunistic strategy was used for the Poll step (the Poll stops as soon as a successful
point has been found) and no search step was performed. For both implementations,
constraints are handled using the extreme barrier method (f (x) = +∞ if x /∈ Ω).

For each test, a partition of the unit sphere of size N was generated, with N satis-
fying the following:

N =
⎧
⎨

⎩

106 if n ≤ 6,

10n if 6 < n ≤ 15,

1015 if n > 15.

A random ordering of the centers of each region of the partition was then used as the
sequence of directions for QrMads. This choice was made purely out of convenience
as a means of testing the algorithm. There are many choices that can be made for
generating a dense sequence of directions including starting with a smaller partition
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Fig. 2 First two coordinates of the normalized poll directions of three instances of the Mads algorithm on
the n-dimensional Rosenbrock function with n = 4,10,20

size and exhausting that partition before moving on to the centers from a larger par-
tition. The performance of the QrMads algorithm when using different sequences of
partition centers is unknown at this time and is an area for future research. Due to the
random ordering of the partition centers, 30 instances of QrMads were performed on
each test function and the final function values were compared to the value obtained
from the OrthoMads algorithm.

Figure 2 illustrates the distribution and the density of directions for three Mads in-
stances: LtMads, OrthoMads, and QrMads. The three variants were run on the Rosen-
brock function with dimensions n = 4, 10, and 20. In each case there are roughly
500n directions shown, where each direction is projected onto the plane defined by
the first two coordinates. The resulting plots are typical of what can be expected re-
gardless of the choices of the two coordinates. In each case, the QrMads directions
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have a relatively uniform distribution, while the LtMads directions have a large pro-
portion with zero coordinates and the OrthoMads directions tend to cluster within
specific regions. Upon further observation, it appears that many of the OrthoMads
directions tend to cluster toward the coordinate directions as the dimension increases.
In each case, however, the QrMads directions depict a more uniform distribution.

We also found that QrMads finds a final function value for the Rosenbrock func-
tion that is strictly better than the final value obtained by OrthoMads for 19 of the
30 runs when n = 4 and for all 30 runs when n = 10 or 20. Overall, the test results
presented in this section show a similar pattern of QrMads outperforming OrthoMads
as the dimension of the test functions increase.

Note 6.1 In Fig. 2, the QrMads directions (and to some extent the LtMads directions)
become more restricted towards the center as the dimension increases. This behavior
is a reflection of the concentration of measure phenomenon and the fact that the
observable diameter of S

n−1 converges to zero as n → ∞ (for more on this topic
see [17]). Intuitively, one can imagine that as n increases, the contribution to the
norm of a vector from the first two elements gets smaller.

The results of the tests are summarized in Tables 1, 2, 3, and 4. If we let f ∗
O

denote the final value obtained by OrthoMads, f ∗
QR denote the final value obtained

by QrMads, and f (x0) denote the initial value of f , then we can define the three
scores S1, S2, and S3 as follows:

• S1 := the number of final values from 30 runs of QrMads for which f ∗
QR < f ∗

O .
• S2 := the number of final values from 30 runs of QrMads for which f ∗

QR ≤ f ∗
O +

0.01(f (x0) − f ∗
O).

• S3 := the number of final values from 30 runs of QrMads for which f ∗
O ≤ f ∗

QR +
0.01(f (x0) − f ∗

QR).

In this way, we can measure the number of final values of f for the 30 runs of QrMads
that are strictly better than the value obtained from OrthoMads (S1), as well as the
number of final values of f from QrMads that are within 1 % of the value obtained
from OrthoMads (S2) and vice versa (S3).

Table 1 shows the results from the tests performed on the set of 60 unconstrained
smooth functions. QrMads received a score for S1 of 15 or more on 38 of these test
problems, meaning that QrMads performed better than OrthoMads on more than half
the 30 runs for a majority of the test functions from this set. QrMads received a score
for S2 of 15 or more on all of the problems from this set, indicating that QrMads finds
a final value within a 1 % tolerance of OrthoMads on nearly all of the problems from
this set. Finally, OrthoMads received a score for S3 of 15 or more on 48 out of 60 of
the test problems from this set. Of the 12 scores for S3 that are below 15, there are
11 zeros and a four, indicating that QrMads showed a significant improvement over
OrthoMads on 12 of the test problems from this set.

Table 2 shows similar results for the set of 62 unconstrained nonsmooth functions
tested. QrMads received a score for S1 of 15 or more on 30 of these test problems,
meaning that QrMads performed better than OrthoMads on more than half the 30
runs for nearly half of the test functions in this set. QrMads received a score for S2 of
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Table 1 Results for smooth problems

Function n S1 S2 S3 Function n S1 S2 S3

Box 3D 3 28 30 30 Gaussian 3 24 30 30

Gulf Research and Development 3 0 30 30 Helical Valley 3 0 30 30

Brown Almost-Linear 4 17 30 30 Broyden Tridiagonal 4 10 22 30

Discrete Boundary Value 4 0 30 30 Discrete Integral Equation 4 6 30 30

Extended Powell Singular 4 1 30 30 Penalty 1 4 5 30 30

Penalty 2 4 2 30 30 Rosenbrock 4 19 27 30

Trigonometric 4 30 30 18 Variably Dimensioned 4 19 30 30

Wood 4 0 30 30 Biggs EXP6 6 0 26 30

Watson 8 9 30 30 Brown Almost-Linear 10 29 30 30

Broyden Tridiagonal 10 12 28 30 Discrete Boundary Value 10 30 30 0

Discrete Integral Equation 10 0 30 30 Penalty 1 10 1 30 30

Penalty 2 10 1 30 30 Rosenbrock 10 30 30 0

Trigonometric 10 18 26 30 Variably Dimensioned 10 30 30 30

Extended Powell Singular 12 30 30 30 Watson 16 7 30 30

Brown Almost-Linear 20 23 30 30 Broyden Tridiagonal 20 0 30 30

Discrete Boundary Value 20 30 30 0 Discrete Integral Equation 20 0 30 30

Extended Powell Singular 20 30 30 30 Penalty 1 20 30 30 30

Penalty 2 20 30 30 30 Rosenbrock 20 30 30 0

Trigonometric 20 29 30 4 Variably Dimensioned 20 30 30 30

Watson 24 18 30 30 Brown Almost-Linear 30 23 30 30

Broyden Tridiagonal 30 0 30 30 Discrete Boundary Value 30 30 30 0

Discrete Integral Equation 30 0 30 30 Penalty 1 30 30 30 30

Penalty 2 30 30 30 30 Rosenbrock 30 30 30 0

Trigonometric 30 30 30 0 Variably Dimensioned 30 30 30 30

Watson 31 16 30 30 Extended Powell Singular 32 14 30 30

Brown Almost-Linear 40 22 30 30 Broyden Tridiagonal 40 30 30 30

Discrete Boundary Value 40 30 30 0 Discrete Integral Equation 40 0 30 30

Extended Powell Singular 40 30 30 30 Penalty 1 40 30 30 0

Penalty 2 40 30 30 30 Rosenbrock 40 30 30 0

Trigonometric 40 30 30 0 Variably Dimensioned 40 30 30 30

median 23 30 30

mean 18.38 29.65 23.87

15 or more on all but ten of the test functions from this set, indicating that QrMads
finds a final value within a 1 % tolerance of OrthoMads on a large majority of these
problems. Finally, OrthoMads received a score for S3 of 15 or more on 42 out of 62 of
the test problems from this set. Of the 20 scores for S3 that are below 15, there are 15
zeros, a one, and a three; indicating that QrMads showed a significant improvement
on these test problems.

Table 3 shows the results for the set of constrained test problems. QrMads received
a score for S1 of 15 or more on 17 out of 28 of the test problems from this set, meaning
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Table 2 Results for nonsmooth problems

Function n S1 S2 S3 Function n S1 S2 S3

Chained CB3 4 0 29 30 Chained Crescent 4 0 23 30

Chained LQ 4 25 30 30 Chained Mifflin 2 4 8 30 30

L1HILB 4 10 30 30 Maxq 4 2 30 30

MXHILB 4 14 16 30 Brown 5 0 14 30

Number of Active Faces 5 28 30 30 PBC1 5 30 30 3

Shor 5 18 24 30 ElAttar 6 30 30 0

EVD61 6 10 15 25 Wong 1 7 0 1 30

Watson 8 21 21 12 Filter 9 10 12 23

Brown 10 0 13 30 Chained CB3 10 0 30 30

Chained Crescent 10 0 29 30 Chained LQ 10 1 30 30

Chained Mifflin 2 10 29 30 30 L1HILB 10 30 30 0

Maxq 10 30 30 0 MXHILB 10 30 30 0

Number of Active Faces 10 30 30 0 Polak 2 10 0 1 30

Wong 2 10 0 9 30 Osborne2 11 2 3 28

Polak 3 11 2 30 30 Steiner 2 12 0 1 30

Shell Dual 15 0 0 30 Watson 16 9 13 24

Brown 20 0 17 30 Chained CB3 20 0 30 30

Chained Crescent 20 0 25 30 Chained LQ 20 4 30 30

Chained Mifflin 2 20 27 30 30 L1HILB 20 30 30 10

Maxq 20 30 30 0 MXHILB 20 30 30 0

Number of Active Faces 20 30 30 0 Wong 3 20 7 15 29

Watson 24 16 18 16 Brown 30 0 18 30

Chained CB3 30 0 30 30 Chained Crescent 30 0 24 30

Chained LQ 30 27 30 30 Chained Mifflin 2 30 30 30 30

L1HILB 30 30 30 1 Maxq 30 30 30 0

MXHILB 30 30 30 0 Number of Active Faces 30 30 30 0

Watson 31 18 20 14 Brown 40 0 20 30

Chained CB3 40 0 30 30 Chained Crescent 40 0 25 30

Chained LQ 40 26 30 30 Chained Mifflin 2 40 30 30 30

L1HILB 40 30 30 0 Maxq 40 30 30 0

MXHILB 40 30 30 0 Number of Active Faces 40 30 30 0

median 12 30 30

mean 14.74 24.26 20.35

that QrMads performed better than OrthoMads on a majority of these problems. For
S2, QrMads received a score of 15 or more on all but five of the constrained test
problems, again showing that QrMads finds a final value within a 1 % tolerance of
OrthoMads on a large majority of these problems. OrthoMads received a score for S3
of 15 or more on 15 out of 28 of the test problems from this set. Of the 13 scores for
S3 that are below 15, there are ten zeros, a two, and a seven; indicating that QrMads
showed significant improvement on these test problems. It is of interest to note that
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Table 3 Results for constrained problems

Function n S1 S2 S3

Brown with Broyden Tridiagonal constraint 4 0 9 30

Chained CB3 with MAD1 constraint 4 3 8 30

Chained Crescent with Broyden Tridiagonal constraint 4 14 19 23

Chained LQ with MAD1 constraint 4 4 17 30

MAD6 5 13 18 22

Pentagon 6 27 28 2

Dembo 3 7 0 0 30

Dembo 5 8 30 30 0

HS114 9 0 0 30

Wong 2 10 26 29 11

Brown with Broyden Tridiagonal constraint 10 30 30 0

Chained CB3 with MAD1 constraint 10 29 29 7

Chained Crescent with Broyden Tridiagonal constraint 10 10 20 27

Chained LQ with MAD1 constraint 10 0 23 30

Wong 3 20 30 30 0

MAD8 20 30 30 0

Brown with Broyden Tridiagonal constraint 20 30 30 0

Chained CB3 with MAD1 constraint 20 30 30 0

Chained Crescent with Broyden Tridiagonal constraint 20 5 9 28

Chained LQ with MAD1 constraint 20 13 30 29

Brown with Broyden Tridiagonal constraint 30 30 30 0

Chained CB3 with MAD1 constraint 30 30 30 0

Chained Crescent with Broyden Tridiagonal constraint 30 20 27 21

Chained LQ with MAD1 constraint 30 30 30 30

Brown with Broyden Tridiagonal constraint 40 30 30 0

Chained CB3 with MAD1 constraint 40 30 30 0

Chained Crescent with Broyden Tridiagonal constraint 40 18 29 24

Chained LQ with MAD1 constraint 40 30 30 30

median 26.5 29 21.5

mean 19.36 23.39 15.50

many of the constrained problems in this set were chosen to be generalizations of
nonsmooth problems on which QrMads did not perform as well as OrthoMads (based
on the S1 score), yet QrMads performed better than OrthoMads on most of these
problems when the dimension exceeded 20.

Finally, Table 4 summarizes the results for all the test problems broken into cate-
gories of increasing dimension. The only categories where QrMads does not show a
clear improvement over OrthoMads are the cases where the dimension n is below 20.
As the dimension of the problems increases, however, we can see that QrMads out-
performs OrthoMads on a consistent basis. We believe that this reflects the decreasing
quality in the distribution of the poll directions for OrthoMads as n increases and the
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Table 4 Summary of results for
all test problems S1 S2 S3

n < 10
(42 total tests)

median 9.5 30 30

mean 11.12 23.76 25.83

10 ≤ n < 20
(32 total tests)

median 9.5 30 30

mean 13.94 24.16 21.78

20 ≤ n < 30
(28 total tests)

median 29.5 30 30

mean 20.07 27.64 18.07

30 ≤ n < 40
(25 total tests)

median 30 30 30

mean 21.52 28.76 18.24

n = 40
(23 total tests)

median 30 30 30

mean 23.74 29.30 16.70

All tests
(150 total tests)

median 19.5 30 30

mean 17.06 26.25 20.85

relatively uniform distribution of poll directions for the QrMads implementation for
all dimensions, as illustrated in Fig. 2.

7 Conclusions

Just as OrthoMads was developed to generate a more uniform set of polling direc-
tions than what is produced by LtMads, this paper introduces QrMads as a means of
further improving on this idea when compared to OrthoMads. Although OrthoMads
produces a relatively uniform distribution of poll directions for low dimensional prob-
lems, in high dimensions this is no longer the case. It is the use of the Householder
transformation for generating an orthogonal set of directions that causes a significant
number of directions to cluster toward the coordinate directions, when we consider
the set of directions taken over all iterations. Although the authors of [7] believed
orthogonality to be important for eliminating large angles between poll directions,
they overlooked a subtle mathematical implication of using Householder transforma-
tions that prevent a uniform distribution, which is masked in low dimensions. QrMads
seeks to remedy this condition by using QR decomposition and an equal area parti-
tion of the unit sphere to generate a more uniformly distributed set of directions that
are ‘nearly orthogonal’ at each iteration. The trade-off is that QrMads is not deter-
ministic. Consequently, an area of further study is that of constructing a deterministic
version of this Mads instance.

In some real-world applications, the coordinate directions often have important
physical meaning, and thus may be better choices than those chosen randomly. In
this case, OrthoMads may perform better. On the other hand, we believe that having
a uniform distribution of poll directions is beneficial for problems with higher di-
mension and when polling near constraint boundaries because the more uniform set
of directions should increase the chance of finding a direction close to a tangent cone
generator and thus help the algorithm to avoid getting bogged down near a constraint
boundary. The results from the problems tested in this paper support this conjecture
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since QrMads was shown to outperform OrthoMads on a large majority of the higher
dimensional problems (n ≥ 20) and a large majority of the constrained problems.
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