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Abstract In this paper, we study a partially observed recursive optimization problem,
which is time inconsistent in the sense that it does not admit the Bellman optimal-
ity principle. To obtain the desired results, we establish the Kalman–Bucy filtering
equations for a family of parameterized forward and backward stochastic differential
equations, which is a Hamiltonian system derived from the general maximum prin-
ciple for the fully observed time-inconsistency recursive optimization problem. By
means of the backward separation technique, the equilibrium control for the partially
observed time-inconsistency recursive optimization problem is obtained, which is a
feedback of the state filtering estimation. To illustrate the applications of theoretical
results, an insurance premium policy problem under partial information is presented,
and the observable equilibrium policy is derived explicitly.

Keywords Maximum principle · Time inconsistency · Equilibrium control ·
Kalman–Bucy filtering · Insurance premium policy

1 Introduction

The time-inconsistency control problem has a long research history. Among the first
systematic treatments of this problem was the pioneering work of Strotz [1], in which
a deterministic Ramsay problem is considered by viewing them within a game theo-
retic framework and looking for Nash equilibrium points. Further work along this line
in continuous and discrete time had been done in [2–6]. Recently, a renewed interest
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in these problems has arisen, as for the first time, a precise definition of equilibrium
among the class of feedback controls in continuous time was introduced in [7, 8], and
[9]. The authors derived some generalized forms of the Hamilton–Jacobi–Bellman
equations, which are systems of partial differential equations, and they also provided
rigorous verification theorems.

However, despite the dynamic programming principle, there exists another pow-
erful tool, the maximum principle, to deal with the optimal control problems. Peng
[10] established the general maximum principle for a completely observed forward
stochastic control system. It is well known that the optimal state equation and the
associated adjoint equation consist of a Hamiltonian system, which is a forward and
backward stochastic differential equation (FBSDE). Hu et al. [11] adopted the maxi-
mum principle method to investigate a time-inconsistency linear-quadratic stochastic
control problem, where a family of parameterized FBSDEs, also called the Hamilto-
nian system, was introduced.

As mentioned above, they all assume that the information of dynamic systems is
fully available to the controllers, i.e., they can observe the random noises and state
equations completely. However, controllers usually can only get partial information,
which renders this assumption unreasonable in reality. So there have been studies on
forward stochastic control problems under partial information [12–16]. Yu [17] inves-
tigated a model of optimal investment and consumption with both habit formation and
partial observations in incomplete Itô process markets by applying the Kalman–Bucy
filtering theorem and dynamic programming arguments. Relying on a direct calcula-
tion for the derivative of cost functional, Huang, Wang, and Xiong [13] obtained a
new kind of stochastic maximum principle for partial information control problems.
Combining Girsanov’s theorem with a classical method used in the full information
cases (see, e.g., [10, 18]), Li and Tang [15] and Tang [16] derived some global maxi-
mum principles. To get an observable maximum principle, Tang [16] used backward
stochastic partial differential equations to describe the corresponding Hamiltonian
system, which is a special forward and backward stochastic differential equation. In
fact, it is natural to characterize the Hamiltonian system under partial information by
filtering techniques for FBSDEs. However, there is only a few papers dealing with
this problem, including Wu [19], who established a local maximum principle for par-
tially observed recursive optimal control problems; Wang and Wu [20] proposed a
backward separation technique for forward linear-quadratic Gaussian control system
and obtained the filtering estimation of Hamiltonian system. In the present paper, we
also adopt this technique to solve filtering estimation problems of FBSDEs.

Nonlinear backward stochastic differential equations (BSDEs) have been intro-
duced by Pardoux and Peng [21] and Duffie and Epstein [22] independently. Duffie
and Epstein [22] presented a concept of stochastic differential recursive utility, which
is an extension of standard additive utility, with the instantaneous utility depending
not only on the instantaneous consumption rate, but also on the future utility. As has
been noted by El Karoui et al. [23], the stochastic differential recursive utility process
can be regarded as the solution of a special BSDE. From the BSDEs’ point of view,
El Karoui et al. [23] gave the formulation of recursive utilities and their properties.
By virtue of solutions of BSDEs in describing the cost functionals of control systems,
we establish the recursive optimal control problems. In the case of linear system, we
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study a partially observed time-inconsistency recursive control problem. A classical
solving method is to combine celebrated Wonham’s separation theorem with a direct
construction method introduced by Bensoussan [12]. In our framework, instead, we
adopt a backward separation technique, which was proposed by Wang and Wu [20],
to obtain the equilibrium control as a feedback of the state filtering estimation.

The rest of this paper is organized as follows. In the next section, we formulate
a completely observed time-inconsistency recursive optimization problem. The ver-
ification theorem and a family of parameterized forward and backward stochastic
differential equations are presented. As a preliminary to study the partially observed
recursive optimization problem, in Sect. 3, we get the Kalman–Bucy filtering equa-
tions corresponding to the aforementioned parameterized FBSDEs. In Sect. 4, we
obtain an observable equilibrium control of a partially observed time-inconsistency
recursive optimization problem, which is a linear feedback of the state filtering esti-
mation. In Sect. 5, an insurance optimal premium policy problem under partial infor-
mation is investigated. We explicitly derive the observable optimal premium policy,
which illustrates the applied prospect of our theoretical results obtained in this paper.
The last section is devoted to conclude the novelty and distinctive feature of the paper
and discuss the future research topics in related fields.

2 A Time Inconsistency Optimization Problem with Full Information

In this section, we first introduce a fully observed time-inconsistency control problem
of forward and backward stochastic system.

Let (Ω, F ,P ) be a filtered complete probability space equipped with the nat-
ural filtration Fs = σ {ξ,W1(r),W2(r),0 ≤ r ≤ s}, where (W1(·),W2(·)) is a two-
dimensional standard Brownian motion defined on the space, T > 0 is a fixed real
number. ξ is a Gaussian random variable, independent of (W1(·),W2(·)), with mean
m0 and variance n0 .

Throughout the paper, for the sake of convenience, we only consider the one-
dimensional stochastic system. For the multidimensional case, similar results can be
obtained by the same method.

Consider the forward and backward stochastic control system whose evolution is
described by the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(s) = (
A(s)X(s) + B(s)u(s)

)
ds + C1(s) dW1(s) + C2(s) dW2(s),

− dY (s) = (
a(s)X2(s) + b(s)Y (s) + f1(s)Z1(s) + f2(s)Z2(s)

+ c(s)u2(s)
)
ds − Z1(s) dW1(s) − Z2(s) dW2(s),

X(0) = ξ,

Y (T ) = gX2(T ),

(1)
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where the coefficients A(·), B(·), a(·), b(·), c(·), C1(·), C2(·), f1(·), f2(·) are
Ft -adapted processes, and u(·) ∈ Uad , defined by

Uad :=
{

u(·)|u(s) is an Fs-adapted process with values in R

and satisfies E

∫ T

0
u4(s) ds < +∞

}

.

Every element in Uad is called an admissible control.
At any time t ∈ [0, T ], the payoff corresponding to u(·) ∈ Uad is a functional given

by

J (u; t,Xt ) = Et

[
Y(t)

] − he
∫ T
t b(r) dr

(
Et

[
X(T )

])2

− (μ1Xt + μ2)e
∫ T
t b(r) dr

Et

[
X(T )

]
, (2)

where Et [·] := E[·|Ft ] is the conditional expectation with respect to Ft , and
(X(·), Y (·)) is the state trajectory under control u(·).

The first term Et [Y(t)] in the cost functional (2) represents the recursive util-
ity of u(·) in a classical control problem, whereas the last two are unconven-

tional. Specifically, the term −he
∫ T
t b(r) dr (Et [X(T )])2 is motivated by the variance

term in a mean-variance portfolio choice model [24, 25], and the term −(μ1Xt +
μ2)e

∫ T
t b(r) dr

Et [X(T )], which depends on the state Xt at time t , stems from a state-
dependent utility function in economics [26]. Here, b(·) can be regarded as some
discounting factor.

Each of these two terms introduces time-inconsistency of the underlying model.
Thus, the notion “optimality” needs to be defined in another appropriate way. Mo-
tivated by [11], we adopt the concept of equilibrium solution, which is, for any
t ∈ [0, T [, optimal only for spike variation in an infinitesimal way.

Given a control u∗, for any t ∈ [0, T [, ε > 0, and v ∈ L4
Ft

(Ω;R), define

ut,ε,v(s) := vIs∈[t,t+ε[ + u∗(s), s ∈ [t, T ]. (3)

Definition 2.1 Let u∗ ∈ Uad be a given control, and X∗ be the state process corre-
sponding to u∗. The control u∗ is called an equilibrium iff

lim
ε↓0

J (ut,ε,v; t,X∗
t ) − J (u∗; t,X∗

t )

ε
≥ 0,

where ut,ε,v is defined by (3), for any t ∈ [0, T [ and v ∈ L4
Ft

(Ω;R).

Remark 2.1 For a standard time-consistent optimization control problem, if there
exists an optimal control u∗ ∈ Uad , it must be an equilibrium, from which we can
see that the concept of equilibrium is a natural generalization of optimal control for
time-inconsistent control problems.
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Finding out the equilibrium control subject to u(·) ∈ Uad formulates a fully ob-
served time-inconsistency recursive control problem. We also need the following as-
sumption:

Assumption 2.1 a(·) ≥ 0, c(·) ≥ ε > 0, A(·), B(·), C1(·), C2(·), f1(·), and f2(·)
are uniformly bounded deterministic functions with respect to s ∈ [0, T ]. Besides,
g ≥ h ≥ 0, μ1 ≥ 0, and μ2 are all constants.

Since the drift term of dY (s) in (1) contains (Z1(·),Z2(·)), it brings us some trou-
ble to express the cost functional. To simplify it, we redefine the probability measure
Q on the space (Ω, F ) by

dQ

dP
:= exp

{∫ T

0
f1(s) dW1(s) +

∫ T

0
f2(s) dW2(s) − 1

2

∫ T

0

(
f 2

1 (s) + f 2
2 (s)

)
ds

}

.

According to Girsanov’s theorem, it follows that (U(·),V (·)) defined by

U(s) := W1(s) −
∫ s

0
f1(r) dr and V (s) := W2(s) −

∫ s

0
f2(r) dr

is a two-dimensional standard Brownian motion on the space (Ω, F ,Q). It is easy
to verify that (U(·),V (·)) and ξ remain mutually independent and ξ keeps the same
probability law as before on (Ω, F ,Q).

Then we can rewrite the system as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(s) = (
A(s)X(s) + B(s)u(s) + C1(s)f1(s) + C2(s)f2(s)

)
ds

+ C1(s) dU(s) + C2(s) dV (s),

− dY (s) = (
a(s)X2(s) + b(s)Y (s) + c(s)u2(s)

)
ds − Z1(s) dU(s)

− Z2(s) dV (s),

X(0) = ξ,

Y (T ) = gX2(T ).

(4)

By the definition we know that if u(·) ∈ Uad , then E
Q

∫ T

0 u4(s) ds < +∞. In this
case, E

QX4(·) < +∞, i.e., E
QY 2(T ) < +∞. So there exists a unique solution of

(4). Therefore, the corresponding cost functional is rewritten as

J (u; t,Xt ) = E
Q
t

[∫ T

t

e
∫ s
t b(r) dr

(
a(s)X2(s) + c(s)u2(s)

)
ds + ge

∫ T
t b(r) drX2(T )

]

− he
∫ T
t b(r) dr

(
E

Q
t

[
X(T )

])2 − (μ1Xt + μ2)e
∫ T
t b(r) dr

E
Q
t

[
X(T )

]
, (5)

where E
Q
t [·] := E

Q[·|Ft ] denotes the conditional expectation with respect to Ft on
the space (Ω, F ,Q).
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In the sequel, we present a general sufficient condition for equilibriums. We derive
this condition by a second-order expansion in spike variation, with the same spirit of
proving the stochastic Pontryagin maximum principle (see, e.g., [10, 18]).

Let u∗ be a fixed control, and X∗ be the corresponding state process. For any
t ∈ [0, T [, define on the time interval [t, T ] the processes

(
p(·; t), k1(·; t), k2(·; t)

) ∈ L2
F (t, T ;R) × L2

F (t, T ;R) × L2
F (t, T ;R)

and
(
P(·; t),K1(·; t),K2(·; t)

) ∈ L2
F (t, T ;S) × L2

F (t, T ;S) × L2
F (t, T ;S)

satisfying the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− dp(s; t) = [
A(s)p(s; t) + 2a(s)e

∫ s
t b(r)drX∗(s)

]
ds

− k1(s; t) dU(s) − k2(s; t) dV (s),

p(T ; t) = 2ge
∫ T
t b(r) drX∗(T ) − 2he

∫ T
t b(r) dr

E
Q
t

[
X∗(T )

]

− (
μ1X

∗
t + μ2

)
e
∫ T
t b(r) dr ,

(6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− dP (s; t) = [
A(s)P (s; t) + 2a(s)e

∫ s
t b(r) dr

]
ds

− K1(s; t) dU(s) − K2(s; t) dV (s),

P (T ; t) = 2ge
∫ T
t b(r) dr .

(7)

Note that, for each fixed t ∈ [0, T [, the above equations are backward stochas-
tic differential equations (BSDEs). So they form a family of parameterized BSDEs.
Since a(·) ≥ 0 and g ≥ 0 by Assumption 2.1, it follows that P(·; t) ≥ 0.

Proposition 2.1 For any t ∈ [0, T [, ε > 0, and v ∈ L4
Ft

(Ω;R), define ut,ε,v by (3).
Then

J
(
ut,ε,v; t,X∗

t

) − J
(
u∗; t,X∗

t

) = E
Q
t

∫ t+ε

t

[〈
Λ(s; t), v〉 + c(s)e

∫ s
t b(r)drv2]ds

+ o(ε), (8)

where Λ(s; t) := B(s)p(s; t) + 2c(s)e
∫ s
t b(r) dru∗(s).

Proof Let Xt,ε,v be the state process corresponding to ut,ε,v . Then, by the standard
perturbation approach (see, e.g.,[18]) we have

Xt,ε,v(s) = X∗(s) + Zt,ε,v(s), s ∈ [t, T ],
where Z := Zt,ε,v satisfies

{
dZ(s) = (

A(s)Z(s) + B(s)vIs∈[t,t+ε[
)
ds, s ∈ [t, T ],

Z(t) = 0.
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Moreover, by Gronwall’s inequality, it is easy to verify that

sup
s∈[t,T ]

∣
∣Z(s)

∣
∣2 = O

(
ε2).

Then we can calculate

J
(
ut,ε,v; t,X∗

t

) − J
(
u∗; t,X∗

t

)

= E
Q
t

∫ T

t

{
e
∫ s
t b(r) dr

[
a(s)

(
2X∗(s) + Z(s)

)
Z(s) + c(s)

(
2u∗(s) + v

)
vIs∈[t,t+ε[

]}
ds

+ 2ge
∫ T
t b(r) dr

E
Q
t

[
X∗(T )Z(T )

] + ge
∫ T
t b(r) dr

E
Q
t

[
Z(T )Z(T )

]

− e
∫ T
t b(r) dr

(
2hE

Q
t

[
X∗(T )

] + μ1X
∗
t + μ2

)
E

Q
t

[
Z(T )

] − e
∫ T
t b(r) drh

(
E

Q
t

[
Z(T )

])2

= E
Q
t

∫ T

t

{
e
∫ s
t b(r) dr

[
a(s)

(
2X∗(s) + Z(s)

)
Z(s) + c(s)

(
2u∗(s) + v

)
vIs∈[t,t+ε[

]}
ds

+ e
∫ T
t b(r) dr

E
Q
t

[(
2gX∗(T ) − 2hE

Q
t

[
X∗(T )

] − μ1X
∗
t − μ2

)
Z(T )

] + o(ε).

Recalling that (p(·; t), k1(·; t), k2(·; t)) solves (6), we have

e
∫ T
t b(r) dr

E
Q
t

[(
2gX∗(T ) − 2hE

Q
t

[
X∗(T )

] − μ1X
∗
t − μ2

)
Z(T )

]

= E
Q
t

∫ T

t

{
p(s; t)(A(s)Z(s) + B(s)vIs∈[t,t+ε[

)

− (
A(s)p(s; t) + 2a(s)e

∫ s
t b(r)drX∗(s)

)
Z(s)

}
ds

= E
Q
t

∫ T

t

[−2a(s)e
∫ s
t b(r)drX∗(s)Z(s) + B(s)p(s; t)vIs∈[t,t+ε[

]
ds.

This proves (8). �

Since c(s) ≥ 0, in view of (8), a sufficient condition for equilibrium is

E
Q
t

∫ T

t

|Λ(s; t)|ds < +∞, lim
s↓t

E
Q
t

[
Λ(s; t)] = 0 a.s. ∀t ∈ [0, T ]. (9)

Under some condition, the second equality in (9) is ensured by

B(t)p(t; t) + 2c(t)u∗(t) = 0 a.s. ∀t ∈ [0, T ]. (10)

The following theorem gives a sufficient condition of equilibrium for the fully
observed time-inconsistency recursive optimization problem.
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Theorem 2.1 Suppose that the system of stochastic differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX∗(s) = (
A(s)X∗(s) + B(s)u∗(s) + C1(s)f1(s) + C2(s)f2(s)

)
ds

+ C1(s) dU(s) + C2(s) dV (s), s ∈ [0, T ],
X∗(0) = ξ,

− dp(s; t) = [
A(s)p(s; t) + 2a(s)e

∫ s
t b(r)drX∗(s)

]
ds

− k1(s; t) dU(s) − k2(s; t) dV (s), s ∈ [0, T ],
p(T ; t) = 2ge

∫ T
t b(r) drX∗(T ) − 2he

∫ T
t b(r) dr

E
Q
t

[
X∗(T )

]

− (
μ1X

∗
t + μ2

)
e
∫ T
t b(r) dr

(11)

admits a solution (u∗,X∗,p, k1, k2) for any t ∈ [0, T [. If

Λ(·; t) := B(·)p(·; t) + 2c(·)e
∫ ·
t b(r) dru∗(·)

satisfies condition (9) and u∗ ∈ Uad , then u∗ is an equilibrium control.

Proof Given (u∗,X∗,p, k1, k2) satisfying the condition in the theorem at any time t ,
for any v ∈ L4

Ft
(Ω;R), define Λ as in Proposition 2.1. Then

lim
ε↓0

J (ut,ε,v; t,X∗
t ) − J (u∗; t,X∗

t )

ε
= lim

ε↓0

E
Q
t

∫ t+ε

t
[〈Λ(s; t), v〉 + c(s)e

∫ s
t b(r)drv2]ds

ε

≥ lim
ε↓0

∫ t+ε

t
〈EQ

t [Λ(s; t)], v〉ds

ε

≥ 0,

and this concludes the proof. �

3 Kalman–Bucy Filtering Equations

In this section, we derive the Kalman–Bucy filtering equations for parameterized for-
ward and backward stochastic system (11) under partial information. It is crucial for
solving the partially observed optimization problem, which will be formally estab-
lished in the next section. For simplicity, we keep the same notation as before.

Suppose that the state variable (X∗(·),p(·; t), k1(·; t), k2(·; t)) cannot be observed
directly. However, we can observe a noisy process Z(·) related to X(·) whose dy-
namic is described by the equation

{
dZ(s) = (

D(s)X(s) + F(s)Z(s)
)
ds + H(s)dW2(s),

Z(0) = 0,
(12)
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or, equivalently,
{

dZ(s) = (
D(s)X(s) + F(s)Z(s) + f2(s)H(s)

)
ds + H(s)dV (s),

Z(0) = 0.
(13)

We introduce the following assumption.

Assumption 3.1 D(·), F (·), |H(·)| ≥ ε > 0, and H−1(·) are uniformly bounded de-
terministic functions with respect to s.

Obviously, if Assumption 3.1 holds, then there exists a unique solution of (12) or
(13).

Our filtering problem is to find the best estimation (in the sense of square error)
of (X∗(s),p(s; t), k1(s; t), k2(s; t)) with respect to the observation Z(·) up to time s,
denoted by (X̂∗(s), p̂(s; t), k̂1(s; t), k̂2(s; t)) , i.e., we want to find the explicit ex-
pressions for

X̂∗(s) = E
Q

[
X∗(s)|Zs

]
,

p̂(s; t) = E
Q

[
p(s; t)|Zs

]
,

k̂1(s; t) = E
Q

[
k1(s; t)|Zs

]
,

k̂2(s; t) = E
Q

[
k2(s; t)|Zs

]
,

and their square error estimation. Here, Zs = σ {Z(r),0 ≤ r ≤ s}.
Our method is first to look for the relations of (X∗(s),p(s; t), k1(s; t), k2(s; t))

and then to compute (X̂∗(s), p̂(s; t), k̂1(s; t), k̂2(s; t)) by classical filtering theory
for forward SDEs.

By the terminal condition of (11), given any t ∈ [0, T ], we conjecture that

p(s; t) = M(s)e
∫ s
t b(r) drX∗(s) − N(s)e

∫ s
t b(r) dr

E
Q
t

[
X∗(s)

]

− Γ (s)e
∫ s
t b(r) drX∗

t + φ(s)e
∫ s
t b(r) dr , (14)

where M(·), N(·), Γ (·), and φ(·) are deterministic functions with respect to s ∈
[0, T ].

For any fixed t , applying Itô’s formula to (14) in the time variable s, we get

dp(s; t) = [
Ṁ(s)e

∫ s
t b(r) drX∗(s) + M(s)b(s)e

∫ s
t b(r) drX∗(s)

+ M(s)e
∫ s
t b(r) dr

(
A(s)X∗(s) + B(s)u∗(s)

+ C1(s)f1(s) + C2(s)f2(s)
)

− Ṅ(s)e
∫ s
t b(r) dr

E
Q
t

[
X∗(s)

] − N(s)b(s)e
∫ s
t b(r) dr

E
Q
t

[
X∗(s)

]

− N(s)e
∫ s
t b(r) dr

(
A(s)E

Q
t

[
X∗(s)

] + B(s)E
Q
t

[
u∗(s)

]

+ C1(s)f1(s) + C2(s)f2(s)
)
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− Γ̇ (s)e
∫ s
t b(r) drX∗

t − Γ (s)b(s)e
∫ s
t b(r) drX∗

t

+ φ̇(s)e
∫ s
t b(r) dr + φ(s)b(s)e

∫ s
t b(r) dr

]
ds

+ M(s)e
∫ s
t b(r) dr

[
C1(s) dU(s) + C2(s) dV (s)

]
. (15)

Comparing the dU(s) and dV (s) terms with these of dp(s; t) in (11), we obtain

k1(s; t) = C1(s)M(s)e
∫ s
t b(r) dr , k2(s; t) = C2(s)M(s)e

∫ s
t b(r) dr , s ∈ [t, T ].

Now we ignore the difference between conditions (9) and (10), and put conjecture
(14) of p(s; t) into (10). Then we have

2c(s)u∗(s) + B(s)
(
M(s)X∗(s) − N(s)EQ

s

[
X∗(s)

]

− Γ (s)X∗(s) + φ(s)
) = 0, s ∈ [0, T ],

from which we formally deduce

u∗(s) = −1

2
c−1(s)B(s)

(
M(s) − N(s) − Γ (s)

)
X∗(s) − 1

2
c−1(s)B(s)φ(s). (16)

Next, comparing the ds term in (15) with that in (11) (we suppress the argument
s here), we obtain

0 = (
Ṁe

∫ s
t b(r) dr + 2AMe

∫ s
t b(r) dr + bMe

∫ s
t b(r) dr + 2ae

∫ s
t b(r) dr

)
X∗

− (
Ṅe

∫ s
t b(r) dr + 2ANe

∫ s
t b(r) dr + bNe

∫ s
t b(r) dr

)
E

Q
t

[
X∗]

− 1

2
c−1MB2e

∫ s
t b(r) dr

[
MX∗ − NE

Q
s

[
X∗] − Γ X∗ + φ

]

+ 1

2
c−1NB2e

∫ s
t b(r) dr

[
ME

Q
t

[
X∗] − NE

Q
t

[
X∗] − Γ E

Q
t

[
X∗] + φ

]

+ Aφe
∫ s
t b(r) dr − AΓ e

∫ s
t b(r) drX∗

t + (M − N)e
∫ s
t b(r) dr (C1f1 + C2f2)

+ φ̇e
∫ s
t b(r) dr + φbe

∫ s
t b(r) dr − Γ̇ e

∫ s
t b(r) drX∗

t − Γ e
∫ s
t b(r) drX∗

t .

This leads to the following equations for M,N,Γ , and φ (again, the argument s is
suppressed):

⎧
⎨

⎩

Ṁ + 2AM + bM + 2a − 1

2
c−1B2M(M − N − Γ ) = 0,

M(T ) = 2g;
(17)

⎧
⎨

⎩

Ṅ + 2AN + bN − 1

2
c−1B2N(M − N − Γ ) = 0,

N(T ) = 2h;
(18)

{
Γ̇ = −AΓ − bΓ,

Γ (T ) = μ1;
(19)
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⎧
⎪⎨

⎪⎩

φ̇ +
[

A + b − 1

2
c−1B2(M − N)

]

φ + (M − N)(C1f1 + C2f2) = 0,

φ(T ) = −μ2.

(20)

Obviously, the solution of (19) is Γ (s) = μ1e
∫ T
s (A(r)+b(r)) dr . By setting J = M −

N we note that it satisfies the Riccati equation

⎧
⎪⎨

⎪⎩

J̇ +
(

2A + b + 1

2
c−1Γ B2

)

J − 1

2
c−1B2J 2 + 2a = 0,

J (T ) = 2g − 2h.

(21)

Thanks to Theorem 7.2 in Chap. 6 in Yong and Zhou [18], under Assumption 2.1,
(21) admits a unique solution over [0, T ]. Substituting the solutions of (19) and (21)
into (17), (18), and (20), these three equations can also be solved.

We can check that M(·), N(·), Γ (·), and φ(·) are all uniformly bounded, and
hence u∗ ∈ Uad and X∗ ∈ L2(Ω;C(0, T ;R)). By plugging p and u∗ represented by
(14) and (16) into Λ, defined as in Proposition 2.1, we have

Λ(s; t) = B(s)
[
M(s)e

∫ s
t b(r) drX∗(s) − N(s)e

∫ s
t b(r) dr

E
Q
t

[
X∗(s)

]

− Γ (s)e
∫ s
t b(r) drX∗

t + φ(s)e
∫ s
t b(r) dr

]

+ 2c(s)e
∫ s
t b(r) dr

[

−1

2
c−1(s)B(s)

(
M(s) − N(s) − Γ (s)

)
X∗(s)

− 1

2
c−1(s)B(s)φ(s)

]

= B(s)N(s)e
∫ s
t b(r) dr

(
X∗(s) − E

Q
t

[
X∗(s)

])

+ B(s)Γ (s)e
∫ s
t b(r) dr

(
X∗(s) − X∗

t

)
.

Clearly, Λ satisfies the first condition in (9). Furthermore, we have

lim
s↓t

E
Q
t

[
X∗(s) − E

Q
t

[
X∗(s)

]] = 0, lim
s↓t

E
Q
t

[
X∗(s) − X∗

t

] = 0.

Hence ,Λ satisfies the second condition in (9). By Theorem 2.1, u∗ is an equilibrium,
and we obtain the relations of (X∗(s),p(s; t), k1(s; t), k2(s; t)) as in (14).

In the following, we establish the filtering equations for forward–backward
stochastic system (11). Obviously,

k̂1(s; t) = C1(s)M(s)e
∫ s
t b(r) dr , k̂2(s; t) = C2(s)M(s)e

∫ s
t b(r) dr . (22)

Then we only need to compute X̂∗(s) and p̂(s; t). From (4) it is easy to see that X∗(·)
is Gaussian, so are Z(·) and p(·; t). Let γ (s) = E

Q
t (X∗(s) − X̂∗(s))2 be the square

error of the estimation. From the facts that (X∗(s)− X̂∗(s)) ⊥ Zs and X∗(s)− X̂∗(s)
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is Gaussian we know that X∗(s) − X̂∗(s) is independent of Zs . So

γ (s) = E
Q
t

(
X∗(s) − X̂∗(s)

)2 = E
Q
t

[(
X∗(s) − X̂∗(s)

)2|Zs

]
.

By the classical filtering theory for forward SDEs (see, e.g., [27, 28]) we obtain the
following equations for X̂∗(s) and γ (s):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̂∗(s) =
[(

A(s) − 1

2
c−1(s)B2(s)

(
M(s) − N(s) − Γ (s)

)
)

X̂∗(s)

− 1

2
c−1(s)B2(s)φ(s) + C1(s)f1(s) + C2(s)f2(s)

]

ds

+ (
C2(s) + D(s)H−1(s)γ (s)

)
dW̄(s),

X̂∗(0) =m0,

(23)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ̇ (s) − 2

(

A(s) − 1

2
c−1(s)B2(s)

(
M(s) − N(s) − Γ (s)

)
)

γ (s)

+ (
C2(s) + D(s)H−1(s)γ (s)

)2 − C2
1(s) − C2

2(s) = 0,

γ (0) = n0,

(24)

where the process

W̄ (s) :=
∫ s

0
H−1(r)

(
dZ(r) − D(r)X̂∗(r) − F(r)Z(r) − f2(r)H(r)

)
dr

= V (s) +
∫ s

0
D(r)H−1(r)

(
X∗(r) − X̂∗(r)

)
dr

is an observable one-dimensional standard Brownian motion defined on (Ω, Z,Q)

with respect to the filtration Zs , which is the so-called innovation process.
At the same time, we can get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dÊ
Q
t

[
X̂∗(s)

] =
[(

A(s) − 1

2
c−1(s)B2(s)

(
M(s) − N(s) − Γ (s)

)
)

Ê
Q
t

[
X̂∗(s)

]

− 1

2
c−1(s)B2(s)φ(s) + C1(s)f1(s) + C2(s)f2(s)

]

ds,

s ∈ [t, T ],
Ê

Q
t

[
X̂∗(t)

] = X̂∗(t),
(25)

where Ê
Q
t [·] := E

Q[·|Zt ] denotes the conditional expectation with respect to Zt on
the space (Ω, Z,Q).
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Taking conditional expectations on both sides of (14), we get

p̂(s; t) = M(s)e
∫ s
t b(r) dr X̂∗(s) − N(s)e

∫ s
t b(r) dr

Ê
Q
t

[
X̂∗(s)

]

− Γ (s)e
∫ s
t b(r) dr X̂∗

t + φ(s)e
∫ s
t b(r) dr , (26)

where X̂∗(s) and Ê
Q
t [X̂∗(s)] are the solutions of (23) and (25), respectively.

Therefore, we obtain the filtering estimation for parameterized FBSDEs (11).

Theorem 3.1 Let Assumptions 2.1 and 3.1 hold. Then the filtering estimation
(X̂∗(s), p̂(s; t), k̂1(s; t), k̂2(s; t)) for solutions of parameterized forward and back-
ward stochastic system (11) is given by (22), (23), (25), and (26), where M(s),N(s),
Γ (s), and φ(s) are solutions of (17), (18), (19), and (20), respectively.

4 A Partially Observed Time-Inconsistency Recursive Control Problem

The objective of this section is to study the time-inconsistency recursive optimization
control problem under partial information, which is closely related to the results in
Sect. 3. We adopt the backward separation technique introduced by Wang and Wu
[20] to find the equilibrium control.

Let us consider the following state and observation equations:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX1(s) = (
A(s)X1(s) + C1(s)f1(s) + C2(s)f2(s)

)
ds + C1(s) dU(s)

+ C2(s) dV (s),

dZ̄1(s) =(
D(s)X1(s) + F(s)Z̄1(s) + f2(s)H(s)

)
ds + H(s)dV (s),

X1(0) = ξ, Z̄1(0) = 0,

(27)

⎧
⎨

⎩

Ẋ2(s) = A(s)X2(s) + B(s)u(s), X2(0) = 0,

˙̄Z2(s) = D(s)X2(s) + F(s)Z̄2(s), Z̄2(0) = 0,
(28)

where u(·) ∈ Uad and all coefficients satisfy Assumptions 2.1 and 3.1. For any u(·) ∈
Uad , it is easy to check that X1(·) + X2(·) and Z̄1(·) + Z̄2(·) are unique solutions of
(4) and (13), respectively, i.e., X(·) = X1(·) + X2(·) and Z(·) = Z̄1(·) + Z̄2(·).

Set Z̄s = σ {Z̄1(r),0 ≤ r ≤ s}. We present the following:

Definition 4.1 A control variable u(·) is called admissible iff u(·) is an R-valued
stochastic process adapted to Zs and Z̄s such that E

∫ T

0 u4(t) dt < +∞. The set of
admissible controls is denoted by Ūad .

Remark 4.1 By Definition 4.1 we see that if u(·) ∈ Ūad , then Zs = Z̄s , 0 ≤ s ≤ T .
So we can determine the control by observable process, but the observable process
does not depend on the control. It is the main reason that the state and observation
equations are decoupled. This kind of “decoupled” technique is inspired by Bensous-
san [12]. Otherwise, there is an immediate difficulty when the observable process
depends on the control.
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It follows from Definition 4.1 and Remark 4.1 that

X̂(s) = E
Q

[
X(s)|Zs

] = E
Q

[
X1(s)|Z̄s

] + X2(s) = X̂1(s) + X2(s).

Again, by the classical filtering theory for forward SDEs, we can easily get the fol-
lowing result.

Proposition 4.1 For any u(·) ∈ Ūad , let Assumptions 2.1 and 3.1 hold. Then the state
variable X(·), which is the solution of (4), has a filtering estimation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX̂(s) = (
A(s)X̂(s) + B(s)u(s) + C1(s)f1(s) + C2(s)f2(s)

)
ds

+ (
C2(s) + D(s)H−1(s)
(s)

)
dŪ(s),

X̂(0) =m0,

(29)

where the observable one-dimensional standard Brownian motion Ū (·) is defined as

Ū (s) := V (s) +
∫ s

0
D(r)H−1(r)

(
X(r) − X̂(r)

)
dr,

and 
(·) = E
Q(X(·) − X̂(·))2 satisfies

⎧
⎪⎪⎨

⎪⎪⎩


̇(s) − 2A(s)
(s) + (
C2(s) + D(s)H−1(s)
(s)

)2

− C2
1(s) − C2

2(s) = 0,


(0) = n0.

(30)

Remark 4.2 Obviously, the solution 
(·) of (30) does not depend on admissible con-
trol u(·) ∈ Ūad . This is very important to solve our problem.

Under partially observed circumstance, the payoff of time-inconsistency recursive
control problem corresponding to u(·) ∈ Ūad is given by

Ĵ (u; t,Xt ) = Ê
Q
t

[∫ T

t

e
∫ s
t b(r) dr

(
a(s)X2(s) + c(s)u2(s)

)
ds + ge

∫ T
t b(r) drX2(T )

]

− he
∫ T
t b(r) dr

(
Ê

Q
t

[
X(T )

])2 − (μ1X̂t + μ2)e
∫ T
t b(r) dr

Ê
Q
t

[
X(T )

]
.

(31)

Our problem is to seek an equilibrium control ū∗(·) ∈ Ūad for the cost functional
(31) subject to state system (4) and observation (13). Obviously, Ūad ⊆ Uad , i.e.,
the equilibrium control ū∗(·) is an element of Uad . In order to obtain an observable

equilibrium control, our intuition is to replace X̄∗(s) by its filtering estimation ˆ̄X∗(s)
in the equilibrium control (16) for full information:

ū∗(s) = −1

2
c−1(s)B(s)

(
M(s) − N(s) − Γ (s)

) ˆ̄X∗(s) − 1

2
c−1(s)B(s)φ(s), (32)
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where X̄∗(s), p̄(s; t), k̄1(s; t), k̄2(s; t) satisfies the FBSDEs

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄∗(s) =
[

A(s)X̄∗(s) − 1

2
c−1(s)B2(s)

(
M(s) − N(s) − Γ (s)

) ˆ̄X∗(s)

− 1

2
c−1(s)B2(s)φ(s) + C1(s)f1(s) + C2(s)f2(s)

]

ds

+ C1(s) dU(s) + C2(s) dV (s),

− dp̄(s; t) = [
A(s)p̄(s; t) + 2a(s)e

∫ s
t b(r) dr X̄∗(s)

]
ds

− k̄1(s; t) dU(s) − k̄2(s; t) dV (s),

X̄∗(0) = ξ,

p̄(T ; t) = 2ge
∫ T
t b(r) dr X̄∗(T ) − 2he

∫ T
t b(r) dr

E
Q
t

[
X̄∗(T )

]

− μ1e
∫ T
t b(r) dr X̄∗

t − μ2e
∫ T
t b(r) dr .

(33)

Although the drift term of forward SDE in (33) contains ˆ̄X∗(·), fortunately, it is ob-

servable. So it does not bring any difficulty to compute ( ˆ̄X∗(s), ˆ̄p(s; t)). From Propo-
sition 4.1 we easily derive that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ˆ̄X∗(s) =
[(

A(s) − 1

2
c−1(s)B2(s)

(
M(s) − N(s) − Γ (s)

)
)

ˆ̄X∗(s)

− 1

2
c−1(s)B2(s)φ(s) + C1(s)f1(s) + C2(s)f2(s)

]

ds

+ (
C2(s) + D(s)H−1(s)
(s)

)
dŪ(s),

ˆ̄X∗(0) =m0.

(34)

Solving (33) by usual techniques for BSDEs, we get

ˆ̄p(s; t) = e
∫ T
s A(τ) dτ

E
Q

[
2ge

∫ T
t b(r) dr X̄∗(T ) − 2he

∫ T
t b(r) dr

E
Q
t

[
X̄∗(T )

]

− μ1e
∫ T
t b(r) dr X̄∗

t − μ2e
∫ T
t b(r) dr |Zs

]

+ 2
∫ T

s

a(r)e
∫ r
s A(τ)dτ+∫ r

t b(τ )dτ
E

Q
[
X̄∗(r)|Zs

]
dr. (35)

We now claim that

ˆ̄p(s; t) = M(s)e
∫ s
t b(r) dr ˆ̄X∗(s) − N(s)e

∫ s
t b(r) dr

Ê
Q
t

[ ˆ̄X∗(s)
]

− Γ (s)e
∫ s
t b(r) dr ˆ̄X∗

t + φ(s)e
∫ s
t b(r) dr , (36)
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where M(·), N(·), Γ (·), and φ(·) are solutions of (17), (18), (19), and (20) respec-
tively. In fact, if we let Ψ (·) be the fundamental solution of

Ψ̇ (s) =
(

A(s) − Λ(s) 0
−Λ(s) A(s)

)

Ψ (s),

combining (33) with (34), we have
( ˆ̄X∗(s)

X̄∗(s)

)

= Ψ (s, t)

( ˆ̄X∗(t)
X̄∗(t)

)

+
∫ s

t

Ψ (s, r)

(
1
1

)

λ(r) dr

+
∫ s

t

Ψ (s, r)

(
C2(r) + D(r)H−1(r)
(r) 0 0

0 C1(r) C2(r)

)
⎛

⎝
dŪ(r)

dU(r)

dV (r)

⎞

⎠ ,

where

Λ(s) = 1

2
c−1(s)B2(s)

(
M(s) − N(s) − Γ (s)

)
,

λ(s) = C1(s)f1(s) + C2(s)f2(s) − 1

2
c−1(s)B2(s)φ(s).

It is easy to check that

E
Q

[
X̄∗(s)|Zt

] = (0,1)Ψ (s, t)

(
1
1

)
ˆ̄X∗
t +

∫ s

t

(0,1)Ψ (s, r)

(
1
1

)

λ(r) dr

= e
∫ s
t (A(r)−Λ(r)) dr ˆ̄X∗

t +
∫ s

t

e
∫ s
r (A(τ)−Λ(τ)) dτ λ(r) dr. (37)

Substituting (37) into (35), we have

ˆ̄p(s; t) = M̄(s)e
∫ s
t b(r) dr ˆ̄X∗(s) − N̄(s)e

∫ s
t b(r) dr

Ê
Q
t

[ ˆ̄X∗(s)
]

− Γ̄ (s)e
∫ s
t b(r) dr ˆ̄X∗

t + φ̄(s)e
∫ s
t b(r) dr

with

M̄(s) = 2ge
∫ T
s (2A(r)+b(r)−Λ(r)) dr + 2

∫ T

s

a(r)e
∫ r
s (2A(τ)+b(τ)−Λ(τ)) dτ dr,

N̄(s) = 2he
∫ T
s (2A(r)+b(r)−Λ(r)) dr ,

Γ̄ (s) = μ1e
∫ T
s (A(r)+b(r)) dr ,

φ̄(s) = 2ge
∫ T
s (A(r)+b(r)) dr

∫ T

s

e
∫ T
r (A(τ)−Λ(τ)) dτ λ(r) dr

− 2he
∫ T
s (A(r)+b(r)) dr

∫ T

s

e
∫ T
r (A(τ)−Λ(τ)) dτ λ(r) dr − μ2e

∫ T
s (A(r)+b(r)) dr

+ 2
∫ T

s

a(r)e
∫ r
s (A(τ)+b(τ)) dτ

(∫ r

s

e
∫ r
θ (A(τ)−Λ(τ)) dτ λ(θ) dθ

)

dr.
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From the existence and uniqueness of solutions to (17), (18), (19), and (20) it is
easy to verify that M̄(·), N̄(·), Γ̄ (·), and φ̄(·) satisfy (17), (18), (19), and (20), i.e.,
M(·) ≡ M̄(·),N(·) ≡ N̄(·),Γ (·) ≡ Γ̄ (·),φ(·) ≡ φ̄(·), concluding the claim (36).

Next, we will prove that the candidate (32) is indeed an equilibrium control of this

problem, where ˆ̄X∗(·) satisfies (34).
Since X̂(·) ⊥ (X(·) − X̂(·)), the cost functional (31) can be rewritten as

Ĵ (u; t,Xt ) = J (u; t,Xt ) +
∫ T

t

e
∫ s
t b(r) dra(s)
(s) ds + e

∫ T
t g
(T )

with

J (u; t,Xt ) = Ê
Q
t

[∫ T

t

e
∫ s
t b(r) dr

(
a(s)X̂2(s) + c(s)u2(s)

)
ds + e

∫ T
t b(s)dsgX̂2(T )

]

− he
∫ T
t b(r)dr

(
Ê

Q
t

[
X̂(T )

])2 − (μ1X̂t + μ2)e
∫ T
t b(r) dr

Ê
Q
t

[
X̂(T )

]
,

(38)

where X̂(·) and 
(·) satisfy (29) and (30), respectively.
For any ut,ε,v(·) ∈ Ūad defined by (3) and the corresponding state process Xt,ε,v ,

we easily derive that

Ĵ
(
ut,ε,v; t, X̄∗

t

) − Ĵ
(
ū∗; t, X̄∗

t

)

= Ê
Q
t

∫ T

t

e
∫ s
t b(r) dr

[
a(s)

(
X̂t,ε,v(s) − ˆ̄X∗(s)

)2 + c(s)
(
ut,ε,v(s) − ū∗(s)

)2]
ds

+ Ê
Q
t

[
e
∫ T
t b(r) drg

(
X̂t,ε,v(T ) − ˆ̄X∗(T )

)2]

− he
∫ T
t b(r) dr

[
Ê

Q
t

(
X̂t,ε,v(T ) − ˆ̄X∗(T )

)]2 + Θ (39)

with

Θ = 2Ê
Q
t

∫ T

t

e
∫ s
t b(r) dr

[
a(s) ˆ̄X∗(s)

(
X̂t,ε,v(s) − ˆ̄X∗(s)

)

+ c(s)ū∗(s)
(
ut,ε,v(s) − ū∗(s)

)]
ds

+ 2Ê
Q
t

[
e
∫ T
t b(r) drg ˆ̄X∗(T )

(
X̂t,ε,v(T ) − ˆ̄X∗(T )

)]

− 2he
∫ T
t b(r) dr

Ê
Q
t

[ ˆ̄X∗(T )
]
Ê

Q
t

[(
X̂t,ε,v(T ) − ˆ̄X∗(T )

)]

− (
μ1

ˆ̄X∗
t + μ2

)
e
∫ T
t b(r) dr

Ê
Q
t

[
X̂t,ε,v(T ) − ˆ̄X∗(T )

]
. (40)

Since all terms depending on 
(·) have disappeared and the first three terms on the
right-hand side of (39) are nonnegative, we only have to prove that

lim
ε→0

Θ

ε
= 0, (41)
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which implies that ū∗(·) defined by (32) is an equilibrium control, and our intuition
is true. In fact, noting (17), (18), (19), (20), and (36), it follows from Itô’s formula
that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−dp̂(s; t) = [
A(s)p̂(s; t) + 2a(s)e

∫ s
t b(r) dr ˆ̄X∗(s)

]
ds

− M(s)e
∫ s
t b(r) dr

(
C2(s) + D(s)H−1(s)
(s)

)
dŪ(s),

p̂(T ; t) =2ge
∫ T
t b(r) dr ˆ̄X∗(T ) − 2he

∫ T
t b(r) dr

Ê
Q
t

[ ˆ̄X∗(T )
]

− μ1e
∫ T
t b(r) dr ˆ̄X∗

t − μ2e
∫ T
t b(r) dr ,

(42)

and

Ê
Q
t

[
p̂(T ; t)(X̂t,ε,v(T ) − ˆ̄X∗(T )

)]

= Ê
Q
t

∫ T

t

(
X̂t,ε,v(s) − ˆ̄X∗(s)

)
dp̂(s; t)

+ Ê
Q
t

∫ T

t

[
A(s)

(
X̂ε(s) − ˆ̄X∗(s)

) + B(s)
(
ut,ε,v(s) − ū∗(s)

)]
p̂(s; t) ds. (43)

Substituting (42) and (43) into (40) and noting (32) and (36), we get

Θ = Ê
Q
t

∫ T

t

[
2c(s)e

∫ s
t b(r) dr ū∗(s) + B(s)p̂(s; t)](ut,ε,v(s) − ū∗(s)

)
ds

= Ê
Q
t

∫ t+ε

t

B(s)
[
p̂(s; t) − e

∫ s
t b(r) dr p̂(s; s)](v − ū∗(s)

)
ds.

Thanks to Theorem 6.3 in Chap. 1 in Yong and Zhou [18], we have

Ê
Q
t

[∣
∣p̂(s; t) − p̂(s; s)∣∣] ≤ K1|s − t | + K2|s − t | 1

2 ,

where the constants K1 > 0 and K2 > 0 are independent of ε.
Recalling Assumptions 2.1 and 3.1, we confirm that Θ = o(ε). Then the conclu-

sion (41) follows. Thus, we obtain the equilibrium for the time-inconsistency recur-
sive optimization control problem under partial information.

Theorem 4.1 The equilibrium control for the partially observed time-inconsistency
recursive optimization problem is given by (32), which is a feedback of the state fil-
tering estimation, where M(·), N(·), Γ (·), and φ(·) are solutions of (17), (18), (19),

and (20), respectively. Besides, ˆ̄X∗(·) is the filtering state trajectory with respect to
Zs under the equilibrium control, whose evolution is described by (34).

Remark 4.3 Recalling the cost functional (31), if the last two terms are deleted, then
it becomes a standard time-consistent recursive optimization problem under partial
information, which was deeply studied by Wang and Wu [20]. Theorem 4.1 general-
izes the results obtained there.
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5 Application in Insurance Premium Policy Problem

To illustrate the application of results obtained in this paper, we study a kind of opti-
mal premium policy problem for an insurance firm under partial information.

We fix [0, T ] a finite time horizon and (Ω, F W1,W2 , {F W1,W2
s }0≤s≤T ,P ) a

filtered probability space, on which two independent one-dimensional standard
Brownian motions {W1(s)}0≤s≤T and {W2(s)}0≤s≤T are defined. Let F W1,W2

s =
σ {W1(s),W2(s);0 ≤ t ≤ s} and F W1,W2 = F W1,W2

T . Now consider an insurance firm
whose liability process is denoted by L(s). Recall that an insurance portfolio consists
of a large number of independent individual claims, none of which can affect the total
returns significantly, and thus, by the law of large numbers, L(s) can be approximated
by (see Norberg [29] for more details)

−dL(s) = (
l(s) + v(s)

)
ds + σ(s) dW1(s).

Here, the liability rate l(s) > 0 represents the expected liability per unit time due to
premium loading, the premium rate (premium policy) v(s) acts as the control vari-
able, while the volatility rate σ(s) > 0 measures the liability risk. Note that we allow
for v(s) < 0, and this can be explained as “reward rate” or “dividend rate” to the
claim holder. We assume that the insurance firm is not allowed to invest in any risky
asset due to the supervisory regulations. Accordingly, the insurance firm only invests
in a money account with compounded interest rate δ(s), and hence its cash-balance
process X(s) is

X(s) = eΦ(s)

(

X0 −
∫ s

0
e−Φ(r) dL(r)

)

, X0 = x0,

where Φ(s) = ∫ s

0 δ(r) dr , and x0 > 0 represents the initial reserve. According to Itô’s
formula, we have

dX(s) = (
δ(s)X(s) + l(s) + v(s)

)
ds + σ(s) dW1(s). (44)

This is a controlled Ornstein–Uhlenbeck process, where the control v(·) is fully ad-
missible in the sense of

Definition 5.1 An R-valued premium policy v(·) = {v(s)}0≤s≤T is called fully ad-
missible iff v(s) is F W1

s -adapted and E
∫ T

0 v4(s) ds < +∞. The set of all fully ad-
missible policies is denoted by UF .

Let us now turn to the preferences of a policymaker. For v(·) ∈ UF , we assume
that the cost functional is

J
(
v(·)) = 1

2
E

[∫ T

0
e−βsR(s)v2(s) ds + Ge−βT

(
X(T ) − c0

)2
]

+ Q

2
e−βT Var

[
X(T )

]
. (45)
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Here, β is a discounting factor, c0 is some preset target, and R(s),G, and Q are
the weighting factors that make the cost functional (45) more general and flexible to
accommodate the preference of a policymaker.

From (45), we can see that the insurance firm has three objectives: first, to mini-
mize the cost of premium policy over the whole time horizon; second, to minimize
the terminal deviation of cash-balance process from the preset target; and, finally, to
minimize the terminal variance of cash-balance process. In what follows, we adopt
the following assumption.

Assumption 5.1 R(s) > 0, R−1(s), δ(s), b(s), and σ(s) are all deterministic and
uniformly bounded on [0, T ]; the terminal weights G > 0 and Q > 0, and the dis-
counting factor β > 0.

However, in fact, it is only possible for the policymaker to partially observe the
cash-balance process, due to the physical inaccessibility to underlying economic pa-
rameters, inaccuracies in measurements, discreteness of account information or pos-
sible delay in the actual payments. As a response, we study this premium problem
with partial information for practice. In this regard, we confine ourselves to the fol-
lowing linear factor model (see, e.g., Bielecki and Pliska [30], Nagai and Peng [31],
etc.):

⎧
⎨

⎩

dS(s)

S(s)
= (

a + cX(s)
)
ds + ρ(s) dW2(s),

S(0) = s0,

(46)

where the cash-balance process X(s) is the underlying factor, which is partially ob-
served through the observation S(s) with instantaneous volatility ρ(s). One typical
example of S(s), in practice, is the stock price of the insurance firm. This is sup-
ported by Boswijk et al. [32], where the stock price is closely related to the under-
lying cash-balance process through the price-to-cash ratio, which is linear. We make
the following assumption.

Assumption 5.2 Both c �= 0 and a are constants, and ρ(s) and ρ−1(s) are both
bounded deterministic functions.

For fixed X(s), clearly, (46) admits a unique solution under Assumption 5.2. Set-
ting Z(s) � logS(s) and applying Itô’s formula, we have

⎧
⎪⎨

⎪⎩

dZ(s) =
(

cX(s) − 1

2
ρ2(s) + a

)

ds + ρ(s) dW2(s),

Z(0) = ln s0.

(47)

By the results obtained in Sect. 4 we decouple the state and observation equations
as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX1(s) = (
δ(s)X1(s) + l(s)

)
ds + σ(s) dW1(s),

dZ1(s) =
(

cX1(s) − 1

2
ρ2(s) + a

)

ds + ρ(s) dW2(s),

X1(0) = x0 Z1(0) = ln s0,

(48)
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⎧
⎪⎪⎨

⎪⎪⎩

Ẋ2(s) = δ(s)X2(s) + v(s),

Ż2(s) = cX2(s),

X2(0) = 0 Z2(0) = 0,

(49)

where v(·) ∈ UF , and all coefficients satisfy Assumptions 5.1 and 5.2. For any v(·) ∈
UF , it is easy to check that X1(·) + X2(·) and Z1(·) + Z2(·) are unique solutions
of (44) and (47). Set F Z

s = σ {Z(r);0 ≤ r ≤ s} and F Z1
s = σ {Z1(r);0 ≤ r ≤ s}. To

avoid that v(s) has an effect on F Z
s , we introduce the following:

Definition 5.2 An R-valued premium policy v(·) = {v(s)}0≤s≤T is called partially
admissible iff v(s) is F Z

s - and F Z1
s -adapted with E

∫ T

0 v4(s) ds < +∞. The set of all
partially admissible policies is denoted by UP .

Let us now return to the cost functional (45). Introduce the backward SDE coupled
with forward SDE (44)

⎧
⎪⎪⎨

⎪⎪⎩

−dY (s) =
(

−βY(s) + 1

2
R(s)v2(s)

)

ds − Z̄(s) dW1(s),

Y (T ) = 1

2
(G + Q)X2(T ).

Thus, the cost functional (45) can be rewritten as

J
(
v(·)) = EY(0) − Q

2
e−βT

[
EX(T )

]2 − Gc0e
−βT

EX(T ) + 1

2
Gc2

0. (50)

Then, our goal is to find an equilibrium premium policy v∗(·) ∈ UP for cost functional
(50) subject to (44) and (47).

According to Theorem 4.5, we have the equilibrium policy in the form of

v∗(s) = (
M1(s) − N1(s) − Γ1(s)

)
X̂∗(s) + φ1(s), (51)

where X̂∗(·) is the filtering estimation of state process with respect to F Z
s under

control v∗(·) ∈ UP , which satisfies the forward SDE

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX̂∗(s) = (
δ(s)X̂∗(s) + l(s) + (

M1(s) − N1(s) − Γ1(s)
)
X̂∗(s) + φ1(s)

)
ds

+ cρ−1(s)
1(s) dW̄1(s),

X̂∗(0) =x0,

(52)
where W̄1(·) is an observable standard Brownian motion defined as

W̄1(s) := W2(s) +
∫ s

0
cρ−1(r)

(
X∗(r) − X̂∗(r)

)
dr,
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and 
1(·) = E
Q(X∗(·) − X̂∗(·))2 satisfies

{

̇1(s) − 2δ(s)
1(s) + (

cρ−1(s)
1(s)
)2 − σ 2(s) = 0,


1(0) = 0.

Besides, M1(·),N1(·),Γ1(·), and φ1(·) are solutions of the following ODEs, respec-
tively:

{
Ṁ1(s) + (

2δ(s) − β
)
M1(s) − R−1(s)M1(s)

(
M1(s) − N1(s) − Γ1(s)

) = 0,

M1(T ) = G + Q,
(53)

{
Ṅ1(s) + (

2δ(s) − β
)
N1(s) − R−1(s)N1(s)

(
M1(s) − N1(s) − Γ1(s)

) = 0,

N1(T ) = Q,
(54)

{
Γ̇1(s) = −(

δ(s) − β
)
Γ1(s),

Γ1(T ) = 0,
(55)

⎧
⎪⎪⎨

⎪⎪⎩

φ̇1(s) + [
δ(s) − β − R−1(s)

(
M1(s) − N1(s)

)]
φ1(s)

+ (
M1(s) − N1(s)

)
l(s) = 0,

φ1(T ) = −Gc0.

(56)

Obviously, Γ1(s) ≡ 0. Let J1 = M1 − N1. Then it satisfies
{

J̇1(s) + (
2δ(s) − β

)
J1(s) − R−1(s)J 2

1 (s) = 0,

J1(T ) = G.
(57)

Solving (57) by usual techniques for ODEs, we get

J1(s) = 1

e− ∫ T
s (2δ(r)−β)drG + ∫ T

s
R−1(r)e− ∫ r

s (2δ(τ)−β)dτ dr
. (58)

Then we can also get

φ1(s) = −e
∫ T
s (δ(r)−β−R−1(r)J1(r)) drGc0

+
∫ T

s

J1(r)l(r)e
∫ r
s (δ(τ )−β−R−1(τ )J1(τ )) dτ dr. (59)

Therefore, we obtain the equilibrium premium policy as follows:

Theorem 5.1 Let Assumptions 5.1 and 5.2 hold. Then the observable equilibrium
premium policy is

v∗(s) = J1(s)X̂
∗(s) + φ1(s), (60)

where J1(·) and φ1(·) are given by (58) and (59) explicitly, and X̂∗(s) is the filtering
cash-balance process with respect to F Z

s under the equilibrium premium policy (60),
whose evolution is described by (52).



686 J Optim Theory Appl (2014) 161:664–687

6 Conclusions

To the authors’ knowledge, it is the first attempt to study a partially observed time-
inconsistency recursive optimization problem. On the whole, there are three distin-
guishing features of our paper: (1) The Kalman–Bucy filtering equations are first
obtained for the Hamiltonian system, which is a family of parameterized FBSDEs;
(2) The backward separation technique is introduced to overcome the difficulty of par-
tial information optimization problem, and thus an observable equilibrium control is
given as the feedback of state filtering estimation; (3) An insurance optimal premium
policy problem under partial information is considered, and the observable equilib-
rium premium policy is obtained explicitly, which illustrates the applied prospect of
our theory. Besides, our results have potential applications in lots of areas, especially
in mathematical finance.

In our paper, the Hamiltonian system, which is a family of parameterized FBS-
DEs, is very interesting. We carried out one its solution by means of Riccati equa-
tions, whereas the general existence and uniqueness of its solution begs for system-
atic investigations. We also note that there are no state and control variables in the
diffusion coefficients of the Hamiltonian system (11) and the control system (1). For
those cases, we cannot get the explicit filtering estimation for this kind of forward
and backward stochastic systems and for the equilibrium control for the partially ob-
served time-inconsistency recursive optimization problem. To our best knowledge,
it is still an open problem. We hope that we could furthermore develop this kind of
theory and find more applications in the future work.

Acknowledgements This work is supported by the Natural Science Foundation of China (11221061
and 61174092) and the Natural Science Fund for Distinguished Young Scholars of China (11125102).

References

1. Strotz, R.: Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23, 165–180
(1955)

2. Goldman, S.: Consistent plans. Rev. Econ. Stud. 47, 533–537 (1980)
3. Krusell, P., Smith, A.: Consumption and savings decisions with quasi-geometric discounting. Econo-

metrica 71, 366–375 (2003)
4. Peleg, B., Menahem, E.: On the existence of a consistent course of action when tastes are changing.

Rev. Econ. Stud. 40, 391–401 (1973)
5. Pollak, R.: Consistent planning. Rev. Econ. Stud. 35, 185–199 (1968)
6. Vieille, N., Weibull, J.: Multiple solutions under quasi-exponential discounting. Econ. Theory 39,

513–526 (2009)
7. Ekeland, I., Lazrak, A.: Being serious about non-commitment: subgame perfect equilibrium in con-

tinuous time. Preprint, University of British Columbia (2006)
8. Ekeland, I., Privu, T.: Investment and consumption without commitment. Math. Financ. Econ. 2, 57–

86 (2008)
9. Björk, T., Murgoci, A.: A general theory of Markovian time inconsistent stochastic control problems.

SSRN: http://ssrn.com/abstract=1694759 (2010)
10. Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J. Control

Optim. 28(4), 966–979 (1990)
11. Hu, Y., Jin, H., Zhou, X.: Time-inconsistent stochastic linear-quadratic control. Preprint (2011)
12. Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press,

Cambridge (1992)

http://ssrn.com/abstract=1694759


J Optim Theory Appl (2014) 161:664–687 687

13. Huang, J., Wang, G., Xiong, J.: A maximum principle for partial information backward stochastic
control problems with applications. SIAM J. Control Optim. 48(4), 2106–2117 (2009)

14. Xiong, J., Zhou, X.: Mean-variance portfolio selection under partial information. SIAM J. Control
Optim. 46(1), 156–175 (2007)

15. Li, X., Tang, S.: General necessary conditions for partially observed optimal stochastic controls.
J. Appl. Probab. 32, 1118–1137 (1995)

16. Tang, S.: The maximum principle for partially observed optimal control of stochastic differential
equations. SIAM J. Control Optim. 36(5), 1596–1617 (1998)

17. Yu, X.: An explicit example of optimal portfolio-consumption choices with habit formation and partial
observations. arXiv:1112.2939 (2012)

18. Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New
York (1999)

19. Wu, Z.: The stochastic maximum principle for partially observed forward and backward stochastic
control systems. Sci. China 53(11), 2205–2214 (2010)

20. Wang, G., Wu, Z.: Kalman–Bucy filtering equations of forward and backward stochastic systems and
applications to recursive optimal control problems. J. Math. Anal. Appl. 342, 1280–1296 (2008)

21. Pardoux, E., Peng, S.G.: Adapted solutions of a backward stochastic differential equation. Syst. Con-
trol Lett. 14, 55–61 (1990)

22. Duffie, D., Epstein, L.: Stochastic differential utility. Econometrica 60, 353–394 (1992)
23. El Karoui, N., Peng, S.G., Quenez, M.C.: Backward stochastic differential equations in finance. Math.

Finance 7, 1–71 (1997)
24. Hu, Y., Zhou, X.: Constrained stochastic LQ control with random coefficients and application to

portfolio selection. SIAM J. Control Optim. 44, 444–466 (2005)
25. Zhou, X., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework.

Appl. Math. Optim. 42, 19–33 (2000)
26. Bjork, T., Murgoci, A., Zhou, X.: Mean-variance portfolio optimization with state dependent risk

aversion. Math. Finance (2012). doi:10.1111/j.1467-9965.2011.00515.x
27. Liptser, R.S., Shiryayev, A.N.: Statistics of Random Process. Springer, New York (1977)
28. Xiong, J.: An Introduction to Stochastic Filtering Theory. Oxford University Press, London (2008)
29. Norberg, R.: Ruin problems with assets and liabilities of diffusion type. Stoch. Process. Appl. 81,

255–269 (1999)
30. Bielecki, T., Pliska, S.: Risk-sensitive dynamic asset management. Appl. Math. Optim. 39, 337–360

(1999)
31. Nagai, H., Peng, S.: Risk-sensitive dynamic portfolio optimization with partial information on infinite

time horizon. Ann. Appl. Probab. 12, 173–195 (2002)
32. Boswijk, H., Hommes, C., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control

31, 1938–1970 (2007)

http://arxiv.org/abs/arXiv:1112.2939
http://dx.doi.org/10.1111/j.1467-9965.2011.00515.x

	Partially Observed Time-Inconsistency Recursive Optimization Problem and Application
	Abstract
	Introduction
	A Time Inconsistency Optimization Problem with Full Information
	Kalman-Bucy Filtering Equations
	A Partially Observed Time-Inconsistency Recursive Control Problem
	Application in Insurance Premium Policy Problem
	Conclusions
	Acknowledgements
	References


