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Abstract Copositive programming (CP) can be regarded as a special instance of lin-
ear semi-infinite programming (SIP). We study CP from the viewpoint of SIP and
discuss optimality and duality results. Different approximation schemes for solving
CP are interpreted as discretization schemes in SIP. This leads to sharp explicit er-
ror bounds for the values and solutions in dependence on the mesh size. Examples
illustrate the structure of the original program and the approximation schemes.

Keywords Copositive programming · Semi-infinite programming · Optimality and
duality · Discretization method · Order of maximizer

1 Introduction

During the last years copositive programming has attracted much attention due to the
fact that many difficult (NP-hard) quadratic and integer programs can be reformu-
lated equivalently as CP (see, e.g., [1–3]). This in particular implies that copositive
programming is NP-hard.

However, CP represents a specially structured convex program. So, the hope is
that this structure allows the construction of new methods for approximately solving
integer programs.
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CP can also be regarded as a special instance of linear semi-infinite programming
(SIP). The aim of this paper is to take advantage of this relation.

The article is organized as follows. Section 2 provides an introduction into coposi-
tive programming and linear semi-infinite optimization. In Sect. 3, first order optimal-
ity conditions and duality results of SIP are applied to CP leading to known results
but also to a new insight. In Sect. 4, we reinterpret approximation schemes for solv-
ing CP (in [1, 4, 5]) as discretization methods in SIP. This leads to new explicit error
bounds between the approximate and the original problem. For the schemes in [5],
the approximation error for the feasible sets and the value functions are shown to
behave like O(d2) when the mesh-size d goes to zero. Some examples compare the
structure of the original program with that of the approximation schemes.

In Sect. 5, it is proven that for another scheme (in [1]) the (sharp) order of con-
vergence is O(d). Section 6 gives error bounds for the maximizers in dependence
on the order of the maximizer of the original program. We also show by examples
that maximizers of any order can occur in copositive programming. Section 7 com-
ments briefly on the fact that the results can easily be extended from copositive to
set-copositive programming.

2 Preliminaries

In this paper, we consider the pair of primal/dual copositive programs (CP):

(P ) max
x∈Rn

cT x s.t. B −
n∑

i=1

xiAi ∈ Cm,

(D) min
Y∈Sm

〈Y,B〉 s.t. 〈Y,Ai〉 = ci (i = 1, . . . , n), Y ∈ C∗
m,

with c ∈ R
n and Ai,B ∈ Sm. Sm denotes the set of symmetric m × m-matrices,

and 〈Y,B〉 = ∑
ij yij bij the inner product of Y = (yij ) and B = (bij ). We assume

throughout that the matrices Ai (i = 1, . . . , n) are linearly independent. Cm denotes
the cone of copositive matrices, and C∗

m its dual, the cone of completely positive ma-
trices:

Cm := {
A ∈ Sm : zT Az ≥ 0 for all z ∈ R

m+
}
,

C∗
m :=

{
A ∈ Sm : A =

k∑

j=1

zj z
T
j with zj ∈ R

m+, k ∈ N

}
.

In this definition, R
m+ denotes the non-negative orthant. It will be convenient to use

the fact [6] that the interior int Cm of the cone Cm is the cone of so-called strictly
copositive matrices:

int Cm = {
A ∈ Cm : zT Az > 0 for all z ∈ R

m+, z �= 0
}
. (1)
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For a characterization of the interior of C∗
m we refer to [7, 8]. Linear semi-infinite

programs are of the form:

(SIPP ) max
x∈Rn

cT x s.t. b(z) − a(z)T x ≥ 0 ∀z ∈ Z,

with an (infinite) compact index set Z ⊂ R
m and continuous functions a : Z → R

n

and b : Z → R. The (Haar-) dual reads:

(SIPD) min
yz

∑

z∈Z

yzb(z) s.t.
∑

z∈Z

yza(z) = c, yz ≥ 0,

where the min is taken over all finite sums. For an introduction to (linear) SIP we
refer, e.g., to [9, 10]. Note that the condition A ∈ Cm can be equivalently expressed
by either of the conditions:

zT Az ≥ 0 ∀z ∈ Bm := {
z ∈ R

m+ : ‖z‖ = 1
}

(unit orthant),

zT Az ≥ 0 ∀z ∈ Δm :=
{

z ∈ R
m+ :

m∑

i=1

zi = 1

}
(unit simplex).

In view of this relation, the primal CP can be written as a SIP with

a(z) = (
zT A1z, . . . , z

T Anz
)T

, b(z) = zT Bz, and Z ∈ {Bm,Δm}. (2)

In this paper, we always take Z = Δm, and defining F(x) := (B −∑n
i=1 xiAi), we

write the copositive primal problem (P ) in SIP form:

(P ) max
x∈Rn

cT x s.t. zT F (x)z ≥ 0 ∀z ∈ Z := Δm. (3)

In view of (2), the feasibility condition for (SIPD) becomes

ci =
∑

z∈Z

yz

〈
zzT ,Ai

〉
(i = 1, . . . , n), yz ≥ 0,

and with Y := ∑
z∈Z yzzz

T ∈ C∗
m this coincides with the feasibility condition ci =

〈Y,Ai〉 (i = 1, . . . , n) of (D). Moreover,
∑

z∈Z

yzb(z) =
∑

z∈Z

yz

〈
zzT ,B

〉= 〈Y,B〉.

So, the dual (SIPD) of (P ) in SIP form (3) is equivalent to the CP dual (D) and we
simply denote both versions by (D).

3 Optimality Conditions and Duality for CP via SIP

From the SIP form of CP it follows that any result for linear SIP can directly be
translated to CP. We will do this for some optimality conditions and duality results.
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Optimality conditions for SIP are usually presented in terms of Karush–Kuhn–
Tucker (KKT) conditions for a feasible candidate maximizer x̄. Denoting the active
index-set at a point x̄ by Z(x̄) := {z ∈ Z : zT F (x̄)z = 0} and the Lagrange multipliers
by yj , the KKT conditions for the general linear semi-infinite problem (SIPP ) read:

k∑

j=1

yja(zj ) = c for zj ∈ Z(x̄) and yj ≥ 0 (j = 1, . . . , k).

Using (2), for the copositive problem in SIP-form (3), this condition translates to

c =
k∑

j=1

yja(zj ) =
k∑

j=1

yj

⎛

⎜⎝

zT
j A1zj

...

zT
j Anzj

⎞

⎟⎠ , zj ∈ Z(x̄), yj ≥ 0 (j = 1, . . . , k). (4)

It is important to note that any solution of the KKT system with feasible x̄ automati-
cally yields a minimizer Y of the dual program (D):

Y :=
k∑

j=1

yj zj z
T
j ∈ C∗

m. (5)

Observe that, by Carathéodory’s Lemma for cones (see, e.g., [11]), we can assume
that

the KKT condition (4) is satisfied with k ≤ n active points zj ∈ Z(x̄). (6)

This implies that the dual minimizer Y allows a representation (5) with k ≤ n, i.e.,
Y ∈ C∗

m has CP-rank ≤ n. The CP-rank of a matrix Y ∈ C∗
m is defined as the smallest

number r possible in a factorization Y =∑r
j=1 vjv

T
j with vj ∈ R

m+. Determining the
CP-rank of an arbitrary matrix in C∗

m is an open problem, see [6].
Before applying the standard results of SIP to copositive programming, we have

to translate the primal/dual constraint qualification (Slater condition) from SIP to the
copositive terminology.

Lemma 3.1 Consider the copositive problem in its SIP-formulation (3). The primal
SIP constraint qualification

(CQP ) : zT F (x0)z ≥ σ0 > 0, for all z ∈ Z and for some σ0 > 0 (7)

is satisfied for x0 ∈ R
n if and only if F(x0) ∈ int Cm. The dual SIP constraint qualifi-

cation

(CQD) : c ∈ intM, with M := cone
{
a(z) : z ∈ Z

}

holds if and only if there exists Y0 feasible for (D) such that Y0 ∈ int C∗
m.
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Proof The fact that (CQP ) implies F(x0) ∈ int Cm follows immediately from (1).
For the converse we use the (Frobenius) matrix-norm ‖A‖ = (

∑
ij a2

ij )
1/2. Let

F(x0) ∈ int Cm. Then there exists ε > 0 such that F ∈ Cm for all F with ‖F −
F(x0)‖ ≤ ε. Define F := F(x0) − ε√

m
I . Then ‖F − F(x0)‖ ≤ ε and thus F ∈ Cm.

Consequently,

0 ≤ zT Fz = zT F (x0)z − ε√
m

zT z for all z ∈ Z.

Using zT z ≥ 1
m

for z ∈ Z, we obtain zT F (x0)z ≥ ε√
mm

=: σ0 > 0 for all z ∈ Z.
To prove the equivalence of the dual constraint qualifications we define the map-

ping c(Y ) := (〈A1, Y 〉, . . . , 〈An,Y 〉)T . We first show that

Y ∈ C∗
m ⇒ c(Y ) ∈ M. (8)

To see this, note that Y ∈ C∗
m has a rank-one representation Y = ∑k

j=1 vjv
T
j with

0 �= vj ≥ 0 for all j = 1, . . . , k. Define zj := vj /(v
T
j e) to obtain zj ∈ Z, and yj :=

(vT
j e)2 > 0. Then Y =∑k

j=1 yj zj z
T
j . Therefore we get

c(Y ) =
k∑

j=1

yj

(〈
A1, zj z

T
j

〉
, . . . ,

〈
An, zj z

T
j

〉)T =
k∑

j=1

yja(zj ) ∈ M,

and (8) is proved. Now let Y0 ∈ int C∗
m be feasible for (D), i.e., c(Y0) = c. To prove

c ∈ intM we assert that there exists some ε > 0 such that, for any γ ∈ R, |γ | < ε, the
relation

c + γ ek ∈ M holds for all (standard basis) vectors ek (k = 1, . . . , n). (9)

To show this we note that, since the Ai ’s are linearly independent, for any k the
linear system c(Yk) = (〈A1, Yk〉, . . . , 〈An,Yk〉)T = ek has a solution Ỹk ∈ Sm. Since
Y0 ∈ int C∗

m, there exists some ε > 0 such that for all γ , |γ | < ε:

Yk := Y0 + γ Ỹk ∈ C∗
m for all k = 1, . . . , n.

Using (8) and c(Y0) = c we get M � c(Yk) = c(Y0) + γ c(Ỹk) = c + γ ek , which
proves (9).

We finally show that (CQD) yields some Y0 feasible for (D) with Y0 ∈ int C∗
m.

To do so, choose any Y∗ ∈ int C∗
m and define b := c(Y∗) = (〈A1, Y∗〉, . . . , 〈An,Y∗〉)T .

Since c ∈ intM , we have for some ε > 0 that c − εb ∈ M , which means that for some
yj ≥ 0, zj ∈ Z (j = 1, . . . , k) we have

c − εb =
k∑

j=1

yja(zj ) =
k∑

j=1

yj c
(
zj z

T
j

)
.

Defining Y :=∑k
j=1 yj zj z

T
j ∈ C∗

m, we find that c(Y ) = c − εb by construction. Next,
define Y0 := Y + εY∗. Then Y0 ∈ int C∗

m because Y ∈ C∗
m,Y∗ ∈ int C∗

m and C∗
m is a



J Optim Theory Appl (2013) 159:322–340 327

convex cone. Moreover, c(Y0) = c(Y )+ εc(Y∗) = c − εb + εb = c, which means that
Y0 is feasible for (D). This completes the proof. �

We mention the standard first order optimality conditions for (the convex program)
SIP (see, e.g., [10, Theorem 3] and [12, Theorem 2(b)] for a proof in SIP context):

If a feasible point x̄ satisfies the KKT condition (4) then x̄ is a (global) max-
imizer of (P ). On the other hand, under (CQP ) a maximizer x̄ of (P ) must
satisfy the KKT conditions.

We emphasize that relation (6) implies that, under (CQP ) to any maximizer x̄ of (P ),
there always exists a corresponding (complementary) optimal solution Y of (D) that
has CP-rank ≤ n.

Finally, we apply some standard duality and existence results in SIP to the copos-
itive problem. Let v(P ), v(D) and F (P ), F (D) denote the optimal values and feasi-
ble sets of (P ), (D), respectively. We introduce the upper/lower level sets

Fα(P ) = {
x ∈ F (P ) : cT x ≥ α

}
and Fα(D) = {

Y ∈ F (D) : 〈Y,B〉 ≤ α
}
.

Let S(P ) denote the set of maximizers of (P ). Note that, in general, for SIP (and CP)
strong duality need not hold and solutions of (P ) and/or (D) need not exist (see [13]
for many examples). However, the following is true for linear SIP.

Theorem 3.1 We have:

(a) If either (CQP ) or (CQD) holds, then v(D) = v(P ).
(b) Let F (P ) be nonempty. Then

(CQD) holds ⇔ ∀α ∈ R: Fα(P ) is compact ⇔ ∅ �= S(P ) compact.

Thus, if one of these equivalent conditions holds, then a solution of (P ) exists.

A result as in (b) also holds for the dual problem.

Proof See, e.g., [12, Theorems 6.9, 6.11] and [10, Theorem 4] for the second equiv-
alence in (b). �

4 Application of SIP: Discretization Methods for CP

Due to the SIP representation of CP, any solution method of SIP can directly be
applied to CP. In this paper, we only consider discretization methods. Recently an
inner and outer approximation algorithm for CP has been proposed and analyzed
by Bundfuss and Dür [5]. We re-analyze this approach in the light of discretization
methods in SIP as outlined in [14]. This will lead to additional insight and explicit
error bounds.

We start with the CP in SIP-form (3) with Z = Δm. The approach in [5] is based
on the following partition of Δm.
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Definition 4.1 We partition the unit simplex Z = Δm into finitely many sub-
simplices Δ1, . . . ,Δk of Δm such that

Δm =
k⋃

l=1

Δl and intΔl ∩ intΔp = ∅ for l �= p.

This partition defines a mesh-size d , a discretization Zd and a set Ed of “edges”
(pairs of vertices):

Zd = {
vj : vj is a vertex of Δl for some l

}
,

Ed = {
(vi, vj ) : vi, vj are vertices in the same Δl for some l (possibly i = j )

}
,

d = max
{‖vi − vj‖ : (vi, vj ) ∈ Ed

}
.

In [5], the following outer and inner approximation schemes for (3) are given:

(Pd ) max
x∈Rn

cT x s.t. zT F (x)z ≥ 0 ∀z ∈ Zd,

(P̃d ) max
x∈Rn

cT x s.t. uT F (x)v ≥ 0 ∀(u, v) ∈ Ed.

Note that (Pd) represents a special instance of a discretization scheme in SIP.
(P̃d ) provides feasible points for the original copositive problem (P ), see [5] and
below. Observe that both (Pd) and (P̃d ) are LPs.

Remark 4.1 Note that any point z ∈ Z = Δm is contained in one of the sub-
simplices Δl and thus z ∈ Δl can be written as a convex combination z =∑

ν λνvν ,
with

∑
ν λν = 1, λν ≥ 0 of vertices vν of Δl . Consequently, for any z ∈ Z, the in-

equality minzj ∈Zd
‖z − zj‖ ≤ d holds so that d above really defines a mesh-size:

d ≥ max
z∈Z

min
zj ∈Zd

‖z − zj‖.

In the following, F (P ), F (Pd), F (P̃d) and v(P ), v(Pd), v(P̃d) denote the feasible
sets and the maximum values of (P ), (Pd), (P̃d), respectively. The vector x̄ is always
a maximizer of (P ) and x̄d , x̃d are feasible points (possibly maximizers) of (Pd),
(P̃d). We are now going to discuss some of the convergence results of [14] for our
special program (P ) in terms of the mesh-size d in an explicit form. The proofs are
independent and mainly based on the following two relations: For any F ∈ Sm and z,

u ∈ R
m we have

zT Fu = 1

2

[
zT Fz + uT Fu − (z − u)T F (z − u)

]
. (10)

Moreover, as mentioned earlier, for every z ∈ Δl ⊆ Z we have the representation
z =∑

ν λνvν with vν the vertices of Δl , λν ≥ 0, and
∑

ν λν = 1. This gives:

vT
ν Fvμ ≥ γ, ∀(vν, vμ) ∈ Ed ⇒ zT Fz =

∑

ν,μ

λνλμvT
ν Fvμ ≥ γ, ∀z ∈ Δm.

(11)
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Clearly, F (P ) ⊂ F (Pd) holds, and using (11) for γ = 0 we obtain the relations

F (P̃d) ⊂ F (P ) ⊂ F (Pd) and thus v(P̃d) ≤ v(P ) ≤ v(Pd). (12)

We are interested in accurate bounds, e.g., for v(Pd) − v(P ) and v(P ) − v(P̃d),
depending explicitly on the mesh-size d . From [14], we know that even for nonlinear
SIP under a constraint qualification, the approximation error between F (P ), v(P )

and F (Pd), v(Pd) behaves like O(d2) in the mesh-size d , provided that the dis-
cretization Zd of Z “covers all boundary parts of Z of all dimensions.” In the above
discretization scheme this is automatically fulfilled.

The next lemma shows that the inner approximation (P̃d) yields points feasible
for the original program (P ) and the outer approximation (Pd) generates points with
an infeasibility error of order O(d2). In the following, ‖z‖ denotes the 2-norm in R

m

and ‖F‖, the Frobenius norm in Sm.

Lemma 4.1 Let x̄d , x̃d be feasible for (Pd), (P̃d). Then for all z ∈ Z and for all d we
have:

(a) zT F (x̄d)z ≥ − 1
2‖F(x̄d)‖ · d2.

(b) zT F (̃xd)z ≥ 0.

So x̃d is feasible for (P ), and x̄d is feasible up to an error of order O(d2).

Proof Let F = F(x̄d). Using zT Fz ≥ 0 for all z ∈ Zd , we find from (10) that for all
(z, u) ∈ Ed

zT Fu ≥ −1

2
(z − u)T F (z − u) ≥ −1

2
‖F‖‖z − u‖2 ≥ −1

2
‖F‖ · d2.

The second inequality follows from the fact that with the 2-norms the relation
‖Fz‖ ≤ ‖F‖‖z‖ holds. In view of (11), this shows (a). Letting F := F (̃xd), (b) fol-
lows from (11) with γ = 0. �

Assuming a strictly feasible point x0 we show that small perturbations of any
feasible point x̄d for (Pd) leads to points in F (P ) or even F (P̃d).

Lemma 4.2 Let (CQP ) be satisfied for x0 ∈ F (P ) with σ0 > 0 (see (7)). Then, for
any x̄d feasible for (Pd) and d small enough, we have:

(a) x̄∗
d := x̄d + ρd2(x0 − x̄d ) ∈ F (P ) for ρ ≥ ‖F(x̄d )‖

2σ0
and 0 < ρd2 < 1.

(b) x̃∗
d := x̄d + τd2(x0 − x̄d ) ∈ F (P̃d) for τ ≥ ‖F(x̄d )‖

2σ0+d2(‖F(x̄d )‖−‖F(x0)‖) and

0 < τd2 < 1.
Recall that F (P̃d) ⊂ F (P ) holds, cf. (12).

(c) If x̄d is a solution of (Pd), i.e., cT x̄d = v(Pd), it follows that 0 ≤ v(Pd)−v(P̃d) ≤
τ [cT (x̄d − x0)] · d2 for τ satisfying the bound in (b).

Proof Recall that (CQP ) means that zT F (x0)z ≥ σ0 > 0 for all z ∈ Z. Using this,
the fact that F(x̄∗

d ) = (1 − ρd2)F (x̄d) + ρd2F(x0), and Lemma 4.1, we see that for
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any z ∈ Z and 0 ≤ 1 − ρd2,

zT F
(
x̄∗
d

)
z = (

1 − ρd2)zT F (x̄d)z + ρd2zT F (x0)z

≥ −1

2

(
1 − ρd2)∥∥F(x̄d)

∥∥ · d2 + ρd2σ0

≥ d2
(

ρσ0 − 1

2

∥∥F(x̄d)
∥∥
)

,

which shows (a). Part (b) is proven similarly. Here, observing

F
(
x̃∗
d

)= (
1 − τd2)F(x̄d) + τd2F(x0),

for any pair (z, u) ∈ Ed , we find using (10), zT F (x0)z ≥ σ0 and zT F (x̄d)z ≥ 0:

zT F
(
x̃∗
d

)
u = (

1 − τd2)1

2

[
zT F (x̄d)z + uT F (x̄d)u − (z − u)T F (x̄d)(z − u)

]

+ τd2 1

2

[
zT F (x0)z + uT F (x0)u − (z − u)T F (x0)(z − u)

]

≥ −(1 − τd2)1

2

∥∥F(x̄d)
∥∥d2 + τd2

(
σ0 − d2 ‖F(x0)‖

2

)

= d2
(

−‖F(x̄d)‖
2

+ τ

[
σ0 + d2

2

(∥∥F(x̄d)
∥∥− ∥∥F(x0)

∥∥)
])

≥ 0

if τ is chosen as stated (assuming ‖F(x0)‖d2 ≤ σ0, implying τ > 0). The inequal-
ity (c) for the maximum values is deduced easily using that x̃∗

d is feasible for (P̃d ):

0 ≤ v(Pd) − v(P̃d) ≤ cT
(
x̄d − x̃∗

d

)= [
cT (x̄d − x0)τ

] · d2. �

Observe that the bounds in Lemma 4.2(c) depend on the actual solutions x̄d of Pd .
In order to use these bounds (a-priori) we must assure that the solutions x̄d exist
and that they are bounded. As we shall see below, the key assumption here is a dual
constraint qualification. We define the distance between a point x and the set S(P )

of maximizers of (P ),

δ
(
x, S(P )

) := min
{‖x − x̄‖ : x̄ ∈ S(P )

}
.

Under feasibility of (P ), the existence of solutions x̄d of (Pd) and the convergence
towards S(P ) follow by only assuming the dual constraint qualification (CQD), or
equivalently, the boundedness of the level sets Fα(P ) (or the condition ∅ �= S(P )

compact), see Theorem 3.1.

Theorem 4.1 Let (P ) be feasible and let (CQD) be satisfied. Then, for any mesh-size
d small enough, the sets S(Pd) of optimal solutions of (Pd) are nonempty and com-
pact. Moreover, for any sequence of solutions x̄d ∈ S(Pd) we have δ(x̄d , S(P )) → 0
for d → 0.
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Proof See [10, Theorem 9] for a proof. See also [5, Theorem 4.2(b), (c)] for a proof
under slightly stronger assumptions. �

Since the feasible set F (P ) may consist of a single point, it is clear that, in order
to ensure the existence of a feasible point of the inner approximation (P̃d), we have
to assume that F (P ) has interior points (see also [5, Theorem 4.2(a), (c)]).

Theorem 4.2 Let (CQP ) and (CQD) hold. Then for any mesh-size d small enough
the sets S(P̃d) of optimal solutions of (P̃d) are nonempty and compact. Moreover, for
any sequence of solutions x̃d ∈ S(P̃d) we have δ(̃xd, S(P )) → 0 for d → 0.

Proof If (CQP ) holds for x0, then we find from (10) that for all (u, v) ∈ Ed and
d small enough,

uT F (x0)v = 1

2

[
uT F (x0)u + vT F (x0)v − (u − v)T F (x0)(u − v)

]

≥ σ0 − 1

2

∥∥F(x0)
∥∥ · d2 ≥ 0.

Hence, x0 ∈ F (P̃d) if d is small. By (CQD) the level sets Fα(P ) are bounded
(compact) (see Theorem 3.1). Since Fα(P̃d) ⊂ Fα(P ) (see (12)), also the level sets
Fα(P̃d) are bounded. Therefore, solutions x̃d of the linear programs (P̃d) exist and
the sets S(P̃d) of maximizers are nonempty and compact.

Suppose now that a sequence x̃dk
of such solutions does not satisfy

δ
(
x̃dk

, S(P )
)→ 0 for k → ∞.

Then there exists ε > 0 and a subsequence x̃dkν
such that

δ
(
x̃dkν

, S(P )
)≥ ε ∀ν. (13)

Since the minimizers x̃dkν
are elements of a compact set Fα(P ), we can select a

convergent subsequence and w.l.o.g. we can assume x̃dkν
→ x̂ ∈ Fα(P ) for ν → ∞.

In view of Lemma 4.2(c) we have v(Pd) − v(P̃d) → 0 and thus, by (12), v(P̃d) →
v(P ), d → 0. This yields cT x̃dkν

= v(Pdkν
) → cT x̂ = v(P ), ν → ∞ and since x̂ ∈

Fα(P ) is feasible for (P ), we obtain x̂ ∈ S(P ) contradicting (13). �

The next example shows that it may happen that every program (Pd) and (P̃d) has
a solution while no solution of the original program (P ) exists.

Example 4.1 Consider the copositive program (based on [13, Theorem 3.1]) with
c = (1,1,0)T and

B =
⎛

⎝
1 0 0
0 0 −1
0 −1 0

⎞

⎠ , A1 =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ ,
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A2 =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , A3 =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

Then (P ) becomes:

maxx1 + x2 s.t. F(x1, x2, x3) :=
⎛

⎝
1 − x1 0 0

0 −x2 −1
0 −1 −x3

⎞

⎠ ∈ C3.

The feasibility conditions for this program read:

x1 ≤ 1, x2 ≤ 0, x3 ≤ 0, x2x3 ≥ 1.

Obviously, x1 + x2 ≤ 1 holds for any feasible x and for any ε > 0 the point x =
(1,−ε,−1/ε)T is feasible with objective value x1 + x2 = 1 − ε. On the other hand,
no feasible x̄ exists with objective x̄1 + x̄2 = 1 (x̄2 = 0 is excluded). So, the sup value
of (P ) is v(P ) = 1 but a maximizer does not exist. Now, consider the program (Pd):

(Pd ) maxx1 + x2 s.t. zT F (x1, x2, x3)z ≥ 0 ∀z ∈ Zd,

where Zd is any (finite) discretization of Δ3 containing the basis vectors z = ei ∈ R
3,

i = 1,2,3. Then (Pd) in particular contains the constraints

eT
i F (x)ei ≥ 0, i = 1,2,3 or 1 − x1 ≥ 0, x2 ≤ 0, x3 ≤ 0.

This implies x1 + x2 ≤ 1. So, the linear program (Pd) is bounded and a solution
exists. In fact, any program (Pd) has a solution x̄d = (1,0, x̄3(d))T with objective
value v(Pd) = 1 (and x̄3(d) → −∞ for d → 0).

Note that also the inner LP-approximations (P̃d) have solutions. Indeed, since
the feasible sets F (P̃d) are contained in F (P ), the values v(P̃d) are bounded by 1.
Moreover, the feasible sets are nonempty. To see this, take e.g. the (CQP )-point x0 =
(0,−2,−2)T in the interior of F (P ). Then, as in the proof of Theorem 4.2, it follows
that x0 ∈ F (P̃d), provided d is small enough.

We finish this section with some remarks. Note that for any solution x̄d of the
standard linear program (Pd) the KKT condition holds:

c =
k∑

j=1

yj · (zT
j A1zj , . . . , z

T
j Anzj

)
, for some yj ≥ 0, zj ∈ Zd(x̄d), (14)

where Zd(x̄d) := {z ∈ Zd : zT F (x̄d)z = 0}. Again, any such solution x̄d generates a
dual feasible matrix

Yd :=
k∑

j=1

yj zj z
T
j ∈ F (D) such that 〈Yd,B〉 = v(Pd) ≥ v(D) ≥ v(P ).
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Remark 4.2 Any solution x̃d of (P̃d) also satisfies the KKT condition

c =
s∑

j=1

ỹj · (uT
j A1vj , . . . , u

T
j Anvj

)
, ỹj ≥ 0, (uj , vj ) ∈ Ed(̃xd), s ∈ N,

where Ed(̃xd) := {(u, v) ∈ Ed : uT F (̃xd)v = 0}. Such a solution x̃d generates the
matrix Ỹd := ∑s

j=1 ỹj · 1
2 (uj v

T
j + vju

T
j ) which satisfies the constraints 〈Ỹd ,Ai〉 =

ci for all i. However, in general, Ỹ /∈ C∗
m, so Ỹ is not necessarily feasible for (D).

Using (10), we see (under the assumption of Theorem 4.1) that Ỹd is in C∗
m up to an

error of order O(d2).

5 Comparison with an Inner Approximation via Sets Cr
m

In this section, we consider a special discretization scheme first considered in [2]
which is connected to an inner approximation of Cm by subsets Cr

m ⊂ Cm. For r ∈ N,
let us define

Cr
m :=

{
A = (aij ) ∈ Sm :

m∑

i,j=1

aij x
2
i x2

j

(
m∑

k=1

x2
k

)r

has non-negative coefficients

}
.

The following is shown in [2] :

Cr
m ⊂ Cr+1

m ⊂ · · · ⊂ Cm and cl
(

lim
r→∞ Cr

m

)
= Cm.

The interesting connection with the discretization approach above is based on the
following description of the sets Cr

m(see[1]) (with diag(A) := (a11, . . . , amm) ∈ R
m):

Cr−2
m = {

A ∈ Sm : vT Av − vT diag(A) ≥ 0 for all v ∈ I r
m

}
, (15)

where I r
m is the grid I r

m = {v ∈ N
m
0 :∑m

j=1 vj = r}. By (15), we can write

Cr−2
m =

{
A ∈ Sm : zT Az − 1

r
zT diag(A) ≥ 0 for all z ∈ Z0

d := 1

r
I r
m

}
. (16)

It is not difficult to see that the set Z0
d := 1

r
I r
m defines a uniform discretization of the

simplex Z = Δm with mesh-size of Z0
d given by

d = max
zj ∈ 1

r
I r
m

min
zi∈ 1

r
I r
m,zi �=zj

‖zj − zi‖ =
√

2

r
.

So it is natural to compare the outer and inner approximations (Pd), (P̃d) of (P ) in
Sect. 4 with the following approximations, where d = √

2/r, r ∈ N:

(P̂d ) max
x∈Rn

cT x s.t. zT F (x)z − d√
2
zT diag

(
F(x)

)≥ 0 ∀z ∈ Z0
d . (17)
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Denote the solution, the optimal value and the feasible set of (P̂d ) by x̂d , v(P̂d)

and F (P̂d), respectively. Note that, by (16), a point x is feasible for (P̂d) if and
only if F(x) ∈ Cr−2

m . So (P̂d) provides an inner approximation, i.e., F (P̂d) ⊂ F (P )

and v(P̂d) ≤ v(P ). Similarly to Lemma 4.2 we obtain.

Lemma 5.1 Let (CQP ) be satisfied for x0 ∈ F (P ). Then with the solutions x̄d of (Pd)

(with discretization Zd = Z0
d ) the following holds for all d =

√
2

r
, r ∈ N, d small

enough:

x̂∗
d = x̄d + τd(x0 − x̄d ) ∈ F (P̂d) ⊂ F (P )

and

0 ≤ v(Pd) − v(P̂d) ≤ τ
[
cT (x̄d − x0)

] · d
if τ ≥ ‖diag(F (x̄d ))‖√

2σ0−d‖diag(F (x0))‖ and 0 < τd < 1.

Proof We use the relation F (̂x∗
d ) = (1 − τd)F (x̄d) + τdF (x0) and proceed as in

the proof of Lemma 4.2. By Lemma 4.1, using the relation ‖z‖ ≤ 1 for z ∈ Z0
d and

zT F (x̄d)z ≥ 0 for z ∈ Zd = Z0
d , we obtain for any z ∈ Z0

d :

zT F
(
x̂∗
d

)
z − d√

2
zT diag

(
F
(
x̂∗
d

))

=
[
(1 − τd)zT F (x̄d)z + τdzT F (x0)z

− d√
2
(1 − τd)zT diag

(
F(x̄d)

)− τ
d2

√
2
zT diag

(
F(x0)

)]

≥ τdσ0 − d√
2
(1 − τd)

∥∥diag
(
F(x̄d)

)∥∥− τ
d2

√
2

∥∥diag
(
F(x0)

)∥∥

≥ d

[
τ

(
σ0 − d√

2

∥∥diag
(
F(x0)

)∥∥
)

− ‖diag(F (x̄d))‖√
2

]
≥ 0

for any d > 0 (small enough) if τ is as given above. This shows the first relation.
The inequality for the maximum values follows again easily using that x̂∗

d is feasible
for (P̂d ) :

0 ≤ v(Pd) − v(P̂d) ≤ cT
(
x̄d − x̂∗

d

)= [
cT (x̄d − x0)τ

] · d. �

According to the analysis above, under the assumption that the sequence x̄d ,
d → 0, is bounded (cf. Theorem 4.1), we have established the following error bounds
(the last bound holds for Z0

d = 1
r
I r
m with d = √

2/r, r ∈ N):

0 ≤ v(Pd) − v(P ) ≤ O
(
d2), 0 ≤ v(P ) − v(P̃d) ≤ O

(
d2),

0 ≤ v(P ) − v(P̂d) ≤ O(d).
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The next example shows that the bound O(d) for (P̂d) is sharp.

Example 5.1 We consider the program

(P ) max
x∈R

x s.t. F(x) :=
(

1 −1
−1 1

)
+ x

(
0 −1

−1 0

)
∈ C2.

The maximizer of (P ) is x̄ = 0 with v(P ) = x̄ = 0. The corresponding unique active
index is z̄ = ( 1

2 , 1
2 )T . For odd r = 2l + 1 and d = √

2/r , the discretization Z0
d of

Z = Δ2 = {z ∈ R
2+ : z1 + z2 = 1} is given by

Z0
d =

{
z(λ) := λ

(
1

0

)
+ (1 − λ)

(
0

1

)
: λ = i

r
, i = 0, . . . , r

}
.

It is not difficult to see that the optimal solutions of (Pd), (P̂d) are given by the
solutions x̄d , x̂d of the equations

z

(
l

2l + 1

)T

F (x)z

(
l

2l + 1

)
= 0,

z

(
l

2l + 1

)T

F (x)z

(
l

2l + 1

)
− d√

2
z

(
l

2l + 1

)T

diagF(x) = 0,

respectively. After some calculations we obtain v(Pd) = x̄d = 1
2

1
l(l+1)

= O(d2) and

v(P̂d) = x̂d = −
√

2d

2

[
1 + 2l2 + 1

2l(l + 1)

]
+ 1

2l(l + 1)
= −√

2d + O
(
d2)= O(d).

Let us further compare the inner approximations (P̃d) and (P̂d). It is not difficult

to show that the number of points in the discretization Z0
d for d =

√
2

(r+2)
(approxima-

tion by Cr
m see (16)) are given by N := (

m+r−1
r

)
(cf. [4]). To obtain a corresponding

inner approximation (P̃d) one could think of the so-called Delaunay triangulation
(by simplices) of the point set Z0

d . The number of edges in such a triangulation is
“much smaller” than N2 (edge from each point to each other, instead of edges only
to “neighboring points”). So (for fixed m) the same order of approximation O( 1

r2 )

(w.r.t. r) would require “much less” than N2 = (
m+r−1

r

)2
constraints in (P̃d) and

(
m+r2−1

r2

)
constraints in (P̂d). This can be seen to be in favor of the scheme (P̃d).

Interested in an inner approximation, one could also avoid both inner approxima-
tions (P̃d), (P̂d) and only make use of (Pd). Indeed, the a posteriori error bound of
Lemma 4.2 allows us to construct a feasible point x∗

d = xd + O(d2) from the “outer
approximation” xd , if a strictly feasible point x0 is available.

Note however that with regard to the “exploding number” of constraints in the
above methods, a practical algorithm should avoid most of the constraints. This
means that in practice, the pure discretization methods have to be modified to a so-
called exchange method where (as in [5]) during the computation only those grid
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points in Zd are kept in the discretization which still play a role as candidates for the
active points zj ∈ Z(x̄) of a solution x̄ of (P ) (see also [10]). We emphasize that for
such exchange methods the order bounds obtained above remain valid.

6 Order of Convergence for the Maximizers

In this section, we shortly discuss error bounds for ‖x̄ − x̄d‖,‖x̄ − x̃d‖,‖x̄ − x̂d‖
for the maximizers of (Pd), (P̃d), (P̂d), respectively. These bounds are based on the
concept of the order of a maximizer. A feasible point x̄ ∈ F (P ) is a maximizer of (P )

of order p > 0, iff with some γ > 0, ε > 0,

cT x̄ ≥ cT x + γ ‖x − x̄‖p for all x ∈ F (P ), ‖x − x̄‖ < ε (18)

holds (and such an inequality does not hold for a smaller p < p). Note that, if x̄ is a
maximizer of order 0 < p, in particular, S(P ) = {x̄} is nonempty and compact. So,
by Theorem 3.1 the condition (CQD) is satisfied and we can apply Theorem 4.1.

Corollary 6.1 Let (CQP ) be satisfied and let x̄ be a maximizer of (P ) of order p ≥ 1.
Then for the maximizers x̄d , x̃d , x̂d of (Pd), (P̃d), (P̂d), respectively, we have:

‖x̄ − x̄d‖ = O
(
d2/p

)
, ‖x̄ − x̃d‖ = O

(
d2/p

)
, ‖x̄ − x̂d‖ = O

(
d1/p

)
.

Proof Recall from Lemma 4.2(a) that x̄∗
d := x̄d + ρd2(x0 − x̄d ) ∈ F (P ) for ρ large

enough. Using (18) and cT (x̄ − x̄d ) ≤ 0 we get (x̄∗
d is feasible for (P ))

∥∥x̄ − x̄∗
d

∥∥p ≤ 1

γ
cT
(
x̄ − x̄∗

d

)= 1

γ
cT (x̄ − x̄d ) − ρ

γ
d2cT (x0 − x̄d )

≤ ρ

γ
d2cT (x̄d − x0) ≤ O

(
d2)

or ‖x̄ − x̄∗
d‖ ≤ O(d2/p). We thus find using 1 ≤ p,

‖x̄ − x̄d‖ ≤ ∥∥x̄ − x̄∗
d

∥∥+ ∥∥x̄∗
d − x̄d

∥∥≤ O
(
d2/p

)+ O
(
d2)= O

(
d2/p

)
.

The other bounds are proven in the same way. For x̂d , e.g., we obtain using
Lemma 5.1,

‖x̄ − x̂d‖ ≤ ∥∥x̄ − x̂∗
d

∥∥+ ∥∥x̂∗
d − x̂d

∥∥= O
(
d1/p

)+ O(d) = O
(
d1/p

)
. �

According to this corollary, the smaller the order p of the maximizer x̄, the faster
is the convergence. The following examples show that for copositive programs (P )

(unique) maximizer of orders 1, 2 and of arbitrarily large order can occur.

Example 6.1 Obviously, in Example 4.1 the maximizer x̄ = 0 is of order p = 1.
Considering the copositive program

(P ) maxx1 s.t. F(x) :=
⎛

⎝
−x1 x2 0
x2 1 0
0 0 −x2

⎞

⎠ ∈ C3
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we see that x is feasible if and only if −x1 ≥ 0,−x2 ≥ 0 and −x1 − x2
2 ≥ 0 hold, or

x1 ≤ 0, x2 ≤ 0, x1 ≤ −x2
2 .

The maximum value is x1 = 0 implying x2 = 0. So x̄ = (0,0)T is the unique max-
imizer. For the feasible points x = (−x2

2 , x2)
T , x2 < 0 (|x2| small) we find with

‖x‖∞ := max{|x1|, |x2|}:
cT x̄ − cT x = x2

2 = ‖x‖2∞,

and x̄ is a maximizer of order 2. Now, we take the program

(P ) maxx1 s.t. F(x) :=

⎛

⎜⎜⎜⎜⎝

−x1 x2 0 0 0
x2 1 0 0 0
0 0 −x2 x3 0
0 0 x3 1 0
0 0 0 0 −x3

⎞

⎟⎟⎟⎟⎠
∈ C5.

In view of the block structure of F(x), a vector x ∈ R
3 is feasible iff:

x1 ≤ 0, x2 ≤ 0, x3 ≤ 0, x1 ≤ −x2
2 , x2 ≤ −x2

3 .

Thus x̄ = (0,0,0)T is the (unique) maximizer and with feasible vectors x =
(−x4

3 ,−x2
3 , x3)

T , x3 < 0 (|x3| small) we find

cT x̄ − cT x = x4
3 = ‖x‖4∞,

showing that x̄ is maximizer of order 4. Similarly, we can construct copositive pro-
grams with maximizer of arbitrarily large order.

Remark 6.1 In [1, Sect. 3], approximation results have been established for the values
v∗ = minz∈Δm zT Az with A ∈ Sm. We briefly show that these bounds appear in our
result above as special instances. Obviously v∗ is the value of

(P ) max
x∈R

x s.t. zT (A − xI)z ≥ 0 ∀z ∈ Z := Δm,

with dual

(D) min
Y∈Sm

〈Y,A〉 s.t. 〈Y, I 〉 = 1, Y ∈ C∗
m.

Obviously, (P ) satisfies (CQP ) with some x0 (small enough) and also (D) has strictly
feasible matrices Y0 (with any Y ∈ int C∗

m take Y0 = Y/〈Y, I 〉). Let x̄ be the solution
of (P ) and consider the approximations (Pd), (P̃d) defined by the grids Z0

d (d =√
2/r) with corresponding values vd, ṽd and solutions x̄d , x̃d . It is easy to see that

these solutions must be unique, satisfy x0 ≤ x̃d ≤ x̄ ≤ x̄d and are monotonic, i.e.,
x̃d ↑ x̄, x̄d ↓ x̄ for d → 0. Then by Lemma 4.2(a) we obtain the bound

0 ≤ vd − v∗ = x̄d − x̄ ≤ x̄d − x̄∗
d = ‖F(x̄d)‖

2σ0
(x̄d − x0)d

2,
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and Lemma 5.1 yields

0 ≤ v∗ − ṽd ≤ vd − ṽd ≤ x̄d − x̃∗
d ≤ τ(x̄d − x0)d.

The latter gives (up to a constant factor) the bound in[1] and the first bound yields a
O(d2) error instead of a rate O(d) in [1].

7 Set-Copositive Programming

Instead of studying copositivity with respect to R
m+, it is also possible to consider

copositivity with respect to an arbitrary set Z ⊂ R
m, meaning that one requires

zT Az ≥ 0 for all z ∈ Z. This concept was studied in detail in [15]. It plays an im-
portant role in modeling quadratically constrained quadratic problems, cf. [16].

We can easily extend the analysis above, and consider programs with a feasibility
condition

F(x) ∈ Cm(Z,α) := {
A ∈ Sm : zT Az − αzT diag (A) ≥ 0 ∀z ∈ Z

}
, (19)

where α ∈ R and a compact set Z ⊂ R
m is given. Here again, diag (A) denotes the

vector with components aii , and later for z ∈ R
m, Diag(z) will denote the diagonal

matrix with diagonal elements zi . So we consider

(P ) max
x∈Rn

cT x s.t. F(x) := B −
n∑

i=1

xiAi ∈ Cm(Z,α).

The cases Z = Δm,α = 0 and Z = Δm,α = 1
r

have been discussed in Sect. 5. Here
again, the SIP-form of (P ) will lead us to the dual program (D) and to the dual cone
C∗

m(Z,α) as follows. In SIP-form (P ) reads:

(PSIP) max
x∈Rn

cT x s.t. b(z) − a(z)T x ≥ 0 ∀z ∈ Z,

with vector a(z) having components ai(z) = zT Aiz − αzT diag (Ai) and b(z) =
zT Bz − αzT diag (B). The dual of (PSIP) is (with finite sums

∑
j , see Sect. 2):

(DSIP) min
∑

j

yj b(zj ) s.t.
∑

j

yj a(zj ) = c, yj ≥ 0, zj ∈ Z.

To convert this SIP-dual to the conic dual of (P ) we make use of the relation
zT diag (B) = 〈B,Diag (z)〉 and find

∑

j

yj b(zj ) =
〈
B,
∑

j

yj

(
zj z

T
j − α Diag (zj )

)〉

ci =
〈
Ai,

∑

j

yj

(
zj z

T
j − α Diag (zj )

)〉
(i = 1, . . . , n).
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So (DSIP) is equivalent to the program

(D) min
Y

〈Y,B〉 s.t. 〈Y,Ai〉 = ci, (i = 1, . . . , n), Y ∈ C∗
m(Z,α),

where

C∗
m(Z,α) :=

{
A =

k∑

j=1

yj

(
zj z

T
j − α Diag (zj )

) : yj ≥ 0, zj ∈ Z,k ∈ N

}
.

It is easily shown that this set is the dual of Cm(Z,α). So, under the assumption that Z

is compact, all results in the preceding sections can be extended to this more general
problem (P ).

8 Conclusions

Copositive programs have been treated as special cases of linear semi-infinite prob-
lems (LSIP). We have applied known results from LSIP to cone programming and
re-obtained known results but also gained new insight.

We have interpreted different approximation schemes for solving copositive pro-
grams as discretization schemes. The behavior of the approximation error for the
optimal values in dependence of the discretization mesh-size d has been analyzed.
The concept of order of maximizers allows to analyse the behavior of the error for
the maximizers in the approximation schemes. It also has been shown that maximizer
of arbitrary large order may appear in copositive programming.
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