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Abstract In the literature, it was shown recently that the Douglas–Rachford alternat-
ing direction method of multipliers can be combined with the logarithmic-quadratic
proximal regularization for solving a class of variational inequalities with separa-
ble structures. This paper studies the inexact version of this combination, where the
resulting subproblems are allowed to be solved approximately subject to different
inexactness criteria. We prove the global convergence and establish worst-case con-
vergence rates for the derived inexact algorithms.

Keywords Alternating direction method of multipliers · Logarithmic-quadratic
proximal regularization · Convergence rate · Inexact · Variational inequality

1 Introduction

Variational inequality problems (VIPs) with separable structures and linear con-
straints capture wide applications in some fields. For solving these VIPs, the
Douglas–Rachford alternating direction method of multipliers (ADMM) proposed
originally in [1] is a benchmark. The proximal point algorithm (PPA) in [2, 3] was
suggested to regularize ADMM’s subproblems and accordingly an algorithmic frame-
work of the inexact version of ADMM with proximal regularization was established.
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Moreover, in [4, 5] the ADMM subproblems were suggested to be regularized by the
logarithmic-quadratic proximal (LQP) regularization proposed in [6]; thus the com-
plementarity subproblems of applying ADMM reduce to systems of nonlinear equa-
tions. However, it is not possible to acquire the exact solutions of the complementarity
subproblems of ADMM with LQP regularization. Therefore, we are interested in in-
vestigating how to solve these subproblems approximately. Our purpose is to study
the inexact version of the combination of ADMM with LQP regularization, seek-
ing appropriate inexactness criteria under which the inexact version of ADMM with
LQP regularization can be still guaranteed to be convergent. We shall study several
inexactness criteria with different levels of implementability. For the resulting algo-
rithms based on the inexact version of ADMM with LQP regularization, we prove
their global convergence and establish their worst-case O(1/t) convergence rates.

The rest of this paper is organized as follows. We first state the model to be studied
and the motivation of considering the inexact version of ADMM with LQP regular-
ization in Sect. 2. Then, in Sect. 3, we summarize some preliminaries for further anal-
ysis. After that, a conceptual inexact version of the ADMM with LQP regularization
is presented in Sect. 4; an implementable algorithm based on the inexact version of
ADMM with LQP regularization is proposed in Sect. 5. For both the conceptual and
the implementable algorithms, the global convergence and a worst-case convergence
rate are established. Finally, some concluding remarks are drawn in Sect. 6.

2 Model and Motivation

More specifically, the VIP we consider is to find a u∗ ∈ U such that

(
u − u∗)T F

(
u∗)≥ 0, ∀u ∈ U , (1)

with

u :=
(

x

y

)
, F (u) :=

(
f (x)

g(y)

)
and

U := {(x, y) | Ax + By = b, x ∈ R
n+, y ∈ R

p
+
}
,

(2)

where A ∈ R
m×n and B ∈ R

m×p are given matrices; b ∈ R
m is a given vector;

f : R
n+ → R

n and g : R
p
+ → R

p are continuous and monotone operators.
By attaching a Lagrange multiplier λ ∈ R

m to the linear constraint in (2), we can
reformulate (1)–(2) as: Finding a w∗ ∈ W such that

(
w − w∗)T Q

(
w∗)≥ 0, ∀w ∈ W , (3)

where

w :=
⎛

⎝
x

y

λ

⎞

⎠ , Q(w) :=

⎛

⎜
⎜
⎝

f (x) − AT λ

g(y) − BT λ

Ax + By − b

⎞

⎟
⎟
⎠ , W := R

n+ × R
p
+ × R

m. (4)
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We denote by SVI(W ,Q) the structured VIP (3)–(4); and its solution set, denoted by
W ∗, is assumed to be nonempty.

The ADMM in [1] for solving SVI(W ,Q) is

0 ≤ xk+1⊥{f (xk+1)− AT
[
λk − H

(
Axk+1 + Byk − b

)]}≥ 0, (5)

0 ≤ yk+1⊥{g(yk+1)− BT
[
λk − H

(
Axk+1 + Byk+1 − b

)]}≥ 0, (6)

λk+1 := λk − H
(
Axk+1 + Byk+1 − b

)
, (7)

where H ∈ R
m×m is a penalty matrix in the metric form. In the literature, it is often

chosen as H := β · I , where I is the identity matrix in R
m×m and β > 0 is a scalar.

To truly implement the ADMM scheme (5)–(7), the resulting complementarity
problems should be solved efficiently. In fact, for some particular cases, where f , g,
A, and B are all special enough, the resulting subproblems of ADMM could be easy
enough to have closed-form solutions or can be easily solved up to high precisions.
This feature has triggered a tremendous burst of applying ADMM in the literature for
solving different problems varying from semidefinite programming, image process-
ing, statistical learning, control, computer vision to numerical linear algebra; see, e.g.,
[7] and references therein. On the other hand, equally importantly, for generic setting
of f , g, A, and B , we can only expect to achieve approximate solutions of these sub-
problems subject to certain accuracy by applying certain iterative scheme internally.
For this case, it is important to analyze under which criterion these subproblems can
be solved approximately and how to seek truly implementable inexactness criteria. In
[4, 5] the ADMM subproblems were suggested to be regularized by the LQP regular-
ization proposed in [6]. The LQP regularization forces the solutions of ADMM sub-
problems to be interior points of R

n+ and R
p
+, respectively, thus the complementarity

subproblems (5) and (6) reduce to systems of nonlinear equations. More specifically,
the iterative scheme of ADMM with LQP regularization is as follows:

f
(
xk+1)− AT

[
λk − H

(
Axk+1 + Byk − b

)]

+ R
[(

xk+1 − xk
)+ μ

(
xk − X2

k

(
xk+1)−1)]= 0, (8)

g
(
yk+1)− BT

[
λk − H

(
Axk+1 + Byk+1 − b

)]

+ S
[(

yk+1 − yk
)+ μ

(
yk − Y 2

k

(
yk+1)−1)]= 0, (9)

λk+1 := λk − H
(
Axk+1 + Byk+1 − b

)
, (10)

where R ∈ R
n×n and S ∈ R

p×p are symmetric positive definite diagonal matrices and
they are called proximal matrices; R(xk+1 −xk) and S(yk+1 −yk) are quadratic prox-
imal regularization terms, μ ∈]0,1[ is a given constant, Xk := diag(xk

1 , xk
2 , . . . , xk

n),
(xk+1)−1 ∈ R

n is a vector whose j th element is 1/xk+1
j , Yk := diag(yk

1 , yk
2 , . . . , yk

n),

(yk+1)−1 ∈ R
p is a vector whose j th element is 1/yk+1

j . In [8], this scheme was
further shown to be convergent on a worst-case O(1/t) rate, provided that both
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the x- and the y-subproblems (i.e., (8) and (9)) are solved exactly. Here, the worst-
case O(1/t) convergence rate of ADMM with LQP regularization means the scheme
(8)–(10) achieves a solution of SVI(W ,Q) with the accuracy of O(1/t) after most t

iterations.
To solve the complementarity subproblems (8) and (9), we shall study several in-

exactness criteria with different levels of implementability. When the accuracy of
solving these subproblems is relaxed, it is easy to understand that some additional
corrections might need to be supplemented after the iteration of ADMM with LQP
regularization. Or, relaxing the accuracy of solving these subproblems might pay
the price of requiring additional correction on the subproblems’ solutions. We thus
suggest to solve these subproblems within the framework of either under a more re-
stricted criterion but without further correction step, or under a more relaxed criterion
but with some further correction step. How to balance the accuracy of inner subprob-
lems and further correction depends on how special a concrete application of the ab-
stract model (3)–(4) is, and it is too inane to discuss this issue for the abstract model
(3)–(4) without any specification of the involved functions and sets. Instead, in this
paper, we only provide some inexact algorithms based on the framework of combin-
ing ADMM with LQP regularization. In addition to the global convergence, a worst-
case O(1/t) convergence rate is established for these inexact algorithms. Therefore,
we show that these inexact algorithms based on the combination of ADMM with
LQP regularization, which are more practical than the exact version (8)–(10), enjoy
the same worst-case convergence rate as the exact version.

3 Preliminaries

In this section, we recall some basic definitions and properties, which will be fre-
quently used in our later analysis. Some useful results proved already in the literature
are also summarized.

3.1 Some Basic Definitions and Properties

Let N be a positive definite matrix with appropriate dimensionality, the N -norm of
a vector v with appropriate dimensionality is denoted by ‖v‖N := √

vT Nv. Let Ω

be a nonempty, closed, and convex subset of R
l . The projection operator under the

N -norm is defined by

PΩ,N(v) := argmin
{‖v − u‖N | u ∈ Ω

}
.

Clearly, according to this definition, we have the following property related to the
projection operator under the N -norm:

∥∥PΩ,N(v) − w
∥∥

N
≤ ‖v − w‖N, ∀v ∈ R

l ,w ∈ Ω. (11)

In the following, we give the definitions of monotonicity and Lipschitz continuity
for a mapping.
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Definition 3.1 Let X ⊆ R
n and f : X → R

n be a mapping. Then,

(i) f is said to be monotone with respect to X iff the following inequality always
holds:

(x − x̃)T
(
f (x) − f (x̃)

)≥ 0, ∀x, x̃ ∈ X ;
(ii) f is Lipschitz continuous with respect to X iff there exists a constant (called

Lipschitz constant) Lf > 0 such that
∥∥f (x) − f (x̃)

∥∥≤ Lf ‖x − x̃‖, ∀x, x̃ ∈ X .

We denote by Lf and Lg the Lipschitz constants of the mappings f and g in the
model (1)–(2). Note that the mapping Q(w) in (4) is monotone with respect to W
under the monotonicity assumption of f and g. Therefore, the solution set W ∗ of
SVI(W ,Q) is closed and convex; see, e.g., [9].

Throughout the rest of the paper, we define the matrix G as

G :=
⎛

⎝
(1 + μ)R 0 0

0 (1 + μ)S + BT HB 0
0 0 H−1

⎞

⎠ . (12)

Last, we recall a characterization of the solution set W ∗ proved in [9], see (2.3.2)
in p. 159 of [9]. As shown in [8, 10], this characterization is crucial for establishing
the convergence rate for ADMM or ADMM with LQP regularization. More specifi-
cally, recall that W ∗ can be characterized as

W ∗ :=
⋂

w∈W

{
w̄ ∈ W | (w − w̄)T Q(w) ≥ 0

}
.

Therefore, as Definition 1 in [11], w̄ ∈ W can be regarded as an ε-approximation
solution of SVI(W ,Q) if it satisfies

sup
w∈B W (w̄)

{
(w̄ − w)T Q(w)

}≤ ε, where B W (w̄) := {w ∈ W | ‖w − w̄‖ ≤ 1
}
. (13)

In our later analysis, we shall establish the worst-case O(1/t) convergence rate
for the new algorithms to be proposed in the sense that after t iterations of these
algorithms, we can find a w̄ ∈ W such that

(w̄ − w)T Q(w) ≤ ε, ∀w ∈ B W (w̄),

with ε = O(1/t).

3.2 A Key Lemma

Inspired by Proposition 1 in [6], the following lemma was proved in the literature
(see, e.g., [5, 12]), and its conclusion plays an important role in analyzing the conver-
gence of ADMM with LQP regularization and establishing its convergence rate. Our
later analysis is also based on this conclusion.
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Lemma 3.1 Let P := diag(p1,p2, . . . , pt ) ∈ R
t×t be a positive definite diagonal

matrix, q(u) ∈ R
t be a monotone mapping of u with respect to R

t+ , and μ ∈]0,1[.
For a given ū ∈ R

t++, we define Ū := diag(ū1, ū2, . . . , ūt ). Then, the equation

q(u) + P
[
(u − ū) + μ

(
ū − Ū2u−1)]= 0 (14)

has the unique positive solution u. In addition, for this positive solution u ∈ R
t++ and

any v ∈ R
t+, we have

(v − u)T q(u) ≥ 1 + μ

2

(‖u − v‖2
P − ‖ū − v‖2

P

)+ 1 − μ

2
‖ū − u‖2

P . (15)

Moreover, we have

(v − u)T q(u) ≥ (1 + μ)(ū − u)T P (v − u) − μ‖ū − u‖2
P . (16)

3.3 Proof Framework of Convergence

Later, we shall propose several algorithms, and they differ in the inexactness crite-
ria for solving the ADMM subproblems with LQP regularization. The convergence
proofs for these different algorithms share a common framework, even though the
specific techniques required are quite different in their respective proofs. For suc-
cinctness purpose, in this subsection we first show the framework of proving the
convergence before these algorithms are presented. Then, when we establish the con-
vergence for a specific algorithm later, it suffices to check the conditions presented in
this framework. The proof framework presented below is thus a unified treatment on
the convergence analysis for different algorithms.

We first establish an identity which will be used later for convergence. The proof
of this lemma only requires straightforward manipulation.

Lemma 3.2 Let x̄k ∈ R
n, yk, ȳk ∈ R

p and λk ∈ R
m be given. We define λ̄k and λ̂k+1

as

λ̄k := λk − H
(
Ax̄k + Byk − b

)
and λ̂k+1 := λk − H

(
Ax̄k + Bȳk − b

)
.

Then, for any y ∈ R
p and λ ∈ R

m, we have

2
(
λ − λ̄k

)T (
Ax̄k + Bȳk − b

)+ 2
(
y − ȳk

)T
BT HB

(
yk − ȳk

)

= ∥∥y − ȳk
∥∥2

BT HB
− ∥∥y − yk

∥∥2
BT HB

+ ∥∥λ − λ̂k+1
∥∥2

H−1

− ∥∥λ − λk
∥∥2

H−1 + ∥∥λk − λ̄k
∥∥2

H−1 .

Proof Using the definition of λ̂k+1, we have

2
(
λ − λ̄k

)T (
Ax̄k + Bȳk − b

)

= 2
(
λ − λ̄k

)T
H−1(λk − λ̂k+1)

= 2
(
λ − λ̂k+1)T H−1(λk − λ̂k+1)+ 2

(
λ̂k+1 − λ̄k

)T
H−1(λk − λ̂k+1). (17)
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For the first term in (17), we have the following identity:

2
(
λ− λ̂k+1)T H−1(λk − λ̂k+1)= ∥∥λ− λ̂k+1

∥∥2
H−1 −∥∥λ−λk

∥∥2
H−1 +∥∥λk − λ̂k+1

∥∥2
H−1 .

(18)
Then, it follows from the definitions of λ̄k and λ̂k+1 that

λ̂k+1 = λ̄k + HByk − HBȳk,

and thus

2
(
λ̂k+1 − λ̄k

)T
H−1(λk − λ̂k+1)

= 2
(
HByk − HBȳk

)T
H−1(λk − λ̂k+1)

= ∥∥λk − λ̂k+1 + HByk − HBȳk
∥∥2

H−1 − ∥∥λk − λ̂k+1
∥∥2

H−1 − ∥∥HByk − HBȳk
∥∥2

H−1

= ∥∥λk − λ̄k
∥∥2

H−1 − ∥∥λk − λ̂k+1
∥∥2

H−1 − ∥∥yk − ȳk
∥∥2

BT HB
.

Substituting this and (18) into (17), we have

2
(
λ − λ̄k

)T (
Ax̄k + Bȳk − b

)

= ∥∥λ − λ̂k+1
∥∥2

H−1 − ∥∥λ − λk
∥∥2

H−1 + ∥∥λk − λ̄k
∥∥2

H−1 − ∥∥yk − ȳk
∥∥2

BT HB
. (19)

Note that

2
(
y − ȳk

)T
BT HB

(
yk − ȳk

)= ∥∥y − ȳk
∥∥2

BT HB
−∥∥y − yk

∥∥2
BT HB

+∥∥yk − ȳk
∥∥2

BT HB
.

Adding the above equality and (19), the assertion is proved. �

Next, we will present a unified framework for proving the convergence of our new
algorithms to be presented.

Theorem 3.1 Let c0 ∈]0,+∞[ and μ ∈]0,1[ be positive constants; {ηk} be a non-
negative sequence with

∑∞
k=0 ηk < +∞; and G be defined by (12). For any w∗ ∈ W ∗,

if the sequences {wk = (xk, yk, λk)} and {w̄k = (x̄k, ȳk, λ̄k)} satisfy

∥∥wk+1 − w∗∥∥2
G

≤ ∥∥wk − w∗∥∥2
G

+ ηk − c0
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S
+ ∥∥λk − λ̄k

∥∥2
H−1

)
, ∀k ≥ 0, (20)

then {wk} is bounded and

lim
k→∞

∥∥wk − w̄k
∥∥

G
= 0. (21)

Furthermore, if the mapping Q is continuous and

lim inf
k→∞

(
w − w̄k

)T
Q
(
w̄k
)≥ 0, ∀w ∈ W , (22)

then the sequence {wk} converges to a point in W ∗.
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Proof It follows from (20) that for any l ≤ k and w∗ ∈ W ∗, we have

∥∥wk+1 − w∗∥∥2
G

≤ ∥∥wk − w∗∥∥2
G

+ ηk ≤ ∥∥wl − w∗∥∥2
G

+
k∑

i=l

ηi . (23)

Thus the sequence {wk} is bounded, since
∑∞

i=0 ηi < +∞. Summing the inequality
(20) over k = 0,1, . . . , we get

c0

∞∑

k=0

(∥∥xk − x̄k
∥∥2

R
+∥∥yk − ȳk

∥∥2
S
+∥∥λk − λ̄k

∥∥2
H−1

)≤ ∥∥w0 −w∗∥∥2
G

+
∞∑

k=0

ηk < +∞.

Therefore, we have

lim
k→∞

(∥∥xk − x̄k
∥∥2

R
+ ∥∥yk − ȳk

∥∥2
S

+ ∥∥λk − λ̄k
∥∥2

H−1

)= 0.

It follows that

lim
k→∞

∥∥xk − x̄k
∥∥

R
= 0, lim

k→∞
∥∥yk − ȳk

∥∥
S

= 0 and lim
k→∞

∥∥λk − λ̄k
∥∥

H−1 = 0.

The first assertion (21) is proved.
Since {wk} is bounded and limk→∞ ‖wk − w̄k‖G = 0, we find that {w̄k} is also

bounded and then it has at least one cluster point. Let w∞ be a cluster point of {w̄k}
and the subsequences {w̄kj } and {wkj } both converge to w∞. It follows from (22)
that

lim inf
j→∞

(
w − w̄kj

)T
Q
(
w̄kj
)≥ 0, ∀w ∈ W ,

and consequently
(
w − w∞)T Q

(
w∞)≥ 0, ∀w ∈ W ,

since the mapping Q is continuous. This means that w∞ is a solution of SVI(W ,Q).
Note that the inequality (23) is true for all solution points of SVI(W ,Q), hence we
have

∥∥wk+1 − w∞∥∥2
G

≤ ∥∥wl − w∞∥∥2
G

+
∞∑

i=l

ηi , ∀k ≥ 0,∀l ≤ k. (24)

Since wkj → w∞ (j → ∞) and
∑∞

i=0 ηi < +∞, for any given ε > 0, there exists a
j0 > 0 such that

∥∥wkj0 − w∞∥∥2
G

≤ ε2

2
and

∞∑

i=kj0

ηi ≤ ε2

2
. (25)

Therefore, for any k ≥ kj0 , it follows from (24) and (25) that

∥∥wk+1 − w∞∥∥
G

≤
√√√√
√
∥∥wkj0 − w∞∥∥2

G
+

∞∑

i=kj0

ηi ≤ ε.

This implies that the sequence {wk} converges to a point w∞ in W ∗. �
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According to Theorem 3.1, it suffices to check conditions (20) and (22) when we
establish the convergence for the algorithms to be proposed. As the new algorithms
are based on the combination of ADMM with LQP regularization, where the sub-
problems are solved inexactly, we abbreviate these algorithms as I-ADMM-LQP X,
where “X” is an arabian number representing a concrete algorithm.

4 The First Algorithm

We propose the first algorithm based on the combination of ADMM with LQP regu-
larization where the subproblems are solved approximately. The inexactness criterion
required by this algorithm involves the exact solutions of the resulting subproblems,
thus is not applicable directly in implementation. We still present this algorithm,
however, because its convergence analysis provides a similar sketch for the other
algorithms to be analyzed later, and is quite simple. Thus, by this simpler analysis, it
becomes easier to understand the latter analysis for other implementable algorithms.
In addition, although the inexactness criterion itself is not checkable directly, it pro-
vides the possibility to seek implementable criteria based on some error bounds; see,
e.g., [9, 13]. Thus, it deserves at least theoretical interest. Note this criterion is widely
used in PPA and ADMM literature.

4.1 Algorithm 1

In this algorithm, we seek approximate solutions of the subproblems (8)–(9) and the
accuracy is controlled by a summable sequence of positive scales.

Algorithm 1 (I-ADMM-LQP 1)

Step 0. Let ε > 0; μ ∈]0,1[; w0 := (x0, y0, λ0) ∈ R
n++ × R

p
++ × R

m; R ∈ R
n×n,

S ∈ R
p×p and H ∈ R

m×m be positive definite diagonal matrices; and {νk} be a
nonnegative sequence satisfying

∑∞
k=0 νk < +∞. Set k = 0.

Step 1. Find xk+1 ∈ R
n++ such that

∥∥xk+1 − xk+1∗
∥∥≤ νk, (26)

where xk+1∗ is the exact solution of the system

f (x)−AT
[
λk −H

(
Ax +Byk −b

)]+R
[(

x −xk
)+μ

(
xk −X2

kx
−1)]= 0. (27)

Step 2. Find yk+1 ∈ R
p
++ such that

∥
∥yk+1 − yk+1∗

∥
∥≤ νk, (28)

where yk+1∗ is the exact solution of the system

g(y)−BT
[
λk −H

(
Axk+1∗ +By −b

)]+S
[(

y −yk
)+μ

(
yk −Y 2

k y−1)]= 0.

(29)
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Step 3. Update the Lagrange multiplier

λk+1 := λk − H
(
Axk+1 + Byk+1 − b

)
. (30)

Step 4. Set wk+1 = (xk+1, yk+1, λk+1). If ‖wk+1 − wk‖ ≤ ε, stop; otherwise set
k = k + 1 and goto Step 1.

Remark 4.1 It follows from Lemma 3.1 that there exist unique xk+1∗ ∈ R
n++ and

yk+1∗ ∈ R
p
++ satisfying (27) and (29), respectively. This guarantees that we can find

xk+1 ∈ R
n++ and yk+1 ∈ R

p
++ satisfying (26) and (28), respectively.

4.2 Convergence

In this subsection, we prove the convergence of Algorithm 1. First, we define

λk+1∗ := λk − H
(
Axk+1∗ + Byk+1∗ − b

)
, (31)

and set

wk+1∗ :=
⎛

⎝
xk+1∗
yk+1∗
λk+1∗

⎞

⎠ and w̄k :=
⎛

⎝
x̄k

ȳk

λ̄k

⎞

⎠=
⎛

⎝
xk+1∗
yk+1∗

λk − H(Axk+1∗ + Byk − b)

⎞

⎠

(32)
to simplify our notation in the following analysis.

To prove the convergence of Algorithm 1, we first present some lemmas.

Lemma 4.1 Let {wk+1∗ } be defined by (32) and {wk} be generated by Algorithm 1.
Then, there exists a positive constant ρ such that

∥
∥wk+1∗ − wk+1

∥
∥

G
≤ ρνk, ∀k ≥ 0, (33)

where G is defined by (12).

Proof It follows from (30) and (31) that

λk+1∗ − λk+1 = HA
(
xk+1 − xk+1∗

)+ HB
(
yk+1 − yk+1∗

)
.

Together with (26), (28), and (12), the above equation implies (33) immediately. �

Lemma 4.2 Let the sequence {wk} be generated by Algorithm 1, and the accompany-
ing sequences {wk+1∗ } and {w̄k} be defined by (32). Then, for any w := (x, y,λ) ∈ W ,
we have

(
w − w̄k

)T
Q
(
w̄k
) ≥ 1

2

(∥∥wk+1∗ − w
∥
∥2

G
− ∥∥wk − w

∥
∥2

G

)

+ 1 − μ

2

(∥∥xk − x̄k
∥∥2

R
+ ∥∥yk − ȳk

∥∥2
S

)+ 1

2

∥∥λk − λ̄k
∥∥2

H−1, (34)

where G is defined by (12).
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Proof Note that x̄k = xk+1∗ and ȳk = yk+1∗ . Applying Lemma 3.1 to (27) by set-
ting P = R, ū = xk , u = x̄k = xk+1∗ , q(u) = f (x̄k) − AT [λk − H(Ax̄k + Byk −
b)](32)= f (x̄k) − AT λ̄k and v = x in (15), we have

(
x − x̄k

)T [
f
(
x̄k
)− AT λ̄k

] ≥ 1 + μ

2

(∥∥xk+1∗ − x
∥∥2

R
− ∥∥xk − x

∥∥2
R

)

+ 1 − μ

2

∥
∥xk − x̄k

∥
∥2

R
, ∀x ∈ R

n+. (35)

Similarly, applying Lemma 3.1 to (29) and using (32), we get
(
y − ȳk

)T [
g
(
ȳk
)− BT λ̄k + BT HB

(
ȳk − yk

)]

≥ 1 + μ

2

(∥∥yk+1∗ − y
∥∥2

S
− ∥∥yk − y

∥∥2
S

)+ 1 − μ

2

∥∥yk − ȳk
∥∥2

S
, ∀y ∈ R

p
+.

It follows from the above inequality that
(
y − ȳk

)T [
g
(
ȳk
)− BT λ̄k

]

≥ (y − ȳk
)T

BT HB
(
yk − ȳk

)+ 1 + μ

2

(∥∥yk+1∗ − y
∥∥2

S
− ∥∥yk − y

∥∥2
S

)

+ 1 − μ

2

∥∥yk − ȳk
∥∥2

S
. (36)

Setting λ̂k+1 = λk+1∗ in Lemma 3.2 and using ȳk = yk+1∗ , we have

(
λ − λ̄k

)T (
Ax̄k + Bȳk − b

)

= (y − ȳk
)T

BT HB
(
ȳk − yk

)+ 1

2

(∥∥y − yk+1∗
∥∥2

BT HB
− ∥∥y − yk

∥∥2
BT HB

)

+ 1

2

(∥∥λ − λk+1∗
∥∥2

H−1 − ∥∥λ − λk
∥∥2

H−1

)+ 1

2

∥∥λk − λ̄k
∥∥2

H−1 .

Combining (35), (36) and the above equation together and by simple manipulations,
we can get (34) immediately. The proof is completed. �

The following result shows the contraction of the sequence generated by Algo-
rithm 1, based on which the convergence of Algorithm 1 can be established easily.

Lemma 4.3 Let the sequence {wk} be generated by Algorithm 1. Then {wk} is
bounded, i.e., for any w∗ ∈ W ∗, there are positive constants Cw∗ and ρ, such that

∥∥wk − w∗∥∥
G

≤ Cw∗ , ∀k ≥ 0,

and
∥∥wk+1 − w∗∥∥2

G
≤ ∥∥wk − w∗∥∥2

G
+ 2ρCw∗νk + ρ2ν2

k

− (1 − μ)
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S
+ ∥∥λk − λ̄k

∥∥2
H−1

)
,

where G is defined by (12).
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Proof Setting w = w∗ in (34), we get

2
(
w∗ − w̄k

)T
Q
(
w̄k
) ≥ ∥∥wk+1∗ − w∗∥∥2

G
− ∥∥wk − w∗∥∥2

G

+ (1 − μ)
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S

)+ ∥∥λk − λ̄k
∥∥2

H−1 .

On the other hand, since Q is monotone, w̄k ∈ W , and w∗ ∈ W ∗, we have

0 ≥ (w∗ − w̄k
)T

Q
(
w∗)≥ (w∗ − w̄k

)T
Q
(
w̄k
)
.

From the above two inequalities and using μ ∈]0,1[, we obtain

∥∥wk+1∗ −w∗∥∥2
G

≤ ∥∥wk −w∗∥∥2
G

−(1−μ)
(∥∥xk − x̄k

∥∥2
R

+∥∥yk − ȳk
∥∥2

S
+∥∥λk − λ̄k

∥∥2
H−1

)
.

(37)
It follows from (37) and Lemma 4.1 that there is a positive constant ρ such that

∥∥wk+1 − w∗∥∥
G

≤ ∥∥wk+1∗ − w∗∥∥
G

+ ∥∥wk+1 − wk+1∗
∥∥

G
≤ ∥∥wk − w∗∥∥

G
+ ρνk.

Consequently, for any k ≥ 0 we get

∥∥wk+1 −w∗∥∥
G

≤ ∥∥w0 −w∗∥∥
G

+ρ

k∑

i=0

νi ≤ ∥∥w0 −w∗∥∥
G

+ρ

∞∑

i=0

νi := Cw∗ < +∞.

(38)
Therefore, the sequence {wk} generated by Algorithm 1 is bounded. It follows from
(33), (37) and (38) that

∥∥wk+1 − w∗∥∥2
G

= ∥∥(wk+1∗ − w∗)+ (wk+1 − wk+1∗
)∥∥2

G

≤ ∥∥wk+1∗ − w∗∥∥2
G

+ 2
∥∥wk+1∗ − w∗∥∥

G
· ∥∥wk+1 − wk+1∗

∥∥
G

+ ∥∥wk+1 − wk+1∗
∥∥2

G

≤ ∥∥wk − w∗∥∥2
G

− (1 − μ)
(∥∥xk − x̄k

∥
∥2

R
+ ∥∥yk − ȳk

∥
∥2

S
+ ∥∥λk − λ̄k

∥
∥2

H−1

)

+ 2ρνk

∥∥wk − w∗∥∥
G

+ ρ2ν2
k

≤ ∥∥wk − w∗∥∥2
G

+ 2ρCw∗νk + ρ2ν2
k

− (1 − μ)
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S
+ ∥∥λk − λ̄k

∥∥2
H−1

)
.

The proof is completed. �

Now, we are ready to prove the convergence of Algorithm 1.

Theorem 4.1 The sequence {wk} generated by Algorithm 1 converges to some w∞
which is a solution of SVI(W ,Q).
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Proof From
∑∞

k=0 νk < +∞ and νk ≥ 0, it follows that

∞∑

k=0

(
2ρCw∗νk + ρ2ν2

k

)
< +∞.

Setting ηk = 2ρCw∗νk +ρ2ν2
k , c0 = 1−μ in (20), from Lemma 4.3 and Theorem 3.1

we have

lim
k→∞

∥
∥wk − w̄k

∥
∥

G
= 0. (39)

Then it follows from (12), (31), and (32) that

lim
k→∞

∥∥wk+1∗ − w̄k
∥∥

G
= lim

k→∞
∥∥λk+1∗ − λ̄k

∥∥
H−1 = lim

k→∞
∥∥H
(
Byk − Bȳk

)∥∥
H−1 = 0.

From (34) and the above two formulas, we get

lim inf
k→∞

(
w − w̄k

)T
Q
(
w̄k
)≥ 0, ∀w ∈ W .

The convergence of Algorithm 1 is then obtained immediately from Theorem 3.1. �

4.3 Convergence Rate

Now, we show the worst-case O(1/t) convergence rate for Algorithm 1.

Theorem 4.2 For any integer t > 0, there is a w̄t ∈ W which is a convex combination
of the iterates w̄0, w̄1, . . . , w̄t defined by (32). Then, for any w ∈ W , we have

(w̄t − w)T Q(w) ≤ 1

t + 1

(
1

2

∥∥w0 − w
∥∥2

G
+ ρ

t∑

k=0

νk

∥∥wk+1 − w
∥∥

G

)

, (40)

where w̄t := (
∑t

k=0 w̄k)/(t + 1).

Proof From (34), we have

(
w − w̄k

)T
Q
(
w̄k
)+ 1

2

∥∥wk − w
∥∥2

G
≥ 1

2

∥∥wk+1∗ − w
∥∥2

G
, ∀w ∈ W .

It follows from (33) that

∥∥wk+1∗ − w
∥∥2

G
≥ (∥∥wk+1 − w

∥∥
G

− ∥∥wk+1 − wk+1∗
∥∥

G

)2

= ∥∥wk+1 − w
∥∥2

G
− 2
∥∥wk+1 − w

∥∥
G

· ∥∥wk+1 − wk+1∗
∥∥

G

+ ∥∥wk+1 − wk+1∗
∥∥2

G

≥ ∥∥wk+1 − w
∥∥2

G
− 2ρνk

∥∥wk+1 − w
∥∥

G
, ∀w ∈ W .
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Since Q is monotone, from the above two inequalities, we have

(
w − w̄k

)T
Q(w) + 1

2

∥∥wk − w
∥∥2

G

≥ 1

2

∥∥wk+1 − w
∥∥2

G
− ρνk

∥∥wk+1 − w
∥∥

G
, ∀w ∈ W . (41)

Summing the inequality (41) over k = 0,1, . . . , t , we obtain

[

(t + 1)w −
(

t∑

k=0

w̄k

)]T

Q(w) + 1

2

∥
∥w0 − w

∥
∥2

G

≥ 1

2

∥∥wt+1 − w
∥∥2

G
− ρ

t∑

k=0

νk

∥∥wk+1 − w
∥∥

G

≥ −ρ

t∑

k=0

νk

∥∥wk+1 − w
∥∥

G
, ∀w ∈ W .

Since
∑t

k=0 1/(t + 1) = 1, w̄t is a convex combination of w̄0, w̄1, . . . , w̄t and thus
w̄t ∈ W . Using the notation of w̄t , we derive

(w − w̄t )
T Q(w)+ 1

2(t + 1)

∥∥w0 −w
∥∥2

G
≥ − ρ

t + 1

t∑

k=0

νk

∥∥wk+1 −w
∥∥

G
, ∀w ∈ W .

The assertion (40) follows from the above inequality immediately. �

It follows from Lemma 4.3 that the sequence {wk} generated by Algorithm 1 is
bounded. According to (39), the sequence {w̄k} defined by (32) is also bounded.
Therefore, there exists a constant D > 0 such that

∥∥wk
∥∥

G
≤ D and

∥∥w̄k
∥∥

G
≤ D, ∀k ≥ 0.

Recall that w̄t is the average of {w̄0, w̄1, . . . , w̄t }. Thus, we have ‖w̄t‖G ≤ D. Denote
E1 :=∑∞

k=0 νk < +∞. For any w ∈ B W (w̄t ) := {w ∈ W | ‖w − w̄t‖G ≤ 1}, we get

(w̄t − w)T Q(w)

≤ 1

t + 1

(
1

2

∥∥w0 − w
∥∥2

G
+ ρ

t∑

k=0

νk

∥∥wk+1 − w
∥∥

G

)

≤ 1

t + 1

[
1

2

(∥∥w0 − w̄t

∥∥
G

+ ∥∥w̄t − w
∥∥

G

)2

+ ρ

t∑

k=0

νk

(∥∥wk+1 − w̄t

∥∥
G

+ ∥∥w̄t − w
∥∥

G

)
]
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≤ 1

t + 1

[
1

2

(∥∥w0
∥∥

G
+ ∥∥w̄t

∥∥
G

+ ∥∥w̄t − w
∥∥

G

)2

+ ρ

t∑

k=0

νk

(∥∥wk+1
∥∥

G
+ ∥∥w̄t

∥∥
G

+ ∥∥w̄t − w
∥∥

G

)
]

≤ 1

t + 1

[
1

2
(2D + 1)2 + ρE1(2D + 1)

]
.

Thus, for any given ε > 0, after at most t :=  (2D+1)(2D+1+2ρE1)
2ε

− 1� iterations, we
have

(w̄t − w)T Q(w) ≤ ε, ∀w ∈ B W (w̄t ),

which means w̄t is an approximate solution of SVI(W ,Q) with an accuracy of
O(1/t). That is, a worst-case O(1/t) convergence rate of Algorithm 1 in ergodic
sense is established.

5 The Second Algorithm

As we have mentioned, the inexactness criterion in Algorithm 1 (i.e., (26) and (28))
is not applicable directly due to the lack of xk+1∗ and yk+1∗ . Now we propose a new
inexactness criterion in the absence of these exact solutions and embed it into the
subproblems (8) and (9). A new implementable ADMM with LQP regularization is
thus proposed. Note the new inexactness criterion allows the relative error of solving
the subproblems (8) and (9) to be fixed as a constant.

5.1 Algorithm 2

To ensure the convergence when the relative error of solving the subproblems (8)
and (9) is fixed as a constant, the approximate solutions of (8) and (9) should be
corrected to generate a new iterate (xk+1, yk+1, λk+1). In this algorithm, we thus use
(x̃k, ỹk, λ̃k) ∈ R

n++ × R
p
++ × R

m to denote the approximate solutions of (8)–(10).
Below, for notational simplicity we choose R := rI and S := sI with r, s > 0 as the
proximal matrices for this algorithm.

Algorithm 2 (I-ADMM-LQP 2)

Step 0. Let ε > 0; μ,ν,σ ∈]0,1[; γ ∈]0,2[; r, s > 0; w0 := (x0, y0, λ0) ∈ R
n++ ×

R
p
++ × R

m and H be a positive definite diagonal matrix. Set k = 0.
Step 1. Find x̃k ∈ R

n++ and ξk
x ∈ R

n such that

f
(
x̃k
)− AT

[
λk − H

(
Ax̃k + Byk − b

)]

+ R
{(

x̃k − xk
)+ μ

[
xk − X2

k

(
x̃k
)−1]}+ ξk

x = 0, (42)
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where ξk
x satisfies the following inexactness criterion:

∥∥ξk
x

∥∥≤ νr(1 − μ)
∥∥xk − x̃k

∥∥. (43)

Step 2. Find ỹk ∈ R
p
++ and ξk

y ∈ R
p such that

g
(
ỹk
)− BT

[
λk − H

(
Ax̃k + Bỹk − b

)]

+ S
{(

ỹk − yk
)+ μ

[
yk − Y 2

k

(
ỹk
)−1]}+ ξk

y = 0, (44)

where ξk
y satisfies the following inexactness criterion:

∥∥ξk
y

∥∥≤ νs(1 − μ)
∥∥yk − ỹk

∥∥. (45)

Step 3. Update λ̃k via

λ̃k := λk − H
(
Ax̃k + Bỹk − b

)
. (46)

Step 4. Set w̃k := (x̃k, ỹk, λ̃k), and then generate the new iterate wk+1 by

wk+1 := (1 − σ)wk + σPW ,G

[
wk − αkd

(
wk, w̃k, ξk

)]
(47)

with the step-size

αk := γ α∗
k , (48)

where

α∗
k := ϕ(wk, w̃k, ξk)

‖d(wk, w̃k, ξk)‖2
G

, ξk :=
⎛

⎜
⎝

ξk
x

ξk
y

0

⎞

⎟
⎠ ,

d
(
wk, w̃k, ξk

) := (wk − w̃k
)− G−1ξk, (49)

ϕ
(
wk, w̃k, ξk

) := (λk − λ̃k
)T (

Byk − Bỹk
)+ (wk − w̃k

)T
Gd
(
wk, w̃k, ξk

)

− μ
(∥∥xk − x̃k

∥∥2
R

+ ∥∥yk − ỹk
∥∥2

S

)
, (50)

and G is defined by (12).
Step 5. If ‖wk+1 − wk‖ ≤ ε, stop; otherwise set k = k + 1 and goto Step 1.

Remark 5.1 Note that Lemma 3.1 guarantees that there exists a unique solution x̃k ∈
R

n++ for a given ξk
x ∈ R

n and a unique solution ỹk ∈ R
p
++ for a given ξk

y ∈ R
p . To

implement Algorithm 2, it is easy to determine the error terms ξk
x and ξk

y subject to
the inexactness criteria (43) and (45). For example, in practice within finite iterations,
we can choose

ξk
x := f

(
xk
)− f

(
x̃k
)+ AT HA

(
xk − x̃k

)
. (51)
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Then, the system of equations (42) reduces to

f
(
xk
)−AT

[
λk −H

(
Axk +Byk − b

)]+ r
{(

x̃k − xk
)+μ

[
xk −X2

k

(
x̃k
)−1]}= 0,

(52)
whose solution can be given explicitly by

(
x̃k
)
i
:=

qk
i +

√
(qk

i )2 + 4μ(xk
i )2

2
, i = 1, . . . , n

with

qk := (1 − μ)xk − 1

r

{
f
(
xk
)− AT

[
λk − H

(
Axk + Byk − b

)]}
.

It is easy to verify that x̃k ∈ R
n++ whenever xk ∈ R

n++. Similarly, we can choose

ξk
y := g

(
yk
)− g

(
ỹk
)+ BT HB

(
yk − ỹk

)
. (53)

Then the positive solution of (44) can be obtained explicitly by

(
ỹk
)
i
:=

τ k
i +

√
(τ k

i )2 + 4μ(yk
i )2

2
, i = 1, . . . , p

with

τ k := (1 − μ)yk − 1

s

{
g
(
yk
)− BT

[
λk − H

(
Ax̃k + Byk − b

)]}
.

Furthermore, ỹk ∈ R
p
++ whenever yk ∈ R

p
++.

Remark 5.2 The inexactness criteria (43) and (45) can be met with proper values of r

and s, respectively. For example, when both f and g in (2) are Lipschtiz continuous,
we can choose ξk

x as (51) and

r ≥ Lf + ‖AT HA‖
ν(1 − μ)

, (54)

where Lf is f ’s Lipschtiz constant. Then, it follows that

∥∥ξk
x

∥∥(51)≤ (
Lf + ∥∥AT HA

∥∥)∥∥xk − x̃k
∥∥(54)≤ νr(1 − μ)

∥∥xk − x̃k
∥∥,

which means that the inexactness criterion (43) is satisfied. Similarly, we can choose
ξk
y as (53) and

s ≥ Lg + ‖BT HB‖
ν(1 − μ)

, (55)

where Lg is g’s Lipschtiz constant. Then, we have

∥∥ξk
y

∥∥(53)≤ (
Lg + ∥∥BT HB

∥∥)∥∥yk − ỹk
∥∥(55)≤ νs(1 − μ)

∥∥yk − ỹk
∥∥,

and thus the inexactness criterion (45) is satisfied.
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Remark 5.3 As we have mentioned, since the ADMM subproblems with LQP regu-
larization are allowed to be solved subject to a constant accuracy, Algorithm 2 thus
requires certain correction step to further correct the approximate solutions to ensure
the convergence. More specifically, the additional correction required by Algorithm 2
in (47) can be specified as

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 := (1 − σ)xk + σPR
n+{xk − αk[xk − x̃k − 1

(1+μ)r
ξk
x ]},

yk+1 := (1 − σ)yk + σP
R

p
+,M{yk − αk[yk − ỹk − M−1ξk

y ]},
λk+1 := (1 − σ)λk + σ [λk − αk(λ

k − λ̃k)] = λk − σαk(λ
k − λ̃k),

where M := (1+μ)S +BT HB . This additional computation is easy and inexpensive
computationally.

5.2 Convergence

Recall we let wk := (xk, yk, λk) ∈ R
n++ × R

p
++ × R

m be a given vector, w̃k :=
(x̃k, ỹk, λ̃k) ∈ R

n++ ×R
p
++ ×R

m be generated by Algorithm 2, wk , w̃k and ξk satisfy
(43) and (45). In this subsection, we prove the convergence of Algorithm 2.

For convenience of the following analysis, we define

w̄k :=
⎛

⎝
x̄k

ȳk

λ̄k

⎞

⎠=
⎛

⎝
x̃k

ỹk

λk − H(Ax̃k + Byk − b)

⎞

⎠ . (56)

Lemma 5.1 Let the sequence {wk} be generated by Algorithm 2, and the accompa-
nying sequence {w̄k} be defined by (56). Then, for any w := (x, y,λ) ∈ W , we have

(
w − w̄k

)T
Q
(
w̄k
)≥ 1

2σγα∗
k

(∥∥wk+1 −w
∥∥2

G
−∥∥wk −w

∥∥2
G

)+ 2 − γ

2
ϕ
(
wk, w̃k, ξk

)
,

(57)
where ϕ(wk, w̃k, ξk) is defined by (50).

Proof Recall that x̄k = x̃k and ȳk = ỹk . It follows from (42), (44) and (56) that

f
(
x̄k
)− AT λ̄k + ξk

x + R
{(

x̄k − xk
)+ μ

[
xk − X2

k

(
x̄k
)−1]}= 0,

g
(
ȳk
)− BT λ̄k + BT HB

(
ȳk − yk

)+ ξk
y + S

{(
ȳk − yk

)+ μ
[
yk − Y 2

k

(
ȳk
)−1]}= 0.

Applying Lemma 3.1 to the above equations, respectively, the inequality (16) can be
written as

(
x − x̄k

)T [
f
(
x̄k
)− AT λ̄k + ξk

x

]

≥ (1 + μ)
(
xk − x̄k

)T
R
(
x − x̄k

)− μ
∥∥xk − x̄k

∥∥2
R
, ∀x ∈ R

n+,
(
y − ȳk

)T [
g
(
ȳk
)− BT λ̄k + BT HB

(
ȳk − yk

)+ ξk
y

]

≥ (1 + μ)
(
y − ȳk

)T
S
(
yk − ȳk

)− μ
∥∥yk − ȳk

∥∥2
S
, ∀y ∈ R

p
+.
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Thus we have
(
x − x̄k

)T [
f
(
x̄k
)− AT λ̄k

]

≥ (x − x̄k
)T {

(1 + μ)R
(
xk − x̄k

)− ξk
x

}− μ
∥
∥xk − x̄k

∥
∥2

R
, ∀x ∈ R

n+,
(
y − ȳk

)T [
g
(
ȳk
)− BT λ̄k

]

≥ (y − ȳk
)T {[

(1 + μ)S + BT HB
](

yk − ȳk
)− ξk

y

}− μ
∥
∥yk − ȳk

∥
∥2

S
, ∀y ∈ R

p
+.

Note that
(
λ − λ̄k

)T (
Ax̄k + Bȳk − b

)= (λ − λ̄k
)T

H−1(λk − λ̃k
)
, ∀λ ∈ R

m.

Combining the above three formulas together and using (49) and the notation of G

and ξk , we get

(
w − w̄k

)T
Q
(
w̄k
) ≥ (w − w̄k

)T
Gd
(
wk, w̃k, ξk

)− μ
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S

)

(58)

= (w − wk
)T

Gd
(
wk, w̃k, ξk

)+ (wk − w̄k
)T

Gd
(
wk, w̃k, ξk

)

− μ
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S

)
, ∀w ∈ W . (59)

For any w ∈ W , we have

∥∥wk+1 − w
∥∥2

G
= ∥∥(1 − σ)wk + σPW ,G

[
wk − γ α∗

k d
(
wk, w̃k, ξk

)]− w
∥∥2

G

≤ [
(1 − σ)

∥∥wk − w
∥∥

G

+ σ
∥∥PW ,G

[
wk − γ α∗

k d
(
wk, w̃k, ξk

)]− w
∥∥

G

]2

(11)≤ (1 − σ)
∥∥wk − w

∥∥2
G

+ σ
∥∥wk − γ α∗

k d
(
wk, w̃k, ξk

)− w
∥∥2

G

(49)= ∥∥wk − w
∥∥2

G
− 2σγα∗

k

(
wk − w

)T
Gd
(
wk, w̃k, ξk

)

+ σγ 2α∗
kϕ
(
wk, w̃k, ξk

)
. (60)

It follows from (60) that

(
w − wk

)T
Gd
(
wk, w̃k, ξk

)

≥ 1

2σγα∗
k

(∥∥wk+1 − w
∥∥2

G
− ∥∥wk − w

∥∥2
G

)− γ

2
ϕ
(
wk, w̃k, ξk

)
. (61)

Since (w̃k − w̄k)T Gd(wk, w̃k, ξk) = (λk − λ̃k)T (Byk − Bỹk) (see (12), (49) and
(56)), it follows from the notation of ϕ(wk, w̃k, ξk) that

(
wk − w̄k

)T
Gd
(
wk, w̃k, ξk

)− μ
(∥∥xk − x̃k

∥∥2
R

+ ∥∥yk − ỹk
∥∥2

S

)

= (wk − w̃k
)T

Gd
(
wk, w̃k, ξk

)− μ
(∥∥xk − x̃k

∥∥2
R

+ ∥∥yk − ỹk
∥∥2

S

)

+ (w̃k − w̄k
)T

Gd
(
wk, w̃k, ξk

)
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= (wk − w̃k
)T

Gd
(
wk, w̃k, ξk

)− μ
(∥∥xk − x̃k

∥∥2
R

+ ∥∥yk − ỹk
∥∥2

S

)

+ (λk − λ̃k
)T (

Byk − Bỹk
)

= ϕ
(
wk, w̃k, ξk

)
. (62)

Substituting (61) and (62) into (59), the assertion (57) is proved. �

Using the notation of M , the matrix G can be rewritten as

G :=
⎛

⎝
(1 + μ)R 0 0

0 M 0
0 0 H−1

⎞

⎠ .

Proposition 5.1 For given wk := (xk, yk, λk) ∈ R
n++ × R

p
++ × R

m, let w̃k :=
(x̃k, ỹk, λ̃k) be generated by (42)–(46). Then we have

ϕ
(
wk, w̃k, ξk

)≥ 1

4

∥
∥d
(
wk, w̃k, ξk

)∥∥2
G
. (63)

Proof It follows from (49), (50) and the notation of G and xk that

ϕ
(
wk, w̃k, ξk

) = (λk − λ̃k
)T (

Byk − Bỹk
)+ ∥∥wk − w̃k

∥∥2
G

− (wk − w̃k
)T

ξk

− μ
(∥∥xk − x̃k

∥∥2
R

+ ∥∥yk − ỹk
∥∥2

S

)

= (λk − λ̃k
)T (

Byk − Bỹk
)+ ∥∥λk − λ̃k

∥∥2
H−1

+ ∥∥Byk − Bỹk
∥∥2

H
+ ∥∥xk − x̃k

∥∥2
R

− (xk − x̃k
)T

ξk
x + ∥∥yk − ỹk

∥∥2
S

− (yk − ỹk
)T

ξk
y . (64)

Using λ̄k = λ̃k − H(Byk − Bỹk) (see (46) and (56)), we have

(
λk − λ̃k

)T (
Byk − Bỹk

)+ 1

2

(∥∥λk − λ̃k
∥∥2

H−1 + ∥∥Byk − Bỹk
∥∥2

H

)

= 1

2

∥∥λk − λ̃k + H
(
Byk − Bỹk

)∥∥2
H−1

= 1

2

∥∥λk − λ̄k
∥∥2

H−1 .

Substituting this into (64), it follows that

ϕ
(
wk, w̃k, ξk

) = 1

2

(∥∥λk − λ̄k
∥∥2

H−1 + ∥∥λk − λ̃k
∥∥2

H−1 + ∥∥Byk − Bỹk
∥∥2

H

)

+ ∥∥xk − x̃k
∥∥2

R
− (xk − x̃k

)T
ξk
x + ∥∥yk − ỹk

∥∥2
S

− (yk − ỹk
)T

ξk
y .

(65)
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Since R := rI , it follows from (43) that
∥∥R−1ξk

x

∥∥
R

≤ ν(1 − μ)
∥∥xk − x̃k

∥∥
R
. (66)

Using the Cauchy–Schwarz inequality and (66), we have

1 − μ

2

∥∥xk − x̃k
∥∥2

R
− 1

2

(
xk − x̃k

)T
ξk
x ≥ 1 − μ

2

∥∥xk − x̃k
∥∥2

R
− 1

2

∥∥xk − x̃k
∥∥

R

∥∥R−1ξk
x

∥∥
R

≥ (1 − μ)(1 − ν)

2

∥∥xk − x̃k
∥∥2

R
≥ 0.

From the above inequality, we obtain

∥∥xk − x̃k
∥∥2

R
− (xk − x̃k

)T
ξk
x ≥ 1

2

[∥∥xk − x̃k
∥∥2

(1+μ)R
− (xk − x̃k

)T
ξk
x

]
. (67)

Using (66), we have

∥∥[(1 + μ)R
]−1

ξk
x

∥∥2
(1+μ)R

= 1

(1 + μ)2

∥∥R−1ξk
x

∥∥2
(1+μ)R

≤ ν2(1 − μ)2

(1 + μ)2

∥∥xk − x̃k
∥∥2

(1+μ)R

≤ ∥∥xk − x̃k
∥∥2

(1+μ)R
.

It follows from the above inequality that

∥∥xk − x̃k
∥∥2

(1+μ)R
− (xk − x̃k

)T
ξk
x

≥ 1

2

∥∥xk − x̃k
∥∥2

(1+μ)R
− (xk − x̃k

)T
ξk
x + 1

2

∥∥[(1 + μ)R
]−1

ξk
x

∥∥2
(1+μ)R

= 1

2

∥∥xk − x̃k − [(1 + μ)R
]−1

ξk
x

∥∥2
(1+μ)R

.

Substituting this into (67), we obtain

∥∥xk − x̃k
∥∥2

R
− (xk − x̃k

)T
ξk
x ≥ 1

4

∥∥xk − x̃k − [(1 + μ)R
]−1

ξk
x

∥∥2
(1+μ)R

. (68)

Similarly, using (45), we obtain

∥∥yk − ỹk
∥∥2

S
− (yk − ỹk

)T
ξk
y ≥ 1

4

∥∥yk − ỹk − [(1 + μ)S
]−1

ξk
y

∥∥2
(1+μ)S

.

Therefore, it follows from (65) and the above two inequalities that

ϕ
(
wk, w̃k, ξk

) ≥ 1

4

(∥∥λk − λ̃k
∥∥2

H−1 + ∥∥Byk − Bỹk
∥∥2

H

)+ ∥∥xk − x̃k
∥∥2

R
− (xk − x̃k

)T
ξk
x

+ ∥∥yk − ỹk
∥∥2

S
− (yk − ỹk

)T
ξk
y
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≥ 1

4

[∥∥xk − x̃k − [(1 + μ)R
]−1

ξk
x

∥∥2
(1+μ)R

+ (∥∥Byk − Bỹk
∥∥2

H

+ ∥∥yk − ỹk − [(1 + μ)S
]−1

ξk
y

∥∥2
(1+μ)S

)+ ∥∥λk − λ̃k
∥∥2

H−1

]
. (69)

Using the notation of M , we get

(
ξk
y

)T [
(1 + μ)S

]−1
ξk
y ≥ (ξk

y

)T
M−1ξk

y ,

and thus
∥∥[(1 + μ)S

]−1
ξk
y

∥∥2
(1+μ)S

≥ ∥∥M−1ξk
y

∥∥2
M

. (70)

By a simple manipulation, we have

∥∥Byk − Bỹk
∥∥2

H
+ ∥∥yk − ỹk − [(1 + μ)S

]−1
ξk
y

∥∥2
(1+μ)S

= ∥∥yk − ỹk
∥∥2

(1+μ)S+BT HB
− 2
(
yk − ỹk

)T
ξk
y + ∥∥[(1 + μ)S

]−1
ξk
y

∥∥2
(1+μ)S

(70)≥ ∥∥yk − ỹk
∥∥2

M
− 2
(
yk − ỹk

)T
ξk
y + ∥∥M−1ξk

y

∥∥2
M

= ∥∥yk − ỹk − M−1ξk
y

∥∥2
M

. (71)

Substituting (71) into (69) and using the notation of d(wk, w̃k, ξk) and G, the asser-
tion of this proposition is proved. �

The following corollary follows from the definition of αk∗ and (63) directly, and
we omit its proof.

Corollary 5.1 The step-size α∗
k defined in Step 4 of Algorithm 2 satisfies α∗

k ≥ 1/4
for all k ≥ 0.

Next, we will show the contraction of the sequence generated by Algorithm 2,
based on which the convergence of Algorithm 2 can be established easily.

Corollary 5.2 For any w∗ ∈ W ∗, there is a positive constant c1 such that the se-
quence {wk} generated by Algorithm 2 satisfies

∥∥wk+1 − w∗∥∥2
G

≤ ∥∥wk − w∗∥∥2
G

− c1
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S
+ ∥∥λk − λ̄k

∥∥2
H−1

)
.

(72)

Proof Since w∗ ∈ W ∗, w̄k ∈ W and Q is monotone, we have

0 ≥ (w∗ − w̄k
)T

Q
(
w∗)≥ (w∗ − w̄k

)T
Q
(
w̄k
)
.

Then, setting w = w∗ in (57), we have

0 ≥ (w∗ − w̄k
)T

Q
(
w̄k
)

≥ 1

2σγα∗
k

(∥∥wk+1 − w∗∥∥2
G

− ∥∥wk − w∗∥∥2
G

)+ 2 − γ

2
ϕ
(
wk, w̃k, ξk

)
.
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It follows from the above equation and Corollary 5.1 that

∥∥wk+1 − w∗∥∥2
G

≤ ∥∥wk − w∗∥∥2
G

− σγ (2 − γ )α∗
kϕ
(
wk, w̃k, ξk

)

≤ ∥∥wk − w∗∥∥2
G

− σγ (2 − γ )

4
ϕ
(
wk, w̃k, ξk

)
. (73)

Using (65), we have

ϕ
(
wk, w̃k, ξk

) ≥ 1

2

∥∥λk − λ̄k
∥∥2

H−1 + ∥∥xk − x̃k
∥∥2

R
− (xk − x̃k

)T
ξk
x

+ ∥∥yk − ỹk
∥∥2

S
− (yk − ỹk

)T
ξk
y .

It follows from (43) and (45) that

1

2

∥∥λk − λ̄k
∥∥2

H−1 + ∥∥xk − x̃k
∥∥2

R
− (xk − x̃k

)T
ξk
x + ∥∥yk − ỹk

∥∥2
S

− (yk − ỹk
)T

ξk
y

≥ 1

2

∥∥λk − λ̄k
∥∥2

H−1 + ∥∥xk − x̄k
∥∥2

R
− ∥∥xk − x̄k

∥∥ · ∥∥ξk
x

∥∥

+ ∥∥yk − ȳk
∥∥2

S
− ∥∥yk − ȳk

∥∥ · ∥∥ξk
y

∥∥

≥ 1

2

∥∥λk − λ̄k
∥∥2

H−1 + ∥∥xk − x̄k
∥∥2

R
− ν(1 − μ)

∥∥xk − x̄k
∥∥2

R

+ ∥∥yk − ȳk
∥∥2

S
− ν(1 − μ)

∥∥yk − ȳk
∥∥2

S

≥ (1 − μ)(1 − ν)

2

(∥∥xk − x̄k
∥∥2

R
+ ∥∥yk − ȳk

∥∥2
S

+ ∥∥λk − λ̄k
∥∥2

H−1

)
.

Setting c1 := σγ (2−γ )(1−μ)(1−ν)/8, the assertion (72) is proved from the above
three inequalities. �

Theorem 5.1 The sequence {wk} generated by Algorithm 2 converges to some w∞
which is a solution of SVI(W ,Q).

Proof Setting ηk ≡ 0, c0 = c1 in (20), from (72) and Theorem 3.1 we have

lim
k→∞

∥∥wk − w̄k
∥∥

G
= 0, (74)

and {wk} is bounded. It follows from (73) and (63) that

lim
k→∞

∥∥d
(
wk, w̃k, ξk

)∥∥
G

= 0. (75)

From (58), we obtain

(
w − w̄k

)T
Q
(
w̄k
) ≥ −∥∥w − w̄k

∥∥
G

∥∥d
(
wk, w̃k, ξk

)∥∥
G

− μ
(∥∥xk − x̄k

∥∥2
R

+ ∥∥yk − ȳk
∥∥2

S

)
, ∀w ∈ W .
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Together with (74) and (75), we get

lim inf
k→∞

(
w − w̄k

)T
Q
(
w̄k
)≥ 0, ∀w ∈ W .

The convergence of Algorithm 2 is then obtained immediately from Theorem 3.1. �

5.3 Convergence Rate

Now, we show the worst-case O(1/t) convergence rate for Algorithm 2.

Theorem 5.2 For any integer t > 0, there is a w̄t ∈ W , which is a convex combina-
tion of the iterates w̄0, w̄1, . . . , w̄t defined in (56). For any w ∈ W , we have

(w̄t − w)T Q(w) ≤ 1

2σγΥt

∥∥w0 − w
∥∥2

G
, (76)

where

Υt :=
t∑

k=0

α∗
k and w̄t := 1

Υt

t∑

k=0

α∗
k w̄k.

Proof It follows from (57) and (63) that

(
w − w̄k

)T
α∗

kQ
(
w̄k
)+ 1

2σγ

∥∥wk − w
∥∥2

G
≥ 1

2σγ

∥∥wk+1 − w
∥∥2

G
, ∀w ∈ W .

Since Q is monotone, from the above inequality, we have

(
w − w̄k

)T
α∗

kQ(w) + 1

2σγ

∥∥wk − w
∥∥2

G
≥ 1

2σγ

∥∥wk+1 − w
∥∥2

G
, ∀w ∈ W . (77)

Summing the inequality (77) over k = 0,1, . . . , t , we obtain

[(
t∑

k=0

α∗
k

)

w −
(

t∑

k=0

α∗
k w̄k

)]T

Q(w) + 1

2σγ

∥
∥w0 − w

∥
∥2

G
≥ 1

2σγ

∥
∥wt+1 − w

∥
∥2

G

≥ 0, ∀w ∈ W .

Since (
∑t

k=0 α∗
k )/Υt = 1, w̄t is a convex combination of w̄0, w̄1, . . . , w̄t and thus

w̄t ∈ W . Using the notation of Υt and w̄t , we derive

(w − w̄t )
T Q(w) + 1

2σγΥt

∥∥w0 − w
∥∥2

G
≥ 0, ∀w ∈ W .

The assertion (76) follows from the above inequality immediately. �

Using Theorem 5.2, we can prove a worst-case O(1/t) convergence rate of Algo-
rithm 2 in ergodic sense as Algorithm 1.
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6 Conclusions

This paper studies how to combine the alternating direction method of multipliers
and the logarithmic-quadratic proximal method, allowing the resulting subproblems
to be solved approximately subject to different inexactness criteria. We demonstrate
how to develop inexact versions of ADMM with LQP regularization by applying the
most popular and fundamental choices of inexactness criteria in the literature. It de-
serves further research on embedding other inexactness criteria into the subproblems
of ADMM with LQP regularization and thus developing other algorithms of the same
kind as those in this paper. We expect that certain correction steps are required if some
relaxed inexactness criteria are chosen for solving the resulting subproblems of the
combination of ADMM and LQP method.

Acknowledgements The first author was supported by National Natural Science Foundation of China
grant 11001053, Program for New Century Excellent Talents in University grant NCET-12-0111 and Nat-
ural Science Foundation of Jiangsu Province grant BK2012662. The second author was supported in part
by Hong Kong General Research Fund grants HKBU 201409 and HKBU 201611. The third author was
supported by the grant FRG2/11-12/120 from Hong Kong Baptist University and the General Research
Fund HKBU 203311 from Hong Kong Research Grants Council.

References

1. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par
pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Rev. Fr. Autom. Inform.
Rech. Opér., Anal. Numér. 2, 41–76 (1975)

2. He, B.S., Liao, L.-Z., Han, D.R., Yang, H.: A new inexact alternating directions method for monotone
variational inequalities. Math. Program. 92(1), 103–118 (2002)

3. Martinet, B.: Regularision d’inéquations variationnelles par approximations successive. Rev. Fr. Au-
tom. Inform. Rech. Opér. 126, 154–159 (1970)

4. Auslender, A., Teboulle, M.: Entropic proximal decomposition method for convex programs and vari-
ational inequalities. Math. Program. 91(1), 33–47 (2001)

5. Yuan, X.M., Li, M.: An LQP-based decomposition method for solving a class of variational inequali-
ties. SIAM J. Optim. 21(4), 1309–1318 (2011)

6. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational
inequalities. Comput. Optim. Appl. 12, 31–40 (1999)

7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

8. Tao, M., Yuan, X.M.: On the O(1/t) convergence rate of alternating direction method with
logarithmic-quadratic proximal regularization. SIAM J. Optim. 22(4), 1431–1448 (2012)

9. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems,
Vols. I and II. Springer, New York (2003)

10. He, B.S., Yuan, X.M.: On the O(1/n) convergence rate of the Douglas–Rachford alternating direction
method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

11. Nesterov, Y.: Gradient methods for minimizing composite objective function pp. 1–30. Core Discus-
sion Paper, 2007/76 (2007)

12. He, B.S., Liao, L.-Z., Yuan, X.M.: A LQP-based interior prediction-correction method for nonlinear
complementarity problems. J. Comput. Math. 24(1), 33–44 (2006)

13. Yamashita, N., Fukushima, M.: Equivalent unconstrained minimization and global error bounds for
variational inequality problems. SIAM J. Control Optim. 35(1), 273–284 (1997)


	Inexact Alternating Direction Methods of Multipliers with Logarithmic-Quadratic Proximal Regularization
	Abstract
	Introduction
	Model and Motivation
	Preliminaries
	Some Basic Definitions and Properties
	A Key Lemma
	Proof Framework of Convergence

	The First Algorithm
	Algorithm 1
	Convergence
	Convergence Rate

	The Second Algorithm
	Algorithm 2
	Convergence
	Convergence Rate

	Conclusions
	Acknowledgements
	References


