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Abstract In this paper, we consider the global error bound for the generalized linear
complementarity problem over a polyhedral cone (GLCP). Based on the new trans-
formation of the problem, we establish its global error bound under milder conditions,
which improves the result obtained by Sun and Wang (2009) for GLCP by weakening
the assumption.
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1 Introduction

In recent years, complementarity problems have been extended in many directions
via innovative techniques to study a wide class of problems arising in pure and ap-
plied sciences. A useful and important generalization is called the generalized non-
linear complementarity problem over a polyhedral cone (GNCP). This problem was
introduced first by Andreani et al. [1] in 2001, and further developed by Wang et al.
in [2, 3]. The GNCP plays a significant role in economics, operation research, and
nonlinear analysis, etc. [4].

The generalized linear complementarity problem over a polyhedral cone (GLCP)
is a special case of the GNCP, and some theoretical issues such as the existence
of solutions and the numerical solution methods for the GLCP (GNCP) have been
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discussed, e.g., [1–3]. It is well known that the global error bound is an important
tool for theoretical analysis and numerical treatment for a mathematic problem [4, 5].
We are here concerned with the global error bound on the distance between a given
point and the solution set of the GLCP in terms of some residual functions.

This paper is a follow-up to [6], as in this paper will establish the global error
bound estimation of the GLCP under weaker conditions than that needed in [6]. To
this end, we first develop some equivalent reformulations of the GLCP under weaker
condition than that discussed in [6], and then establish the global error bound for the
GLCP, which improves the result obtained in [6]. Compared with the error bound
result in [6, 7], the requirement of a non-degenerate solution and the square root term
of residual function in the error bound estimation are both removed here.

2 Preliminaries

Let R
m be a real Euclidean space equipped with the standard inner product, and let

mappings F(x) = Mx + p, G(x) = Nx + q , where M,N ∈ R
m×n, p,q ∈ R

m. The
generalized linear complementarity problem over a polyhedral cone, abbreviated as
GLCP, is to find vector x∗ ∈ R

n such that

F
(
x∗) ∈ K, G

(
x∗) ∈ K◦, F

(
x∗)�

G
(
x∗) = 0, (1)

where K is a polyhedral cone in R
m such that there exist matrices A ∈ R

s×m, B ∈
R

t×m satisfying K = {v ∈ R
m | Av ≥ 0, Bv = 0}, and K◦ is its dual cone which

admits the following form:

K◦ = {
u ∈ R

m | u = A�λ1 + B�λ2, λ1 ∈ R
s+, λ2 ∈ R

t
}
.

Throughout this paper, we denote the solution set of the GLCP by X∗ and assume
that it is nonempty throughout this paper.

Based on this, we can give the needed assumptions for our analysis.

Assumption 2.1 For the matrices A, M , N involved in the GLCP, we assume that

(A1) the matrix M�N is positive semi-definite;
(A2) the matrix A� has full-column rank.

Under this assumption, matrix A� has full-column rank and it has left inverse
(AA�)−1A, which is also its pseudo-inverse of A�. On the other hand, the condition
that the matrix A� has full-column rank is weaker than that the matrix (A�,B�) has
full-column rank discussed in [6].

To end this section, some notations used are in order. The norm ‖ · ‖ and ‖ · ‖1

denote the Euclidean 2-norm and 1-norm, respectively. We use R
n+ to denote the

orthogonal nonnegative orthant in R
n, and use x+ and x− to denote the projections

of vector x onto R
n+ and R

n−, respectively.
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3 Main Result

In the following, we first establish some equivalent reformulations to the GLCP. To
this end, the following straightforward result is needed.

Theorem 3.1 A point x∗ ∈ R
n is a solution of the GLCP if and only if there exist

λ∗
1 ∈ R

s , λ∗
2 ∈ R

t , such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A
(
Mx∗ + p

) ≥ 0,

B
(
Mx∗ + p

) = 0,

λ∗
1 ≥ 0,

(
Mx∗ + p

)�(
Nx∗ + q

) = 0,

Nx∗ + q = A�λ∗
1 + B�λ∗

2.

(2)

From Theorem 3.1, under Assumption 2.1(A2), we can transform the second in-
equality and the last equality in (2) into a new system in which neither parameter λ1
nor parameter λ2 is involved. To this end, we need the following conclusion [8].

Lemma 3.1 Suppose that the non-homogeneous linear equation system Hy = b is
consistent. Then y = H+b is the solution with the minimum 2-norm, where H+ is the
pseudo-inverse of H .

Since X∗ �= ∅, we can establish the following result.

Lemma 3.2 Suppose that Assumption 2.1(A2) holds. Then, for any x ∈ R
n, the fol-

lowing statements are equivalent:

(1) There exist λ1 ∈ R
s+, λ2 ∈ R

t such that Nx + q = A�λ1 + B�λ2,
(2) ⎧

⎪⎪⎨

⎪⎪⎩

{−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
(Nx + q) ≥ 0,

{
A�{−A−1

L B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] + A−1
L

}

+ B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] − I
}
(Nx + q) = 0,

where A−1
L = (AA�)−1A.

Proof Set

X1 := {
x ∈ R

n | Nx + q = A�λ1 + B�λ2 for some λ1 ∈ R
s+, λ2 ∈ R

t
}
,

X2 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ R
n

∣∣∣
∣∣∣∣∣∣∣

{−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
(Nx + q)

≥ 0,
{
A�{−A−1

L B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] + A−1
L

}

+ B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] − I
}
(Nx + q) = 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Now, we show that these two sets are equal.
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First, for any x ∈ X1, there exist λ1 ∈ R
s+, λ2 ∈ R

t such that

Nx + q = A�λ1 + B�λ2. (3)

Pre-multiplying (3) by A−1
L := (AA�)−1A gives

A−1
L (Nx + q) = λ1 + A−1

L B�λ2, (4)

and combining this with (3), we have

Nx + q = A�(
A−1

L (Nx + q) − A−1
L B�λ2

) + B�λ2

= A�A−1
L (Nx + q) − [

A�A−1
L B� − B�]

λ2,

i.e.,
[
A�A−1

L B� − B�]
λ2 = [

A�A−1
L − I

]
(Nx + q).

Recalling Lemma 3.1, we further have

λ2 = [(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

]
(Nx + q). (5)

Combining this with (4) yields

λ1 = {−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
(Nx + q). (6)

Using (3), (5), (6), we have

{
A�{−A−1

L B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] + A−1
L

}

+ B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] − I
}
(Nx + q) = 0. (7)

Using the fact that λ1 ≥ 0, by (6), one has

{−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
(Nx + q) ≥ 0.

Combining this with (7) leads to that x ∈ X2. This shows that X1 ⊆ X2.
Second, for any x ∈ X2, let

λ1 = {−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
(Nx + q),

λ2 = {[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

]}
(Nx + q).

Then λ1 ∈ R
s+, λ2 ∈ R

t . From (7), one has

Nx + q = A�{−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
(Nx + q)

+ B�{[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

]}
(Nx + q)

= A�λ1 + B�λ2,

i.e., x ∈ X1. Hence, X2 ⊆ X1, and the desired result follows. �
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Combining this conclusion with Theorem 3.1, we can establish the following
equivalent formulation of the GLCP under Assumption 2.1(A2):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

AF(x) ≥ 0,

BF(x) = 0,
(
F(x)

)�
G(x) = 0,

UG(x) ≥ 0,

V G(x) = 0,

(8)

where

U = {−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
,

V = {
A�{−A−1

L B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] + A−1
L

}

+ B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] − I
}
.

For system (8), by the first equality and the last equality, one has

(
F(x)

)�
G(x)

= (
F(x)

)�{
A�{−A−1

L B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

] + A−1
L

}

+ B�[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

]}
G(x)

= [
AF(x)

]�{−A−1
L B�[(

A�A−1
L − I

)
B�]+[

A�A−1
L − I

] + A−1
L

}
G(x)

+ [
BF(x)

]�{[(
A�A−1

L − I
)
B�]+[

A�A−1
L − I

]}
G(x)

= [
AF(x)

]�[
UG(x)

]
. (9)

Thus, system (8) can be further written as

⎧
⎪⎨

⎪⎩

AF(x) ≥ 0, BF(x) = 0,
(
AF(x)

)�[
UG(x)

] = 0,

UG(x) ≥ 0, V G(x) = 0.

(10)

For convenience of discussion, we denote

Ω = {
x ∈ R

n | BF(x) = 0, V G(x) = 0
}

in the following. To proceed, we present the following assumption, which will be
needed in the sequel.

Assumption 3.1 For system (10), there exists a point x̂ ∈ Ω such that

AF(x̂) > 0, UG(x̂) > 0.
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Obviously, Assumption 3.1 is weaker than the condition in Theorem 4.2 of [6].
Now, we consider the following set associated with the GLCP:

L(ε)
�= {

x ∈ Ω | ϕ(x) ≤ ε
}
, (11)

where ε ≥ 0 and ϕ(x) = ‖(−AF(x))+‖1 +‖(−UG(x))+‖1 +((AF(x))�(UG(x)))+.

Theorem 3.2 Suppose Assumptions 2.1 and 3.1 hold, and matrix
(
AM
UN

)
is of full

column rank, then L(ε) is bounded for any ε ≥ 0.

Proof For any x ∈ L(ε), we have
∥∥(−AF(x)

)
+
∥∥

1 ≤ ε,
∥∥(−UG(x)

)
+
∥∥

1 ≤ ε,

((
AF(x)

)�(
UG(x)

))
+ ≤ ε.

(12)

Then, for i = 1,2, . . . , n, one has

min
{(

AF(x)
)
i
,
(
UG(x)

)
i

} ≥ −ε. (13)

By Assumption 2.1(A1),

0 ≤ (x − x̂)�M�N(x − x̂)

= 〈
F(x) − F(x̂),G(x) − G(x̂)

〉

= F(x)�G(x) − F(x)�G(x̂) − F(x̂)�G(x) + F(x̂)�G(x̂)

= (
AF(x)

)�[
UG(x)

] − (
AF(x)

)�[
UG(x̂)

] − (
AF(x̂)

)�[
UG(x)

]

+ (
AF(x̂)

)�[
UG(x̂)

]
, (14)

where the last equality is obtained by a similar argument of (9). Certainly, (14) can
be written as

(
AF(x)

)�[
UG(x̂)

] + (
AF(x̂)

)�[
UG(x)

]

≤ (
AF(x)

)�[
UG(x)

] + (
AF(x̂)

)�[
UG(x̂)

]
.

Using (12) and (13), one has

∑

[UG(x)]i>0

[
AF(x̂)

]
i

[
UG(x)

]
i
+

∑

[AF(x)]i>0

[
AF(x)

]
i

[
UG(x̂)

]
i

≤ [
AF(x)

]�[
UG(x)

] + [
AF(x̂)

]�[
UG(x̂)

]

−
[ ∑

[UG(x)]i<0

[
AF(x̂)

]
i

[
UG(x)

]
i
+

∑

[AF(x)]i<0

[
UG(x̂)

]
i

[
AF(x)

]
i

]

≤ ([
AF(x)

]�[
UG(x)

])
+ + [

AF(x̂)
]�[

UG(x̂)
]
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+ ε
[∥∥[

AF(x̂)
]∥∥

1 + ∥∥[
UG(x̂)

]∥∥
1

]

≤ [
AF(x̂)

]�[
UG(x̂)

] + ε
[
1 + ∥∥[

AF(x̂)
]∥∥

1 + ∥∥[
UG(x̂)

]∥∥
1

]
. (15)

We now break up the discussion into two cases.
First, if [AF(x)]i < 0, then by (13), we have −ε < [AF(x)]i < 0.
Second, if [AF(x)]i > 0, combining (15) with [UG(x̂)]i > 0, we have

0 <
[
AF(x)

]
i

= ([
UG(x̂)

]
i

)−1[
UG(x̂)

]
i

[
AF(x)

]
i

<
([

UG(x̂)
]
i

)−1
( ∑

[UG(x)]j >0

[
AF(x̂)

]
j

[
UG(x)

]
j

+
∑

[AF(x)]j >0

[
UG(x̂)

]
j

[
AF(x)

]
j

)

≤ ([
UG(x̂)

]
i

)−1([
AF(x̂)

]�[
UG(x̂)

] + ε
[
1 + ∥∥[

AF(x̂)
]∥∥

1 + ∥∥[
UG(x̂)

]∥∥
1

])
,

which shows that [AF(x)]i is bounded w.r.t. x.
Similar to discussion above, we can also prove that [UG(x)]i is bounded w.r.t. x.
Since the matrix

(
AM
UN

)
is of column full rank, we know that

‖x‖ =
∥∥∥∥
∥

(
AM

UN

)−1

L

(
AM

UN

)
x

∥∥∥∥
∥

=
∥∥∥∥∥

(
AM

UN

)−1

L

[(
AM

UN

)
x +

(
Ap

Uq

)
−

(
Ap

Uq

)]∥∥∥∥∥

=
∥∥∥∥∥

(
AM

UN

)−1

L

[(
AF(x)

UG(x)

)
−

(
Ap

Uq

)]∥∥∥∥∥

≤
∥∥∥∥∥

(
AM

UN

)−1

L

∥∥∥∥∥

∥∥∥∥

[(
AF(x)

UG(x)

)]∥∥∥∥ +
∥∥∥∥∥

(
AM

UN

)−1

L

(
Ap

Uq

)∥∥∥∥∥
,

where
(
AM
UN

)−1

L
is left inverse of the matrix

(
AM
UN

)
. So L(ε) is bounded for any ε ≥ 0. �

Lemma 3.3 Given constant μ > 0, for any ‖x‖ ≤ μ,x ∈ R
n, then there exists con-

stant ν > 0 such that

ϕ(x) ≤ νr(x),

where r(x) = ‖min{AF(x),UG(x)}‖.

Proof Using the fact that
∣∣(−a)+

∣∣ ≤ ∣∣min{a, b}∣∣, ∀a, b ∈ R,
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we know that there exists constant c1 > 0 such that
∥∥(−AF(x)

)
+
∥∥

1 + ∥∥(−UG(x)
)
+
∥∥

1 ≤ 2c1
∥∥min

{
AF(x),UG(x)

}∥∥. (16)

For any x ∈ R
n with ‖x‖ ≤ μ, there exists constant c2 > 0 such that

∥∥max
{
AF(x),UG(x)

}∥∥ ≤ c2.

Therefore, by the definition of ϕ(x), we have

ϕ(x) ≤ 2c1
∥∥min

{
AF(x),UG(x)

}∥∥ + [(
AF(x)

)�(
UG(x)

)]
+

≤ 2c1
∥∥min

{
AF(x),UG(x)

}∥∥

+ ∥∥min
{
AF(x),UG(x)

}∥∥ · ∥∥max
{
AF(x),UG(x)

}∥∥

≤ ν
∥∥min

{
AF(x),UG(x)

}∥∥,

where ν = max{2c1, c2}, the first inequality is by (16), and the second inequality
follows from the fact that

(a + b)+ ≤ a+ + b+, and (cd)+ ≤ ∥∥min{c, d}∥∥∥∥max{c, d}∥∥, ∀a, b, c, d ∈ R.

�

By Lemma 3.3 and Theorem 3.2, we immediately obtain the following conclusion.

Lemma 3.4 Suppose that the hypothesis of Theorem 3.2 holds, then the set

Xε := {
x ∈ Ω | r(x) ≤ ε, ε > 0

}

is bounded.

Based on Lemma 3.4, we can establish the following error bound of the GLCP
in Xε .

Lemma 3.5 Suppose that the hypothesis of Theorem 3.2 holds. Then there exists
constant τ > 0 such that

dist
(
x,X∗) ≤ τr(x), ∀x ∈ Xε, (17)

where dist(x,X∗) denotes the distance between the point x and the solution set X∗,
and r(x) defined in Lemma 3.3.

Proof The proof uses a similar technique to that of Corollary 3.2 in [9]. For com-
pleteness, we include it.

Assume that the theorem is false. Then there exist ε0 > 0, a positive sequence {τk},
and a sequence {xk} ⊆ Xε0 such that τk → ∞ as k → ∞ and

dist
(
xk,X∗) > τkr

(
xk

)
. (18)
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Hence,

r(xk)

dist(xk,X∗)
→ 0 as k → ∞. (19)

Since Xε0 is bounded and r(x) is continuous, by (19), we have r(xk) → 0 as
k → ∞. Since Xε0 is bounded again and {xk} ⊆ Xε0 , there exists a subsequence {xki }
of {xk} such that limki→∞ xki = x̄ ∈ Xε0 with r(x̄) = 0. Hence x̄ ∈ X∗. By (19), we
further obtain

lim
ki→∞

r(xki )

‖xki − x̄‖ ≤ lim
ki→∞

r(xki )

dist(xki ,X∗)
= 0. (20)

On the other hand, since AF(x) and UG(x) are both polynomial functions with
powers 1, respectively, from xki → x̄ and r(xki ) → 0, we know that, for all suffi-
ciently large ki ,

r(xki )

‖xki − x̄‖ ≥ θ,

for some positive number θ , this contradicts (20). Thus, (17) holds. �

Based on Lemmas 3.4 and 3.5, we have the following conclusion.

Theorem 3.3 Suppose that the hypothesis of Theorem 3.2 holds. Then there exists
constant ρ > 0 such that

dist
(
x,X∗) ≤ ρr(x), ∀x ∈ Ω.

Proof Assume that the conclusion is false. Then, for any ρk > 0 such that ρk → ∞
as k → ∞, there exist xk ∈ Ω and x̄ ∈ X∗, such that

∥
∥xk − x̄

∥
∥ > ρkr

(
xk

)
. (21)

Now, we claim that there exist k0 > 0 and ε0 > 0 such that

r
(
xk

)
> ε0, ∀k > k0. (22)

In fact, if not, for any ε ∈ (0,1), and for any k0 > 0, there exists k̄ > k0 such
that r(xk̄) ≤ ε. Then set Θε = {x ∈ Ω|r(x) ≤ ε} is bounded. Combining this
with Lemma 3.5, there exists constant τ > 0, such that for xk̄ ∈ Θε , there exists
x̄(xk̄) ∈ X∗ with that ‖xk̄ − x̄(xk̄)‖ ≤ τr(xk̄). Combining this with (21), for xk̄ , and
x̄(xk̄) ∈ X∗, we have

τ

ρk̄

∥∥xk̄ − x̄
(
xk̄

)∥∥ > τr
(
xk̄

) ≥ ∥∥xk̄ − x̄
(
xk̄

)∥∥,

i.e. (τ/ρk̄) > 1. Letting k̄ → ∞ yields (τ/ρk̄) < 1. This is a contradiction. Hence (22)
holds.

By (21) and (22), we have ‖xk‖ > ρkε0 − ‖x̄‖, i.e., ‖xk‖ → ∞ as k → ∞.
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Let yk = xk

‖xk‖ , then there exists a subsequence {yki } of {yk}, such that yki → ȳ

with ‖ȳ‖ = 1 as ki → ∞. Thus, for subsequence {xki } with ‖xki ‖ → ∞ as i → ∞,
if

[

−
(

AF
(
xki

)
/
∥∥xki

∥∥

UG
(
xki

)
/
∥∥xki

∥∥

)]

+
→ 0 (23)

does not hold, then there exists an index j such that

lim inf
ki→∞

(
AF

(
xki

)
/
∥∥xki

∥∥

UG
(
xki

)
/
∥∥xki

∥∥

)

j

< 0.

In this case, based on definition of ϕ(xki )/‖xki ‖ in (11), we have

lim inf
ki→∞ ϕ

(
xki

)
/
∥∥xki

∥∥ > 0. (24)

If the sequence {xki } satisfies the condition (23), then

lim
ki→∞

(
AF

(
xki

)
/
∥∥xki

∥∥

UG
(
xki

)
/
∥
∥xki

∥
∥

)

=
(

AM

UN

)
ȳ.

Clearly,
(
AM
UN

)
ȳ �= 0 and

(
AM
UN

)
ȳ ≥ 0 by condition (23). By Assumption 2.1(A1), using

the technique used in (14) again, we have

0 ≤ 2
(
xki − x̂

)�
M�N

(
xki − x̂

)

= 〈
F

(
xki

) − F(x̂),G
(
xki

) − G(x̂)
〉 + 〈

G
(
xki

) − G(x̂),F
(
xki

) − F(x̂)
〉

= (
F

(
xki

))�
G

(
xki

) + (
G

(
xki

))�
F

(
xki

) − (
F

(
xki

))�
G(x̂) − (

G
(
xki

))�
F(x̂)

− (
F(x̂)

)�
G

(
xki

) − (
G(x̂)

)�
F

(
xki

) + (
F(x̂)

)�
G(x̂) + (

G(x̂)
)�

F(x̂)

= [
AF

(
xki

)]�[
UG

(
xki

)] + [
UG

(
xki

)]�[
AF

(
xki

)] − [
AF

(
xki

)]�[
UG(x̂)

]

− [
UG

(
xki

)]�[
AF(x̂)

] − [
AF(x̂)

]�[
UG

(
xki

)]

− [
UG(x̂)

]�[
AF

(
xki

)] + [
AF(x̂)

]�[
UG(x̂)

] + [
UG(x̂)

]�[
AF(x̂)

]

=
(

AF
(
xki

)

UG
(
xki

)

)� (
UG

(
xki

)

AF
(
xki

)

)

+
(

AF(x̂)

UG(x̂)

)�(
UG(x̂)

AF(x̂)

)

−
(

AF
(
xki

)

UG
(
xki

)

)� (
UG(x̂)

AF(x̂)

)
−

(
UG(x̂)

AF(x̂)

)� (
AF

(
xki

)

UG
(
xki

)

)

, (25)
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where the deduction of the second equality uses a similar technique to that of (9).
By (25), we obtain

(
AF

(
xki

)

UG
(
xki

)

)� (
UG

(
xki

)

AF
(
xki

)

)

≥
(

AF
(
xki

)

UG
(
xki

)

)� (
UG(x̂)

AF(x̂)

)
+

(
UG(x̂)

AF(x̂)

)� (
AF

(
xki

)

UG
(
xki

)

)

−
(

AF(x̂)

UG(x̂)

)�(
UG(x̂)

AF(x̂)

)
. (26)

Dividing both sides of (26) by ‖xki ‖ gives

lim inf
ki→∞ 2

{[
AF

(
xki

)]�[
UG

(
xki

)]}
+/

∥∥xki
∥∥

≥ lim inf
ki→∞ 2

[
AF

(
xki

)]�[
UG

(
xki

)]
/
∥
∥xki

∥
∥

= lim inf
ki→∞

(
AF

(
xki

)

UG
(
xki

)

)� (
UG

(
xki

)

AF
(
xki

)

)

/
∥∥xki

∥∥

≥ lim inf
ki→∞

⎧
⎨

⎩

(
AF

(
xki

)
/
∥∥xki

∥∥

UG
(
xki

)
/
∥∥xki

∥∥

)�(
UG(x̂)

AF(x̂)

)
+

(
UG(x̂)

AF(x̂)

)�(
AF

(
xki

)
/
∥∥xki

∥∥

UG
(
xki

)
/
∥∥xki

∥∥

)⎫
⎬

⎭

− lim inf
ki→∞

{(
AF(x̂)

UG(x̂)

)�(
UG(x̂)

AF(x̂)

)}

/
∥∥xki

∥∥

= 2

(
AMȳ

UNȳ

)�(
UG(x̂)

AF(x̂)

)
> 0, (27)

where the last inequality follows from the properties of
(
AM
UN

)
ȳ and Assumption 3.1.

Based on definition of ϕ(xki )/‖xki ‖ in (11) again, we can obtain (24).
Dividing both sides of (21) by ‖xki ‖, taking (24) into consideration, and letting

ki → ∞ yield

1 = lim
ki→∞

‖xki − x̄‖
‖xki ‖ ≥ lim

ki→∞
ρki

r(xki )

‖xki ‖ ≥ lim
ki→∞ρki

ν−1 ϕ(xki )

‖xki ‖ → ∞,

where the second inequality is by Lemma 3.3. This is contradiction, and the desired
result follows. �

To establish a global error bound for GLCP, we give the following result from [10]
on the error bound for a polyhedral cone.
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Lemma 3.6 For polyhedral cone P = {x ∈ R
n | D1x = d1,D2x ≤ d2} with D1 ∈

R
l×n,D2 ∈ R

m×n, d1 ∈ R
l and d2 ∈ R

m, there exists constant c > 0 such that

dist(x,P ) ≤ c
[‖D1x − d1‖ + ∥∥(D2x − d2)+

∥∥]
, ∀x ∈ R

n.

Now, we arrive at the position to state our main results.

Theorem 3.4 Suppose that the hypothesis of Theorem 3.2 holds. Then there exists
constant η > 0 such that

dist
(
x,X∗) ≤ η

{∥∥B(Mx + p)
∥∥ + ∥∥V (Nx + q)

∥∥ + r(x)
}
, ∀x ∈ R

n. (28)

Proof For any x ∈ R
n, there exists a vector x̄ ∈ Ω such that

‖x − x̄‖ = dist(x,Ω).

Using the fact that

min{a, b} = a − PR+(a − b), ∀a, b ∈ R,

one has
∥∥r(x) − r(x̄)

∥∥

= ∥∥min
{
AF(x),UG(x)

} − min
{
AF(x̄),UG(x̄)

}∥∥

= ∥∥[
AF(x) − PR

s+
(
AF(x) − UG(x)

)] − [
AF(x̄) − PR

s+
(
AF(x̄) − UG(x̄)

)]∥∥

≤ ∥∥AF(x) − AF(x̄)
∥∥ + ∥∥PR

s+
(
AF(x) − UG(x)

) − PR
s+
(
AF(x̄) − UG(x̄)

)∥∥

≤ ∥∥AF(x) − AF(x̄)
∥∥ + ∥∥(

AF(x) − UG(x)
) − (

AF(x̄) − UG(x̄)
)∥∥

≤ 2
∥∥AF(x) − AF(x̄)

∥∥ + ∥∥UG(x) − UG(x̄)
∥∥

≤ 2‖AM‖‖x − x̄‖ + ‖UN‖‖x − x̄‖
= (

2‖AM‖ + ‖UN‖)‖x − x̄‖
= (

2‖AM‖ + ‖UN‖)dist(x,Ω),

where the second inequality is by non-expanding property of projection operator.
Thus,

∥∥r(x̄)
∥∥ ≤ ∥∥r(x)

∥∥ + (
2‖AM‖ + ‖UN‖)dist(x,Ω). (29)

Combining Theorem 3.3 with (29), we have

dist
(
x,X∗) ≤ dist(x,Ω) + dist

(
x̄,X∗)

≤ dist(x,Ω) + ρ
∥∥r(x̄)

∥∥

≤ dist(x,Ω) + ρ
(∥∥r(x)

∥∥ + (
2‖AM‖ + ‖UN‖)dist(x,Ω)

)

≤ ρ
∥∥r(x)

∥∥ + [
ρ
(
2‖AM‖ + ‖UN‖) + 1

]
dist(x,Ω)

≤ η
(∥∥r(x)

∥∥ + ∥∥B(Mx + p)
∥∥ + ∥∥V (Nx + q)

∥∥)
,
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where the last inequality is by Lemma 3.6, and

η = max
{
ρ, c

[
ρ
(
2‖AM‖ + ‖UN‖) + 1

]}
,

c is a constant. �

In the end of this section, we present two examples to compare the conditions in
Theorem 3.4 in this paper and that in Theorem 4.2 in [6].

Example 3.1 For the matrices A, B , M , N , p, q involved in the GLCP, we set

M =
(

1 0
0 1

)
, N =

(
1 −2
0 1

)
, p = q =

(
0
0

)
,

A =
(

1 1
0 1

)
, B =

(
0 0
0 0

)
.

It is easy to see that the solution set X∗ = {0}. Obviously, M�N is positive semi-
definite. By definition of U , V in (8), one has

U =
(

1 0
−1 1

)
, V =

(
0 0
0 0

)
.

For x(ε) := (0, ε)�, 0 ≤ ε ≤ 1, we have

‖x(ε) − 0‖
‖Bx(ε)‖ + ‖V Nx(ε)‖ + ‖min{Ax(ε),U(Nx(ε) + q)}‖ = ε

0 + 0 + √
5ε

→ 1√
5

as ε → 0. Thus, the conclusion in Theorem 3.4 in this paper provides a global error
bound for the GLCP. However, since matrix (A�,B�) has not full-column rank, thus,
the error bound of Theorems 4.1 and 4.2 in [6] is not valid.

Example 3.2 For the matrices A, B , M , N , p, q involved in the GLCP, we set

M =
(

1 0
0 1

)
, N =

(
1 −2
0 1

)
, p = q =

(
0
0

)
,

A = (1,0), B = (1,1).

It is easy to see that the solution set X∗ = {0}. Hence it has no non-degenerate so-
lution. Obviously, M�N is positive semi-definite. By definition of U , V in (8), one
has

U = (1,−1), V =
(

0 0
0 0

)
.

For x(ε) := (ε,−ε)�, 0 ≤ ε ≤ 1, we have

‖x(ε) − 0‖
‖Bx(ε)‖ + ‖V Nx(ε)‖ + ‖min{Ax(ε),U(Nx(ε) + q)}‖ =

√
2ε

0 + 0 + ε
→ √

2

as ε → 0. Thus, Theorem 3.4 in this paper provides a global error bound for the
GLCP.
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On the other hand, it is obvious that the matrix (A�,B�) has full-column rank.
From Theorem 4.2 in [6], we can obtain

Q =
(

A

B

)
=

(
1 0
1 1

)
, (I,0)

(
QQ�)−1

Q = (1,−1),

Q̄ = Q�(
QQ�)−1

Q − Im =
(

0 0
0 0

)
.

Using Theorem 4.2 in [6], for x(ε), we have

A
(
Mx(ε) + p

) = (1,0)x(ε) = ε,

B
(
Mx(ε) + p

) = (1,1)x(ε) = 0,

(I,0)
(
QQ�)−1

Q
(
Nx(ε) + q

) = (1,−3)x(ε) = 4ε,

Q̄
(
Nx(ε) + q

) = 0,

(
Mx(ε) + p

)�(
Nx(ε) + q

) = 4ε2.

i.e.,

‖x(ε) − 0‖
{[Mx(ε) + p]�[Nx(ε) + q]}+ =

√
2ε

4ε2
→ +∞

as ε → 0. Thus, Theorem 4.2 in [6] fails in providing an error bound for this GLCP.

Overall, Theorem 4.2 in [6] cannot provide an error bound for these two problems
as the problems has no non-degenerate solutions, while Theorem 3.4 in this paper can
do.

In the end of this section, we will discuss the hypotheses used in our main results.
First, without the requirement of a non-degenerate solution, the square root term in
the error bound estimation is removed, as stated in Theorem 3.4 in this paper. Hence,
the error estimation becomes more practical than that obtained in Theorem 4.1 in
[6] as we may establish quick convergence rate of the Newton-type method for solv-
ing the GLCP [2] under the error bound assumption obtained in this paper instead
of the nonsingular assumption [11]. Second, when GLCP reduces to the classical
linear complementarity problems (LCP), Assumption 2.1(A1) coincides with the as-
sumption in [7], and Assumption 2.1(A2) and the condition that the matrix

(
AM
UN

)
is

of column full rank are automatically satisfied for LCP. Hence, Assumption 3.1 is
weaker than the condition that the LCP has a non-degenerate solution required in
Theorem 2.6 of [7].

4 Conclusions and Discussions

In this paper, we established a global error bound on the generalized linear comple-
mentarity problems over a polyhedral cone, which improves the result obtained in [6]
by weakening the assumption. Surely, under milder conditions, we may established
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global error bounds for GLCP with the mapping being nonmonotone, and may use
the error bound estimation to establish quick convergence rate of the Newton-type
method for solving the GLCP in [2] instead of the nonsingular assumption just as
was done for nonlinear equations in [11]. This is a topic for future research.
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