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Abstract The article presents solution procedure of geometric programming with
imprecise coefficients. We have considered problems with imprecise data as a form
of an interval in nature. Many authors have solved the imprecise problem by geomet-
ric programming technique in a different way. In this paper, we introduce parametric
functional form of an interval number and then solve the problem by geometric pro-
gramming technique. The advantage of the present approach is that we get optimal
solution of the objective function directly without solving equivalent transformed
problems. Numerical examples are presented to support of the proposed approach.

Keywords Geometric programming · Interval number · Uncertain parameter ·
Optimization · Duality theorem

1 Introduction

Geometric programming (GP) is an efficient technique for solving a particular type
of nonlinear optimization problems. It has interesting applications in different fields
of Engineering, Science, Management, etc. Duffin et al. [1] put a foundation stone
to solve applications of engineering problems by developing basic theories of ge-
ometric programming. Examples of application of GP are reliability optimization

Communicated by Mordecai Avriel.

G.S. Mahapatra (�)
Department of Mathematics, Siliguri Institute of Technology, P.O.-Sukna, Siliguri 734009,
West Bengal, India
e-mail: g_s_mahapatra@yahoo.com

T.K. Mandal
D.I.B. High School, P.O.-Galimpur, Chanchal, West Bengal 732126, India
e-mail: hellotapan05@gmail.com

mailto:g_s_mahapatra@yahoo.com
mailto:hellotapan05@gmail.com


J Optim Theory Appl (2012) 154:120–132 121

(Govil [2, 3], Mahapatra and Roy [4], Mahapatra and Mahapatra [5]), engineering
design (Choi and Bricker [6], Prasad et al. [7]), integrated circuit design (Chu and
Wong [8], Hershenson et al. [9], Mandal and Visvanathan [10]), inventory manage-
ment (Cheng [11], Kim and Lee [12], Lee [13], Jung and Klein [14], Abuo El Ata
et al. [15], Worrall and Hall [16], Liu [17]), project management (Scott and Jef-
ferson [18]), etc. The most remarkable property of geometric programming is that
a problem with highly nonlinear constraints can be transformed equivalently into a
problem with only linear constraints. This is due to a strong duality theorem for ge-
ometric programming problems. For posynomial form of the primal problem, there
exists a global minimizing solution to that problem, and this solution can be obtained
by solving the dual maximization. The development of a powerful solution technique
for GP is due to the linear dual constraints as the linearly constrained programs are
generally easier to solve than the ones with nonlinear constraints.

Several researchers (Avriel and Dembo [19], Beightler and Philips [20], Duffin
and Peterson [21], Duffin et al. [1], Fang et al. [22], Kyparisis [23], Kortanek and
No [24], Kortanek et al. [25], Maranas and Floudas [26], Peterson [27], Rajgopal [28],
Rajgopal and Bricker [29, 30], Yang and Bricker [31], Zhu et al. [32]) developed
efficient and effective algorithms for solving the geometric programming problems
when the objective and constraint coefficients are known. The problem parameters
of many applications of geometric programming problems are estimates of actual
values (Beightler and Philips [20]). In real life, the data cannot be recorded or col-
lected precisely due to human errors or some unexpected situations. Therefore, there
are many cases in which these coefficients may not be presented in a precise man-
ner. The idea of fuzziness (impreciseness) in GP, i.e. fuzzy geometric programming,
has been proposed by Cao [33]. There is an essential and fundamental book by Cao
dealing with fuzzy geometric programming [34]. Yang and Cao [35] presented an
outline of the origin and applications of fuzzy geometric programming. An alterna-
tive approach is to apply interval estimates [36] instead of single values to represent
the uncertain parameters. Liu [37] developed a solution method of posynomial ge-
ometric programming with interval exponents and coefficients. A pair of two-level
mathematical programs is formulated, and hence it solves the pair of problems us-
ing the geometric programming technique to obtain the objective value as an interval
number. Ojha and Das [38] developed a solution procedure using GP technique by
splitting the cost coefficients, constraint coefficients and exponents with the help of
binary numbers.

In this paper, we consider posynomial geometric programs and develop a solu-
tion procedure that is able to calculate the optimal objective value for the problem,
where at least one of the parameters is an interval number. We present parameters
as an interval in parametric function form and then solve this parametric problem
by a GP technique which is called the parametric geometric programming (PGP).
A parametric mathematical program is formulated to calculate the different value of
the objective function for different value of the parameter. The proposed procedure is
more effective and interesting since we get different solutions of the problem using
functional form of an interval parameter for different value of parameters. We de-
velop a solution procedure to solve such nonlinear programming problems using the
GP technique. The main advantage of the presented procedure is that it is not required
to form and solve two-level mathematical programming which is time consuming.
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The rest of this paper is organized as follows: In Sect. 2, a preliminary idea of GP
is presented. Section 3 briefly states the posynomial geometric programming problem
with imprecise parameters. Then parametric mathematical problem is formulated for
calculating the objective value. In Sect. 4, we have used two examples based on Din-
kle and Tretter [39] (later on Liu [40] used these problems for imprecise coefficients
using the GP technique) to explain the idea of this paper. Finally, in Sect. 5, some
conclusions are drawn from the discussion.

2 Geometric Programming

Let us consider a constrained posynomial geometric programming problem in the
following form:

Min f0(x) =
T0∑

t=1

c0t

N∏

n=1

xa0tn
n

s.t.

fm(x) =
Tm∑

t=1

cmt

N∏

n=1

xamtn
n ≤ 1; m = 1,2, . . . ,M,

xn > 0, n = 1,2, . . . ,N.

(1)

The posynomial function contains T0 terms in the objective function and Tm terms
in the inequality constrains. The coefficient of each term is positive by definition of
posynomial. Let T = T0 + T1 + · · · + Tm be the total number of terms in the pri-
mal program. The degree of difficulty (DD) is defined as DD = Total no. of terms −
(Total no. of variables − 1) = T − (N + 1).

The dual problem (with the objective function d(w), where w ≡ {w(wmt), ∀m =
0,1, . . . ,M ; t = 1,2, . . . , Tm} is the decision vector) of the geometric programming
problem (1) for the general posynomial case is as follows:

Max d(w) =
T0∏

t=1

(
c0t

w0t

)w0t M∏

m=1

Tm∏

t=1

(
cmt

∑
wmt

wmt

)wmt

s.t.
T0∑

t=1

w0t = 1,

M∑

m=0

Tm∑

t=1

amtnwmt = 0 for n = 1,2, . . . ,N,

wmt > 0 ∀m = 0,1, . . . ,M; t = 1,2, . . . , Tm.

(2)

Case I: For T ≥ N + 1, the dual program presents a system of linear equations for
the dual variables where the number of linear equations is either less than or
equal to the number of dual variables. A solution vector exists for the dual
variable (Beightler and Philips [20]).
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Case II: For T < N + 1, the dual program presents a system of linear equations for
the dual variables where the number of linear equations is greater than the
number of dual variables. In this case, generally, no solution vector exists for
the dual variables. However, one can get an approximate solution vector for
this system using either the least squares or the linear programming method.

3 Imprecise Geometric Programming with Solution Procedure

By the definition of posynomial, all the coefficients are positive in nature. In
model (1), all the coefficients are considered as precise. Intuitively, if any of the
coefficients is imprecise, the problem cannot be solved by the GP technique. Fur-
thermore, when the right-hand side value becomes an interval number rather than a
single value, then it is not so straightforward to convert the constraint to the standard
form like model (1). For an imprecise coefficient, we present the problem with an
interval coefficient and its solution procedure in this section.

3.1 Geometric Programming with Interval Coefficient

Suppose the right-hand sides of the constraints in the geometric program (1) are re-
placed by bm’s which are all positive numbers. If bm = 1 for all m, then this new
geometric program coincides with the standard one. Otherwise, the constraints need
some amendment to be consistent with model (1). Let ĉ0t , ĉmt and b̂m denote the
interval counterparts of c0t , cmt , bm, respectively. The posynomial geometric pro-
gramming problem with imprecise parameters is of the following form:

Min f̂0(x) =
T0∑

t=1

ĉ0t

N∏

n=1

xa0tn
n

s.t.

f̂m(x) =
Tm∑

t=1

ĉmt

N∏

n=1

xamtn
n ≤ b̂m; m = 1,2, . . . ,M,

xn > 0, n = 1,2, . . . ,N,

(3)

where ĉ0t ∈ [cL
0t , c

U
0t ], ĉmt ∈ [cL

mt , c
U
mt ], b̂m ∈ [bL

m,bU
m], cL

0t , cL
mt , bL

m > 0 for all m

and t .

Definition 3.1 (Interval-valued function) Let a > 0, b > 0 and consider the interval
[a, b]. From a mathematical point of view, any real number can be represented on
a line. Similarly, we can represent an interval by a function. If the interval is of the
form [a, b], the interval-valued function is taken as

h(p) = a(1−p)bp for p ∈ [0,1].
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3.2 Proposed Solution Technique of Imprecise Geometric Programming

The posynomial functions fm(x), m = 0,1, . . . ,M , contain Tm terms in the objective
function and inequality constraints. By the definition of the posynomial, all the coef-
ficients cmt for m = 0,1, . . . ,M and t = 1,2, . . . , Tm are positive. The model (3) can
be written in the form

Min f0(x;p) =
T0∑

t=1

(
cL

0t

)(1−p)(
cU

0t

)p
N∏

n=1

xa0tn
n

s.t.

fm(x;p) =
Tm∑

t=1

(
cL
mt

)(1−p)(
cU
mt

)p
N∏

n=1

xamtn
n ≤ (

bL
m

)p(
bU
m

)(1−p)

m = 1,2, . . . ,M,

xn > 0, n = 1,2, . . . ,N and p ∈ [0,1].

(4)

The following theorem gives the idea that the solution of (3) is possible in the
form of parametric approach, when the coefficients are the interval values of the
posynomial GP problem.

Theorem 3.1 The parametric nonlinear programming problem

Min f0(x;p) =
T0∑

t=1

(
cL

0t

)(1−p)(
cU

0t

)p
N∏

n=1

xa0tn
n

s.t.

fm(x;p) =
Tm∑

t=1

(
cL
mt

)(1−p)(
cU
mt

)p
N∏

n=1

xamtn
n ≤ (

bL
m

)p(
bU
m

)(1−p);

m = 1,2, . . . ,M,

xn > 0, n = 1,2, . . . ,N and p ∈ [0,1]

(5)

provides the solution of the interval-valued nonlinear programming problem

Min f̂0(x) =
T0∑

t=1

ĉ0t

N∏

n=1

xa0tn
n

s.t.

f̂m(x) =
Tm∑

t=1

ĉmt

N∏

n=1

xamtn
n ≤ b̂m m = 1,2, . . . ,M,

xn > 0; n = 1,2, . . . ,N,

where ĉ0t ∈ [cL
0t , c

U
0t ], ĉmt ∈ [cL

mt , c
U
mt ], b̂m ∈ [bL

m,bU
m ], cL

0t , cL
mt , bL

m > 0 for all m

and t .
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Proof The given problem (3) can be written as follows:

Min f0(x) =
T0∑

t=1

[
cL

0t , c
U
0t

] N∏

n=1

xa0tn
n

s.t.

fm(x) =
Tm∑

t=1

[
cL
mt , c

U
mt

] N∏

n=1

xamtn
n ≤ [

bL
m,bU

m

]; m = 1,2, . . . ,M,

xn > 0; n = 1,2, . . . ,N.

(6)

For any t, if we take αt ∈ [cL
0t , c

U
0t ], βt ∈ [cL

mt , c
U
mt ] and γt ∈ [bL

m,bU
m ], the problem (6)

reduces to

Min f0(x) =
T0∑

t=1

αt

N∏

n=1

xa0tn
n

s.t.

fm(x) =
Tm∑

t=1

βt

N∏

n=1

xamtn
n ≤ γt ; m = 1,2, . . . ,M,

xn > 0, n = 1,2, . . . ,N,

(7)

where αt ∈ [cL
0t , c

U
0t ], βt ∈ [cL

mt , c
U
mt ] and γt ∈ [bL

m,bU
m].

For any fixed m, let us consider the interval-valued function hm(p) = a
1−p
m b

p
m for

p ∈ [0,1] for an interval αm ∈ [am,bm]. Since hm(p) is a strictly monotone increas-
ing and continuous function, the above equation reduces to

Min f0(x) =
T0∑

t=1

αt

N∏

n=1

xa0tn
n

s.t.

fm(x) =
Tm∑

t=1

βt

N∏

n=1

xamtn
n ≤ γt ; m = 1,2, . . . ,M,

xn > 0; n = 1,2, . . . ,N,

(8)

where αt ∈ (cL
0t )

1−p(cU
0t )

p , βt ∈ (cL
mt )

1−p(cU
mt )

p , γt ∈ (bL
m)p(bU

m)1−p and p ∈ [0,1].
Since hm(p) = a

1−p
m b

p
m for p ∈ [0,1] is a strictly monotone and continuous function,

its inverse exists. Let δ be the inverse of hm(p), then p = log δ−logam

logbm−logam
; therefore, we

can find any particular αm for some values of p ∈ [0,1].
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Thus we can find the solution of the given problem only by solving the parametric
problem, which can be written as follows:

Min f0(x;p) =
T0∑

t=1

(
cL

0t

)(1−p)(
cU

0t

)p
N∏

n=1

xa0tn
n

s.t.

fm(x;p) =
Tm∑

t=1

(
cL
mt

)(1−p)(
cU
mt

)p
N∏

n=1

xamtn
n ≤ (

bL
m

)p(
bU
m

)(1−p)

m = 1,2, . . . ,M,

xn > 0, n = 1,2, . . . ,N; p ∈ [0,1].

(9)

�

Hence, according to Theorem 3.1, one can derive the optimal solution of the prob-
lem (3) by solving problem (4). The solution of problem (9) by the GP technique is
called PGP.

4 Numerical Examples

In this section, two examples are given to illustrate the proposed methodology pre-
sented in this paper using the GP technique.

Example 4.1 This problem taken from Dinkle and Tretter [39] is to perform sensitiv-
ity analysis using interval arithmetic by the GP technique. The associated mathemat-
ical form of the problem is also investigated by Liu [40]. We also consider here the
same form of that problem as follows:

Min f (x) = (20,70)x−1
1 x

− 1
2

2 x−1
3 + 20x1x3 + 20x1x2x3

s.t.
1

3
x−2

1 x−2
2 + 4

3
x

− 1
2

2 x−1
3 ≤ 1,

x1, x2, x3 > 0,

(10)

where (20,70) represents the interval of the coefficient in the objective function.

According to Theorem 3.1, problem (10) can be transformed into the following
parametric form:

Min f (x;p) = (
201−p70p

)
x−1

1 x
− 1

2
2 x−1

3 + 20x1x3 + 20x1x2x3

s.t.
1

3
x−2

1 x−2
2 + 4

3
x

− 1
2

2 x−1
3 ≤ 1,

x1, x2, x3 > 0 and p ∈ [0,1].

(11)
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Using the parametric geometric programming technique, the solution of prob-
lem (11) can be obtained by the solution of the corresponding dual problem:

Max d(w;p) =
(

201−p70p

w01

)w01
(

20

w02

)w02
(

20

w03

)w03
(

w11 + w12

3w11

)w11

×
(

4(w11 + w12)

3w12

)w12

s.t.

w01 + w02 + w03 = 1,

−w01 + w02 + w03 − 2w11 = 0,

−1

2
w01 + w03 − 2w11 + 1

2
w12 = 0,

−w01 + w02 + w03 − w12 = 0,

w01,w02,w03,w11,w12 ≥ 0,

p ∈ [0,1].
Since the DD of problem (11) is 1, first we find the following relations in terms of

w12 using constraint equations of the dual problem

w01 = 1 − w12

2
, w02 = 3w12 − 1

4
, w03 = 3 − w12

4
, w11 = 1

2
w12.

(12)
Therefore, the dual problem is of the following form:

Max d(w;p) =
(

2
201−p70p

1 − w12

) 1−w12
2

(
80

3w12 − 1

) 3w12−1
4

(
80

3 − w12

) 3−w12
4

2w12 .

Taking logarithms of both sides and using the differential calculus rules for finding
the optimal solution of the above problem, we get the optimal w∗

12 which satisfies the
relation given below:

(1 − w12)
2(3 − w12)

3w12 − 1
= 201−p70p

4 × 802
.

Then using the optimal w∗
12 in (12), we get the optimal w∗

01, w∗
02, w∗

03 and w∗
11.

Now the primal–dual relations are as follows:

201−p70px−1
1 x

− 1
2

2 x−1
3

= 1 − w12

2

(
2

201−p70p

1 − w12

) 1−w12
2

(
80

3w12 − 1

) 3w12−1
4

(
80

3 − w12

) 3−w12
4

2w12,

20x1x3 = 3w12 − 1

4

(
2

201−p70p

1 − w12

) 1−w12
2

(
80

3w12 − 1

) 3w12−1
4

(
80

3 − w12

) 3−w12
4

2w12 ,
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Table 1 Optimal solutions of Example 4.1 by PGP

p f ∗(x∗) x∗
1 x∗

2 x∗
3

0.0 39.60562 1.431749 1.039924 0.6984466

0.1 39.60774 1.432887 1.042531 0.6978919

0.2 39.61182 1.434099 1.045312 0.6973020

0.3 39.61812 1.435390 1.048276 0.6966747

0.4 39.62690 1.436766 1.051436 0.6960077

0.5 39.63848 1.438231 1.054807 0.6952986

0.6 39.65317 1.439792 1.058401 0.6945447

0.7 39.67134 1.441456 1.062235 0.6937432

0.8 39.69338 1.443228 1.066325 0.6928914

0.9 39.71974 1.445116 1.070688 0.6919861

1.0 39.75087 1.447128 1.075343 0.6910240

20x1x2x3 = 3 − w12

4

(
2

201−p70p

1 − w12

) 1−w12
2

(
80

3w12 − 1

) 3w12−1
4

(
80

3 − w12

) 3−w12
4

2w12 ,

1

3
x−2

1 x−2
2 = 1

3
,

4

3
x

− 1
2

2 x−1
3 = 2

3
,

p ∈ [0,1].

Form the above relations, we obtain the optimal solutions of the primal variables
as follows:

x∗
1 =

√
3 + w∗

12

3w∗
12 − 1

, x∗
2 = 3 − w∗

12

3w∗
12 − 1

, x∗
3 =

√
3w∗

12 − 1

3 + w∗
12

.

The optimal solutions of the problem for different values of the parameter p are
presented in Table 1.

Example 4.2 The second problem is taken from Liu [40] where the parameters in the
objective function and constraints are interval numbers as follows:

Min f (x) = (2,3)x2
1x−1

2 x3x
−1
4 + (4,4.2)x−3

1 x2
2x−2

3

s.t.

(3,3.6)x3
1x3 + x−1

1 x−1
3 ≤ (2,4),

x−1
2 x3x4 + (2,2.8)x2

1x2x4 ≤ 1,

x1, x2, x3, x4 > 0.

(13)
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Based on Theorem 3.1, the above problem (13) can be written in parametric form
as follows:

Min f (x;p) = (
21−p3p

)
x2

1x−1
2 x3x

−1
4 + (

41−p4.2p
)
x−3

1 x2
2x−2

3

s.t.
(
31−p3.6p

)
x3

1x3 + x−1
1 x−1

3 ≤ (
2p41−p

)
,

x−1
2 x3x4 + (

21−p2.8p
)
x2

1x2x4 ≤ 1,

x1, x2, x3, x4 > 0 and p ∈ [0,1].

(14)

The dual problem of problem (14) using parametric geometric programming is
obtained as follows:

Max d(w;p) =
(

21−p3p

w01

)w01
(

41−p4.2p

w02

)w02
(

31−p3.6p

2x41−xw11

)w11

×
(

1

2x41−xw12

)w12
(

1

w21

)w21
(

21−x2.8x

w22

)w22

w
w10
10 w

w20
20

s.t.

w01 + w02 = 1,

2w01 − 3w02 + 3w11 − w12 + 2w12 = 0,

−w01 + 2w02 − w21 + w22 = 0,

w01 − 2w02 + w11 − w12 + w21 = 0,

−w01 + w21 + w22 = 0,

w11 + w12 = w10, and w21 + w22 = w20,

w01,w02,w11,w12,w21,w22 ≥ 0,

p ∈ [0,1].

Since the DD of problem (13) is 1, we first find the solution of the system of linear
equations of the dual problem in terms of one variable as follows:

w01 = w20 = 1 + w22

2
, w02 = w21 = 1 − w22

2
, w11 = 1 − 7w22

4
,

w12 = 1 − 3w22

4
, w10 = 1 − 5w22

2
.
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Table 2 Optimum solutions of Example 4.2 by PGP

p f ∗(x∗) x∗
1 x∗

2 x∗
3 x∗

4

0.0 6.422898 0.9928268 0.2542421 0.2093416 0.6938290

0.1 6.655421 0.9833146 0.3129184 0.2406092 0.6175461

0.2 7.209289 0.9177298 0.3946612 0.3318420 0.6049209

0.3 7.134975 0.8662217 0.5405132 0.3901241 0.5766900

0.4 7.524666 0.8076823 0.6335578 0.4227365 0.5638991

0.5 7.939036 0.7522598 0.7431589 0.4577694 0.5250702

0.6 8.379908 0.6999090 0.8721257 0.4952893 0.4883686

0.7 8.849218 0.6505798 1.023686 0.5353561 0.4537326

0.8 9.826231 0.5788229 1.118662 0.5100398 0.3786997

0.9 10.31105 0.5428828 1.316967 0.5591818 0.3569709

1.0 10.44883 0.5200271 1.653946 0.6714626 0.3615964

Now the dual problem can be written in terms of w22 as follows:

Max d(w;p) =
(

2
21−p3p

1 + w22

) 1+w22
2

(
2

41−p4.2p

1 − w22

) 1−w22
2

×
(

4 × 31−p3.6p

2p41−p(1 − 7w22)

) 1−7w22
4

(
4

2p41−p(1 − 3w22)

) 1−3w22
4

×
(

2

1 − w22

) 1−w22
2

(
21−p2.8p

w22

)w22

×
(

1 − 5w22

2

)(
1−5w22

2 )(1 + w22

2

) 1+w22
2

.

To find the optimal value of w22, taking logarithms and applying the rules of dif-
ferential calculus for the variable w22, we get

[
23(21−p3p)(21−p2.8p)2(1 − w22)

2

(41−p4.2p)w22(1 − 5w22)5

]2

= 410(31−p3.6p)7

(2p41−p)7(1 − 7w22)7(1 − 3w22)3
.

Numerical solutions of this problem are presented in Table 2.
For p = 0, the lower bound of the interval value of the parameter is used to find the

optimal solution. Case p = 1 means that the upper bound of the interval parameter
is used for the optimal solution. These two values yield the lower and upper bounds
of the optimal solution. However, one can get the intermediate optimal result using a
proper value of p which is the main advantage of the proposed technique. We have
presented optimal solutions of Examples 4.1 and 4.2 in Tables 1 and 2, respectively,
for some intermediate values of p ∈ (0,1) using the proposed parametric geometric
programming technique; this is the main advantage of the proposed technique.
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5 Conclusions

Geometric programming has undergone different development in theoretical and
practical applications in various fields. Most of the researchers have developed the
GP technique based on the assumption that the parameters are precisely known but
the scenario is different in real life. In this paper, we have developed a method to find
the optimal solution by the GP technique when some parameters are imprecise in
nature. There are very few paper (Cao [33, 34], Yang and Cao [35], Liu [17, 37, 40],
Ojha and Das [38], Mahapatra and Mahapatra [5]) where the impreciseness of pa-
rameters is considered. The solution procedure of these papers by the GP technique
states the interval value of the objective function and is also time consuming. But
the technique that we have presented will take minimal time and the problem can be
solved easily without constructing equivalent problems. The ability of calculating the
cost coefficients and constraint coefficients developed in this paper might help lead
to more realistic modeling efforts in engineering design areas.
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