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Abstract This work focuses on numerical methods for finding optimal dividend
payment and investment policies to maximize the present value of the cumulative
dividend payment until ruin; the surplus is modeled by a regime-switching jump dif-
fusion process subject to both regular and singular controls. Using the dynamic pro-
gramming principle, the optimal value function obeys a coupled system of nonlinear
integro-differential quasi-variational inequalities. Since the closed-form solutions are
virtually impossible to obtain, we use Markov chain approximation techniques to
approximate the value function and optimal controls. Convergence of the approxima-
tion algorithms are proved. Examples are presented to illustrate the applicability of
the numerical methods.

Keywords Singular control · Dividend policy · Investment strategy · Markov chain
approximation · Regime switching

1 Introduction

Designing dividend payment policies has long been an interesting research issue in
actuarial science and finance literature. For early work on dividend related issues,
see [1], in which it is shown that the optimal dividend strategy is a barrier strategy
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under a simple random walk model. Gerber [2, 3] investigated the optimal dividend
problem for both the compound Poisson process and diffusion process models. Re-
cently, there have been increasing efforts on applying advanced methods of stochastic
control to study the optimal dividend policy; see [4, 5].

Azcue and Muler [6] analyzed the problem of the maximization of total discounted
dividend payment for an insurance company. Empirical studies indicate, in particu-
lar, that traditional surplus models fail to capture more extreme movements such as
market switches. To reflect reality, much effort has been devoted to produce better
models. One of the recent trends is to use regime-switching models. Hamilton [7]
introduced a regime-switching time series model. Recent work on risk models and
related issues can be found in [8]. In [9], the optimal dividend strategy with restricted
payment rate was studied for the regime-switching jump diffusion model. A compre-
hensive study of switching diffusions with “state-dependent” switching is presented
in [10].

In this work, we consider the optimal strategy using the collective risk model
under the Markovian regime-switching setting with more general claim size distri-
bution. We allow the investment of surplus in a continuous-time financial market
and the management of the dividend payment policy. In our model, with the golden
rule “never borrow money to do risky investment,” the insurers cannot put too much
money in risky assets for the sake of risk management. Therefore, two constraints for
the investment strategies are imposed: (i) The weight of the risky asset should be no
more than one. (ii) A short selling risky asset is prohibited. In addition, a dividend
process is not necessarily absolutely continuous. In fact, dividends are not usually
paid out continuously in practice. For instance, insurance companies may distribute
dividends on discrete time intervals resulting in unbounded payment rate. In such
a scenario, the surplus level changes drastically on a dividend payday. Thus, abrupt
or discontinuous changes occur due to “singular” dividend distribution policy. To-
gether with the investment strategies and the incurred claims, this gives rise to a
mixed regular–singular stochastic control problem with jump diffusion. We model
the surplus process by a regime-switching jump diffusion process. Investment strate-
gies and dividend payment policies are introduced as regular and singular stochastic
controls. The goal is to maximize the expected total discounted dividend payment
until ruin. The formulation of our model is very general and versatile. Nevertheless,
due to the inclusion of both regular and singular controls, and the random switching
environment, closed-form solutions are virtually impossible to obtain. Thus, we fo-
cus on developing numerical solutions. Azcue and Muler [6] considered the optimal
investment policy and dividend payment strategy in an insurance company, but with
the independent and identically distributed claim sizes without regime-switching. The
model we consider appears to be more versatile and realistic. To find the optimal in-
vestment and dividend payment strategies, one usually solves a so-called Hamilton–
Jacobi–Bellman equation. However, in our work, because of the regime-switching
jump diffusion and the mixed regular and singular control formulation, the Hamilton–
Jacobi–Bellman equation is in fact a coupled system of nonlinear integro-differential
quasi-variational inequalities. A closed-form solution is virtually impossible to ob-
tain. A viable alternative is to employ numerical approximations. In this work, we
adapt the Markov chain approximation methodology developed in [11]. To the best
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of our knowledge, numerical methods for singular controls of regime-switching jump
diffusions have not been studied in the literature to date. Even for singular controlled
diffusions without regime-switching, the related results are relatively scarce; [12] and
[13] are the only papers that carry out a convergence analysis using weak convergence
and relaxed control formulation of numerical schemes for singular control problems
in the setting of Itô diffusions. We focus on developing numerical methods that are
applicable to mixed regular and singular controls for regime-switching jump diffusion
models. In a recent work, Jin et al. [14] developed numerical algorithms for approx-
imating optimal reinsurance and dividend payment policies under regime-switching
diffusion models. In that paper, one needs to deal with a system of quasi-variational
inequalities. This paper further treats models with jumps. As a result, we have to deal
with a system of integro-differential quasi-variational inequalities. The problem be-
comes more complex and difficult to handle. Although the primary motivation stems
from insurance risk controls, the techniques and the algorithms suggested appear to
be applicable to other singular control problems as well.

The rest of the paper is organized as follows. A general formulation of optimal
investment strategies and dividend policies and assumptions are presented in Sect. 2.
Some properties of the optimal value function and the verification theorem are also
presented. Section 3 deals with the numerical algorithm of Markov chain approxi-
mation method. The Poisson jumps, regular control, and the singular control are well
approximated by the approximating Markov chain and the dynamic programming
equations are presented. Section 4 deals with the convergence of the approximation
scheme. The technique of “rescaling time” is introduced, and the convergence theo-
rems are proved. Three numerical examples are provided in Sect. 5 to illustrate the
performance of the approximation method. Finally, some additional remarks are pro-
vided in Sect. 6.

2 Formulation and Preliminaries

Following the classical risk model introduced in [15], we assume that X(t), the sur-
plus of an insurance company in the absence of dividend payment and investment,
satisfies the classical Cramér Lundberg process,

X(t) = x + ct − R(t), t ≥ 0, (1)

where x is the initial surplus, the constant c is the rate of premium, and R(t) =
∑N(t)

n=1 An is a compound Poisson process with the claim size An.
To delineate the random environment and other random factors, we use a

continuous-time Markov chain α(t) taking values in the finite space M = {1, . . . ,m}.
The market states are represented by the Markov chain α(t), and they undergo a
Markov regime switching. Let the continuous-time Markov chain α(t) be generated
by Q = (qij ) ∈ Rm×m. That is,

Pr
{
α(t + δ) = j |α(t) = i, α(s), s ≤ t

} =
{

qij δ + o(δ) if j �= i,

1 + qiiδ + o(δ) if j = i,
(2)
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where qij ≥ 0 for i, j = 1,2, . . . ,m with j �= i and qii = −∑
j �=i qij < 0 for each

i = 1,2, . . . ,m.
The surplus process X(t) under consideration is a jump diffusion process with

regime switching under singular control. For each i ∈ M, the premium rate is
c(i) > 0. Let ζn be the inter-arrival time of the nth claim, νn = ∑n

j=1 ζj , and

N(t) = max{n ∈ N : νn ≤ t} (3)

counts the number of claims up to time t , which is a Poisson counting process. The
function q(X, i, ρ) is assumed to be the magnitude of the claim sizes, where ρ has
distribution Π(·). Note that our formulation is general, the claim sizes are assumed to
depend on the switching regime. At different regimes, the values of q could be much
different, which takes into consideration of random environment. Then the Poisson
measure N(·) has intensity λdt × Π(dρ) where Π(dρ) = f (ρ)dρ. Assume that
q(·, i, ρ) is continuous for each ρ and each i ∈ M. Then the surplus process in the
absence of dividend payment and investment is a regime-switching jump process
given by

dX̃(t) =
∑

i∈M
I{α(s)=i}

(
c(i) dt − dR(t)

)

= c
(
α(t)

)
dt −

∫

R+
q
(
X

(
t−

)
, α(t), ρ

)
N(dt, dρ). (4)

We consider the financial market with a risk-free asset B(t) and a risky asset S(t)

with prices satisfying

⎧
⎪⎪⎨

⎪⎪⎩

dB(t)

B(t)
= l

(
α(t)

)
dt,

dS(t)

S(t)
= b

(
α(t)

)
dt + σ

(
α(t)

)
dW(t),

(5)

where for each i ∈ M, l(i) and b(i) are the return rates of the risk-free and risky
assets, respectively. σ(α(t)) is the corresponding volatility, and W(t) is a standard
Brownian motion. The investment behavior of the insurer is modeled as a portfolio
process u(t), where proportional surplus u(t) ∈ [0,1] was invested in the risky asset
S(t). We are now working on a filtered probability space (Ω, F , {Ft },P ), where Ft

is the σ -algebra generated by the random variables {α(s),W(s),N(s) : 0 ≤ s ≤ t}.
A dividend strategy Z(·) is an Ft -adapted process {Z(t) : t ≥ 0} corresponding

to the accumulated amount of dividends paid up to time t such that Z(t) is a non-
negative and nondecreasing stochastic process that is right continuous with left lim-
its. Throughout the paper, we use the convention that Z(0−) = 0. The surplus pro-
cess considering dividend payment and investment satisfies the stochastic differential
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equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(t) = [[
l
(
α(t)

)(
1 − u(t)

) + u(t)b
(
α(t)

)]
X(t) + c(α(t))

]
dt

+ u(t)σ
(
α(t)

)
X(t) dW(t) − dR(t) − dZ(t),

R(t) =
∫ t

0

∫

R+
q
(
X(t−), α(t), ρ

)
N(dt, dρ),

X(0) = x,

(6)

for all t < τ , and we impose X(t) = 0 for all t > τ , where τ = inf{t > 0 : X(t) ≤ 0}
represents the time of ruin. The jump size of Z is denoted by �Z(t) := Z(t)−Z(t−),
and Zc(t) := Z(t) − ∑

0≤s≤t �Z(s) denotes the continuous part of Z. Also note that
�X(t) := X(t) − X(t−) = −�Z(t) for any t ≥ 0.

Remark 2.1 From a numerical approximation point of view, making c, b, and σ

X-dependent will not introduce any essential difficulty.

Denote by r > 0 the discount factor. For an arbitrary admissible pair π = (u,Z),
the expected discounted payoff is

J (x, i,π) := Ex,i

[∫ τ

0
e−rt dZ(t)

]

. (7)

We request r > b(i) for all i ∈ M, otherwise the optimal value of the payoff will be
infinite. The pair π = (u,Z) is said to be admissible if u and Z satisfy

(i) u(t) and Z(t) are nonnegative for any t ≥ 0,
(ii) Z is right continuous, has left limits, and is nondecreasing,

(iii) X(t) ≥ 0 for any t ≤ τ ,
(iv) both u and Z are adapted to Ft := σ {W(s),α(s),N(s),0 ≤ s ≤ t} augmented

by the P -null sets, and
(iv) J (x, i,π) < ∞ for any (x, i) ∈ G × M and admissible pair π = (u,Z), where

J is the functional defined in (7).

Denote by A the collection of all admissible pairs, and U the collection of all
investment strategies, which is assumed to be a compact set. Define the value function
as

V (x, i) := sup
π∈A

J (x, i,π). (8)

To proceed, we will introduce the following notation. For all i ∈ M,

b̄ = max
i

b(i), l̄ = max
i

l(i), c̄ = max
i

c(i),

b̃ = min
i

b(i), l̃ = min
i

l(i), c̃ = min
i

c(i).

Lemma 2.1 Consider the process

Y(t) = [[
l
(
α(t)

)(
1 − u(t)

) + u(t)b
(
α(t)

)]
Y(t) + c

(
α(t)

)]
dt

+ u(t)σ
(
α(t)

)
Y(t) dW(t)
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with Y(0) = x. We have

Ex,i

(
e−rtY (t)

) ≤ e−(r−b̄)t

(

x + c̄(1 − e−l̃t )

l̃

)

.

Proof This result is obtained by using estimates for the linear SDE; see also [16]. �

Proposition 2.1 For all x > 0 and i ∈ M, the value function V (x, i) satisfies

x + c̃

λ + r
≤ V (x, i) ≤ b̄

r − b̄

(

1 + c̄

l̃

)

+ c̄

r
− b̄c̄

l̃(r − b̄ + c̃)
.

Proof Since the claim sizes are always nonnegative, we have X(t) ≤ Y(t). Then

Ex,i

[
e−rtX(t)

] ≤ e(b̄−r)t

(

x + c̄(1 − e−l̃t )

l̃

)

.

It follows that

V (x, i) = sup
π∈A

Ex,i

[∫ τ

0
e−rt dZ(t)

]

≤ sup
u∈U

Ex,i

[∫ τ

0
e−rt d(c̄t

+
∫ t

0

[
l
(
α(s)

) + u(s)
(
b
(
α(s)

) − l
(
α(s)

))]
X(s)ds

]

≤ Ex,i

[∫ τ

0
e−rt d

(

c̄t + b̄

∫ t

0
X(s)ds

)]

≤
∫ ∞

0
e−rt c̄ dt + b̄

∫ ∞

0
Ex,i

[
e−rtX(t)

]
dt

≤ b̄

r − b̄

(

1 + c̄

l̃

)

+ c̄

r
− b̄c̄

l̃(r − b̄ + c̃)
.

Thus, the second inequality is obtained.
To prove the first inequality, let us consider an admissible strategy π̂ that pays the

initial surplus as dividend immediately and the premium until the first claim comes
at τ̂ which leads to ruin. Then we have the cost function under strategy π̂

J (x, i, π̂) = x + Ex,i

∫ τ̂

0
e−rt c

(
α(t)

)
dt ≥ x + c̃

λ + r
.

Since V (x, i) ≥ J (x, i, π̂), we get the first inequality. �

Proposition 2.2 For all x ≥ y > 0, and i ∈ M, the value function V (x, i) satisfies

x − y ≤ V (x, i) − V (y, i) ≤ (
e(r+λ)(x−y)/c̃ − 1

)
V (y, i).
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Proof Consider an admissible strategy π0 with J (y, i,π0) ≥ V (y, i) − ε for
any ε > 0. For any x ≥ y, we define a new strategy π1 that pays x − y as dividend
immediately and follows π0. Then for any ε > 0, it holds that

V (x, i) ≥ x − y + J (y, i,π0) ≥ x − y + V (y, i) − ε.

Since ε is arbitrary, we have V (x, i) ≥ x − y + V (y, i).
For any x ≥ y, we take another admissible strategy π2 with J (x, i,π2) ≥ V (x, i)−

ε for any ε > 0. We define another new strategy π3 that holds money and invests them
in the risk-free asset and follows the π2 when the surplus reaches x at time t̂ . The
probability of reaching x before the first claim is e−λt̂ . Since t̂ < (x − y)/c̃, we have
that

V (y, i) ≥ J (y, i,π3) ≥ J (x, i,π2)e
−(r+λ)(x−y)/c̃ ≥ (

V (x, i) − ε
)
e−(r+λ)(x−y)/c̃.

Thus, the right inequality is obtained by the arbitrariness of ε. �

For an arbitrary π ∈ A, i = α(t) ∈ M, and V (·, i) ∈ C2(R), define the operator
Lπ by

LπV (x, i) = Vx(x, i)
([

l(i)(1 − u) + ub(i)
]
x + c(i)

) + 1

2
σ(i)2u2x2Vxx(x, i)

+ λi

∫ x

0

[
V

(
x − q(x, i, ρ), i

) − V (x, i)
]
f (ρ)dρ + QV (x, ·)(i), (9)

where Vx and Vxx denote the first and second derivatives with respect to x, and

QV (x, ·)(i) =
∑

j �=i

qij

(
V (x, j) − V (x, i)

)
.

Formally, we obtain that V satisfies the following coupled system of integro-
differential quasi-variational inequalities (QVIs):

{
max

{
LπV (x, i) − rV (x, i),1 − Vx(x, i)

} = 0 for each i ∈ M,

V (0, i) = 0 for each i ∈ M.
(10)

Remark 2.2 The value function V (x,α) is not smooth enough in our problem, in
which case a classical solution of the QVIs cannot be obtained. An alternative def-
inition for a solution to the quasi-variational inequalities (10) is that of a viscosity
solution (see [17]). In our work, we focus on the numerical solutions; the definition
of viscosity solution will not lead any difficulty in numerical approximation.

3 Numerical Algorithm

Our goal is to design a numerical scheme to approximate the value function V in (8).
As a standing assumption, we assume that V (·) is continuous with respect to x. In
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this section we will construct a locally consistent Markov chain approximation for
the jump diffusion model with singular control and regime switching. The discrete-
time and finite-state controlled Markov chain is so defined that it is locally consistent
with (6). First let us recall some facts of Poisson random measure that are useful for
constructing the approximating Markov chain and for the convergence theorem.

There is an equivalent way to define the process (6) by working with the claim
times and values. To do this, setting ν0 = 0, let νn, n ≥ 1, denote the time of the
nth claim, and let q(·, ·, ρn) be the corresponding claim intensity with a suitable
function of q(·). Let {νn+1 − νn,ρn,n < ∞} be mutually independent random vari-
ables with νn+1 − νn being exponentially distributed with mean 1/λ, and let ρn

have a distribution Π(·). Furthermore, we assume that {νk+1 − νk, ρk, k ≥ n} is in-
dependent of {x(s),α(s), s < νn, νk+1 − νk, ρk, k < n}. then the nth claim term is
q(X(ν−

n ),α(νn), ρn), and the claim amount R(t) can be written as

R(t) =
∑

νn≤t

q
(
X

(
ν−
n

)
, α(νn), ρn

)
.

We note the local properties of claims for (6). Because νn+1 − νn is exponentially
distributed, we can write

P
{
claim occurs on [t, t + �) | x(s),α(s),W(s),N(s), s ≤ t

} = λ� + o(�). (11)

By the independence and the definition of ρn, for any H ∈ B(R+), we have

P
{
X(t) − X

(
t−

) ∈ H |t = νn for some n;W(s),X(s),α(s),N(s), s < t;
X

(
t−

) = x,α(t) = α
} = Π

(
ρ : q(

X
(
t−

)
, α(t), ρ

) ∈ H
)
. (12)

It is implied by the above discussion that x(·) satisfying (6) can be viewed as a pro-
cess that involves regime-switching diffusion with claims according to the claim rate
defined by (11). Given that the nth claim occurs at time νn, we construct the val-
ues according to the conditional probability law (12) or, equivalently, write it as
q(X(ν−

n ),α(νn), ρn). Then the process given in (6) is a switching diffusion process
until the time of the next claim. To begin, we construct a discrete-time, finite-state,
controlled Markov chain to approximate the controlled diffusion process with regime
switching, with the dynamic system

⎧
⎪⎨

⎪⎩

dX(t) = [[
l
(
α(t)

)(
1 − u(t)

) + u(t)b
(
α(t)

)]
X(t) + c

(
α(t)

)]
dt

+ u(t)σ
(
α(t)

)
X(t) dW(t) − dZ,

X(0) = x.

(13)

We will construct a locally consistent Markov chain approximation for the mixed
regular–singular control model with regime switching. The discrete-time controlled
Markov chain is so defined that it is locally consistent with (6). Note that the state
of the process has two components x and α. Hence, in order to use the method-
ology in [11], our approximating Markov chain must have two components: one
component delineates the diffusive behavior , whereas the other keeps track of the
regimes. Let h > 0 be a discretization parameter representing the step size. Define
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Lh = {x : x = kh, k = 0,±1,±2, . . . } and Sh = Lh ∩ Gh, where Gh = (0,B + h),
and B is an upper bound introduced for numerical computation purpose. Moreover,
assume without loss of generality that the boundary point B is an integer multiple
of h. Let {(ξh

n ,αh
n), n < ∞} be a controlled discrete-time Markov chain on Sh × M

and denote by ph
D((x, �), (y, ι)|πh) the transition probability from a state (x, �) to

another state (y, ι) under the control πh. We need to define ph
D so that the chain’s

evolution well approximates the local behavior of the controlled regime-switching
diffusion (13). At any discrete time n, we can either exercise a regular control, a sin-
gular control, or a reflection step. That is, if we put �ξh

n = ξh
n+1 − ξh

n ,

�ξh
n = �ξh

n I{regular control step at n} + �ξh
n I{singular control step at n}

+ �ξh
n I{reflection step at n}. (14)

The chain and the control will be chosen so that there is exactly one nonzero term
in (14). Denote by {Ih

n : n = 0,1, . . . } a sequence of control actions, where Ih
n =

0,1, or 2, if we exercise a singular control, regular control, or reflection at time n,
respectively.

When Ih
n = 1, we regard uh

n ⊂ U as the random variable that is the regular con-
trol action for the chain at time n. Let �̃th(·, ·, ·) > 0 be the interpolation inter-
val on Sh × M × U . Assume that infx,�,u �̃th(x, �,u) > 0 for each h > 0 and
limh→0 supx,�,u �̃th(x, �,u) → 0.

Let E
u,h,1
x,�,n , Varu,h,1

x,�,n , and P
u,h,1
x,�,n denote the conditional expectation, variance. We

also denote {ξh
k ,αh

k , uh
k , I

h
k , k ≤ n, ξh

n = x,αh
n = �, Ih

n = 1, uh
n = u} as the given

marginal probability. When

E
u,h,1
x,�,n

[
�ξh

n

] = [[
l(�)(1 − u) + ub(�)

]
x + c(�)

]
�̃th(x, �,u) + o

(
�̃th(x, �,u)

)
,

Varu,h,1
x,�,n

(
�ξh

n

) = u2σ 2(�)x2�̃th(x, �,u) + o
(
�̃th(x, �,u)

)
,

P
u,h,1
x,�,n

{
αh

n+1 = ι
} = q�ι(x)�̃th(x, �,u) + o

(
�̃th(x, �,u)

)
for ι �= �,

P
u,h,1
x,�,n

{
αh

n+1 = �
} = 1 + q��(x)�̃th(x, �,u) + o

(
�̃th(x, �,u)

)
,

sup
n,ω∈Ω

|�ξh
n | → 0 as h → 0,

(15)

the sequence {(ξh
n ,αh

n)} is said to be locally consistent.
When Ih

n = 0, we regard �zh
n as the random variable that is the singular control

action for the chain at time n if ξh
n ∈ [0,B]. Note that �ξh

n = −�zh
n = −h. When

Ih
n = 2, or ξh

n = B + h, the reflection step is exerted definitely. The dividend is paid
out to lower the surplus level. Moreover, we require that reflection takes the state from
B + h to B . That is, if we denote by �gh

n the random variable that is the reflection
action for the chain at time n, then �ξh

n = −�gh
n = −h.

The singular control can be seen as a combination of “inside” part (Ih
n = 0) and

“boundary” part (Ih
n = 2). Also, we require the singular control and reflection to be
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“impulsive” or “instantaneous.” In other words, the interpolation interval on Sh ×
M × U × {0,1,2} is

�th(x, �,u, i) = �̃th(x, �,u)I{i=1} for any (x, �,u, i) ∈ Sh × M × U × {0,1,2}.
(16)

Denote by πh := {πh
n ,n ≥ 0} the sequence of control actions, where

πh
n := �zh

nI{Ih
n =0} + uh

nI{Ih
n =1} + �gh

nI{Ih
n =2}.

The πh
n is admissible if πh

n is σ {(ξh
0 , αh

0 ), . . . , (ξh
n ,αh

n),πh
0 , . . . , πh

n−1} adapted, and
for any E ∈ B(Sh × M), we have

P
{(

ξh
n+1, α

h
n+1

) ∈ E|σ{(
ξh

0 , αh
0

)
, . . . ,

(
ξh
n ,αh

n

)
,πh

0 , . . . , πh
n

}} = ph
((

ξh
n ,αh

n

)
,E|πh

n

)

and

P
{(

ξh
n+1, α

h
n+1

) = (B, �)|(ξh
n ,αh

n

) = (B + h, �),

σ
{(

ξh
0 , αh

0

)
, . . . ,

(
ξh
n ,αh

n

)
,πh

0 , . . . , πh
n

}} = 1.

Put

th0 := 0, thn :=
n−1∑

k=0

�th
(
ξh
k ,αh

k , uh
k , I

h
k

)
, and nh(t) := max

{
n : thn ≤ t

}
.

Then the piecewise constant interpolations, denoted by (ξh(·), αh(·)), uh(·), gh(·),
and zh(·), are naturally defined as

ξh(t) := ξh
n , αh(t) := αh

n, uh(t) := uh
n,

gh(t) :=
∑

k≤nh(t)

�gh
k I{Ih

k =2}, zh(t) :=
∑

k≤nh(t)

�zh
k I{Ih

k =0},
(17)

for t ∈ [thn , thn+1). Let ηh := inf{n : ξh
n ∈ ∂G}. Then the first exit time of ξh from G is

τh = thηh
. Let (ξh

0 , αh
0 ) = (x, �) ∈ Sh × M, and let πh be an admissible control. The

cost function for the controlled Markov chain is defined as

Jh
B

(
x, �,πh

) := E

ηh−1∑

k=1

e−rthk �zh
k , (18)

which is analogous to (7). Regarding the definition of interpolation intervals in (16),
the value function of the controlled Markov chain is

V h
B (x, �) := sup

πh admissible
Jh

B

(
x, �,πh

)
. (19)
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We shall show that V h
B (x, �) satisfies the dynamic programming equation

V h
B (x, �) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
u∈U

{∑

(y,ι)

e−r�th(x,�,u,1)ph
(
(x, �), (y, ι)|π)

V h(y, ι),

[∑

(y,ι)

ph
(
(x, �), (y, ι)|π)

V h(y, ι) + h

]}

for x ∈ Sh,

0 for x = 0.

(20)
Note that discount does not appear in the second line above because the singular con-
trol is impulsive. In the actual computing, we use iteration in value space or iteration
in policy space together with Gauss–Seidel iteration to solve V h. The computations
will be very involved. In contrast to the usual state space Sh in [11], here we need to
deal with an enlarged state space Sh × M due to the presence of regime switching.

Define the approximation to the first and second derivatives of V (·, �) by finite
difference method in the first part of QVIs (10) using stepsize h > 0 as:

V (x, �) → V h(x, �)

Vx(x, �) → V h(x + h, �) − V h(x, �)

h
for

[
l(�)(1 − u) + ub(�)

]
x + c(�) > 0,

Vx(x, �) → V h(x, �) − V h(x − h, �)

h
for

[
l(�)(1 − u) + ub(�)

]
x + c(�) < 0,

Vxx(x, �) → V h(x + h, �) − 2V h(x, �) + V h(x − h, �)

h2
.

(21)
For the second part of the QVIs, we choose

Vx(x, �) → V h(x, �) − V h(x − h, �)

h
.

It leads to

max
u∈U

{
V h(x + h, �) − V h(x, �)

h

[[
l(�)(1 − u) + ub(�)

]
x + c(�)

]+

− V h(x, �) − V h(x − h, �)

h

[[
l(�)(1 − u) + ub(�)

]
x + c(�)

]−

+ V h(x + h, �) − 2V h(x, �) + V h(x − h, �)

h2

u2σ 2(�)x2

2

+
∑

ι

V h(x, ·)q�ι − rV h(x, �),1 − V h(x, �) − V h(x − h, �)

h

}

= 0,

∀x ∈ Sh, � ∈ M with boundary condition V h(0, �) = 0, (22)

where [[l(�)(1 −u)+ub(�)]x + c(�)]+ and [[l(�)(1 −u)+ub(�)]x + c(�)]− are the
positive and negative parts of [[l(�)(1 −u)+ub(�)]x + c(�)], respectively. Simplify-
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ing (22) and comparing with (20), we achieve the transition probabilities of the first
part of the right side of (20) as follows:

ph
D

(
(x, �), (x + h, �)|π) = (σ 2(�)u2x2/2) + h[[l(�)(1 − u) + ub(�)]x + c(�)]+

D − rh2
,

ph
D

(
(x, �), (x − h, �)|π) = (σ 2(�)u2x2/2) + h[[l(�)(1 − u) + ub(�)]x + c(�)]−

D − rh2
,

ph
D

(
(x, �), (x, ι)|π) = h2

D − rh2
q�ι for � �= ι,

ph
D(·) = 0 otherwise,

�th(x, �,u,1) = h2

D
,

(23)
with

D = σ 2(�)u2x2 + h
∣
∣
[
l(�)(1 − u) + ub(�)

]
x + c(�)

∣
∣ + h2(r − q��)

being well defined. We also find the transition probability for the second part of the
right-hand side of (20). That is,

ph
D

(
(x, �), (x − h, �)|π) = 1.

Suppose that the current state is ξh
n = x, αh

n = �, and the control is uh
n = u. Next

interpolation interval �th(x, �,u) is determined by (23). To present the claim terms,
we determine the next state (ξh

n+1, α
h
n+1) by noting:

1. With probability (1 − λ�th(x, �,u) + o(�th(x, �,u))) no claims occur in
[thn , thn+1); we determine (ξh

n+1, α
h
n+1) by transition probability ph

D(·) as in (23).
2. There is a claim in [thn , thn+1) with probability λ�th(x, �,u)+o(�th(x, �,u)); we

then determine (ξh
n+1, α

h
n+1) by

ξh
n+1 = ξh

n − qh(x, �,ρ), αh
n+1 = αh

n,

where ρ ∼ Π(·), and qh(x, �,ρ) ∈ Sh ⊆ R+ such that qh(x, �,ρ) is the nearest
value of q(x, �,ρ), so that ξh

n+1 ∈ Sh. |qh(x, �,ρ) − q(x, �,ρ)| → 0 follows as
h → 0, uniformly in x.

Let Hh
n denote the event that (ξh

n+1, α
h
n+1) is determined by the first alternative above

and use T h
n to denote the event of the second case. Let IHh

n
and IT h

n
be the corre-

sponding indicator functions, respectively. Then IHh
n

+ IT h
n

= 1. Then we need a new
definition of the local consistency for Markov chain approximation of compound
Poisson process with diffusion and regime switching.

Definition 3.1 A controlled Markov chain {(ξh
n ,αh

n), n < ∞} is said to be locally
consistent with (6) if there is an interpolation interval �th(x, �,u) → 0 as h → 0
uniformly in x, �, and u such that:
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1. there is a transition probability ph
D(·) that is locally consistent with (13) in the

sense that (15) holds.
2. there is a δh(x, �,u) = o(�th(x, �,u)) s.t. the one-step transition probability

{ph((x, �), (y, ι))|π} is given by

ph
((

(x, �), (y, ι)
)|π) = (

1 − λ�th(x, �,u) + δh(x, �,u)
)
ph

D

(
(x, �), (y, ι)

)

+ (
λ�th(x, �,u) + δh(x, �,u)

)
Π

{
ρ : qh(x, �,ρ) = x − y

}
.

(24)

Furthermore, the system of dynamic programming equations is a modification of
(20). That is,

V h(x, �) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
π∈A

[
(
1 − λ�th(x, �,u) + δh(x, �,u)

)
e−r�th(x,�,u)

×
∑

(y,ι)

(
ph

D

(
(x, �), (y, ι)

)|π)

×V h(y, �) + (
λ�th(x, �,u) + δh(x, �,u)

)
e−r�th(x,�,π)

×
∫ x

0
V h

(
x − qh(x, �,ρ), �

)
Π(dρ),V h(x − h, �) + h

]

for x ∈ Sh,

0 for x = 0.

(25)

Remark 3.1 The first part of the QVIs can be seen as a “continuation” region where
the regular control is dominant. The Markov approximating chain can switch between
regimes and states nearby with the transition probabilities defined above. But the sec-
ond part of the QVIs is the “jump” region, where the dividends are paid out, and the
singular control is dominant. The singular control will project the Markov approxi-
mation chain back one step h w.p. 1 on the boundary due to the representation.

4 Convergence of Numerical Approximation

This section focuses on the asymptotic properties of the approximating Markov
chain proposed in the last section. The main techniques are methods of weak con-
vergence. To begin with, the technique of time rescaling and the interpolation of
the approximation sequences are introduced in Sect. 4.1. The definition of relax
controls is presented in Sect. 4.2. Section 4.3 deals with the weak convergence of
{ξ̂ h(·), α̂h(·), m̂h(·), Ŵ h(·), N̂(·), R̂h(·), ẑh(·), ĝh(·), T̂ h(·)}, a sequence of rescaled
process. As a result, a sequence of controlled surplus processes converges to a limit
surplus process. By using the techniques of inversion, Sect. 4.3 also takes up the is-
sue of the weak convergence of the surplus process. Finally, Sect. 4.4 establishes the
convergence of the value function.
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4.1 Interpolation and Rescaling

Based on the approximating Markov chain constructed above, the piecewise con-
stant interpolation is obtained, and the appropriate interpolation interval level is cho-
sen. Recalling (17), the continuous-time interpolations (ξh(·), αh(·)), uh(·), gh(·),
and zh(·) are defined. In addition, let U h denote the collection of controls that are
determined by a sequence of measurable functions Fh

n (·) such that

uh
n = Fh

n

(
ξh
k ,αh

k , k ≤ n;uh
k , k ≤ n

)
. (26)

Let the discrete times at which claims occur be denoted by νh
j , j = 1,2, . . . . Then we

have

ξh

νh
j −1

− ξh

νh
j

= qh

(
ξh

νh
j −1

, αh

νh
j −1

, ρ
)
.

The smallest σ -algebra of {ξh
k ,αh

k , uh
k ,H

h
k , gh

k , zh
k , k ≤ n;νh

k , ρh
k : νh

k ≤ tn} is denoted
as Dh

n . In addition, U h defined by (26) is equivalent to the collection of all piecewise
constant admissible controls with respect to Dh

n .
Using the representations of regular control, singular control, reflection step, and

the interpolations defined above, (14) yields

ξn = x +
n−1∑

k=0

[
�ξh

k IHh
k

+ �ξh
k (1 − IHh

k
)
] −

n−1∑

k=0

zh
k −

n−1∑

k=0

gh
k

= x +
n−1∑

k=0

Eh
k �ξh

k IHh
k

+
n−1∑

k=0

(
�ξh

k − Eh
k �ξh

k

)
IHh

k
+

n−1∑

k=0

�ξh
k (1 − IHh

k
)

−
n−1∑

k=0

zh
k −

n−1∑

k=0

gh
k . (27)

The local consistency leads to

n−1∑

k=0

Eh
k �ξh

k IHh
k

=
n−1∑

k=0

[[
l
(
αh

k

)(
1 − uh

k

) + uh
kb

(
αh

k

)]
ξh
k + c

(
αh

k

)]
�thk + o

(
�thk

)
IHh

k

=
n−1∑

k=0

[[
l
(
αh

k

)(
1 − uh

k

) + uh
kb

(
αh

k

)]
ξh
k + c

(
αh

k

)]
�thk + o

(
�thk

)

−
(

max
k′≤n

�thk′
)
O

(
n−1∑

k=0

IT h
k

)

. (28)
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Denote

Mh
n =

n−1∑

k=0

(
�ξh

k − Eh
k �ξh

k

)
IHh

k
,

Rh
n = −

n−1∑

k=0

�ξh
k (1 − IHh

k
) =

∑

k:νk<n

qh

(
ξh
νk

, αh
νk

, ρk

)
,

(29)

where Mh
n is a martingale with respect to Dh

n . Note that

E

n−1∑

k=0

IT h
k

= E
[
number of n : νh

n ≤ t
] → λt as h → 0.

This implies

(
max
k′≤n

�thk′
)
O

(
n−1∑

k=0

IT h
k

)

→ 0 in probability as h → 0.

Hence, we can drop the term involving IT h
k

without affecting the limit in (28). We

attempt to represent Mh(t) similar to the diffusion term in (6). Define Wh(·) as

Wh(t) =
n−1∑

k=0

(
�ξh

k − Eh
k �ξh

k

)
/
[
σ
(
αh(s)

)
uh(s)ξh(s)

]

=
∫ t

0

[
σ
(
αh(s)

)
uh(s)ξh(s)

]−1
dMh(s). (30)

Combining (28)–(30), we rewrite (27) by

ξh(t) = x +
∫ t

0

[[
l
(
αh(s)

)(
1 − uh(s)

) + uh(s)b
(
αh(s)

)]
ξh(s) + c

(
αh(s)

)]
ds

+
∫ t

0
σ
(
αh(s)

)
uh(s)ξh(s) dWh(s) − Rh(t) − zh(t) − gh(t) + εh(t), (31)

where Rh(t) = ∑
νh
n≤t qh(ξ

h

ν−
n
, αh

νn
, ρn), and εh(t) is a negligible error satisfying

lim
h→∞ sup

0≤t≤T

E
∣
∣εh(t)

∣
∣ → 0 for any 0 < T < ∞. (32)

Next we will introduce the rescaling process. The basic idea of rescaling time is
to “stretch out” the control and state processes so that they are “smoother” so that the
tightness of gh(·) and zh(·) can be proved. Define �t̂hn by

�t̂hn =

⎧
⎪⎨

⎪⎩

�thn for a diffusion on step n,

|�zh
n| = h for a singular control on step n,

|�gh
n | = h for a reflection on step n,

(33)
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and define T̂ h(·) by T̂ h(t) = ∑n−1
i=0 �thi = thn for t ∈ [t̂ hn , t̂hn+1] Thus, T̂ h(·) will in-

crease with the slope of unity if and only if a regular control is exerted. In addition,
define the rescaled and interpolated process ξ̂ h(t) = ξh(T̂ h(t)), likewise define α̂h(t),
ûh(t), N̂h(·), R̂h(t), ĝh(t) similarly. The time scale is stretched out by h at the re-
flection and singular control steps. We can now write

ξ̂ h(t) = x +
∫ t

0

[[
l
(
α̂h(s)

)(
1 − ûh(s)

) + ûh(s)b
(
α̂h(s)

)]
ξ̂ h(s) + c

(
α̂h(s)

)]
ds

+
∫ t

0
σ
(
α̂h(s)

)
ûh(s)ξ̂ h(s) dWh(s) − R̂h(t) − ẑh(t) − ĝh(t) + εh(t). (34)

4.2 Relaxed Controls

Let B(U × [0,∞)) be the σ -algebra of Borel subsets of U × [0,∞). An admissible
relaxed control (or deterministic relaxed control) m(·) is a measure on B(U ×[0,∞))

such that m(U × [0, t]) = t for each t ≥ 0. Given a relaxed control m(·), there is an
mt(·) such that m(dφ dt) = mt(dφ)dt . We can define mt(B) = limδ→0

m(B×[t−δ,t])
δ

for B ∈ B(U). With the given probability space, we say that m(·) is an admissi-
ble relaxed (stochastic) control for (W(·), α(·)) or (m(·),W(·), α(·)) is admissible if
m(·,ω) is a deterministic relaxed control with probability one and if m(A × [0, t]) is
Ft -adapted for all A ∈ B(U). There is a derivative mt(·) such that mt(·) is Ft -adapted
for all A ∈ B(U).

Given a relaxed control m(·) of uh(·), we define the derivative mt(·) such that

mh(K) =
∫

U×[0,∞)

I{(uh,t)∈K}mt(dφ)dt (35)

for all K ∈ B(U × [0,∞)) and such that for each t,mt (·) is a measure on B(U)

satisfying mt(U) = 1. For example, we can define mt(·) in any convenient way for
t = 0 and as the left-hand derivative for t > 0,

mt(A) = lim
δ→0

m(A × [t − δ, t])
δ

∀A ∈ B(U). (36)

Note that m(dφ dt) = mt(dφ)dt . It is natural to define the relaxed control represen-
tation mh(·) of uh(·) by

mh
t (A) = I{uh(t)∈A} ∀A ∈ B(U). (37)

Let F h
t be the filtration consisting of the minimal σ -algebras that measure

{
ξh(s),αh(s),mh

s (·),Wh(s),Nh(s),Rh(s), zh(s), gh(s), s ≤ t
}
. (38)

Use Γ h to denote the set of admissible relaxed controls mh(·) with respect to
(αh(·),Wh(·)) such that mh

t (·) is a fixed probability measure in the interval [thn , thn+1)

given F h
t . Then Γ h is a larger control space containing U h. Referring to the stretched
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out time scale, we denote the rescaled relax control as m
T̂ h(t)

(dφ). Define Mt(A) and

Mh
t (dφ) by

Mt(A)dt = dW(t)Iu(t)∈A ∀A ∈ B(U),

Mh
t (dφ)dt = dWh(t)Iuh(t)∈U .

Analogously, as an extension of time rescaling, we let

M̂h

T̂ h(t)
(dφ)dT̂ h(t) = dŴh

(
T̂ h(t)

)
I
uh(T̂ h(t))∈U .

With the notation of relaxed control given above, we can write (31), (34), and the
value function (8) as

ξh(t) = x +
∫ t

0

∫

U

[[
l
(
αh(s)

)
(1 − φ) + φb

(
αh(s)

)]
ξh(s)

+ c
(
αh(s)

)]
mh

s (dφ)ds

+
∫ t

0

∫

U
φσ

(
αh(s)

)
ξh(s)Mh

s (dφ)ds

− Rh(t) − zh(t) − gh(t) + εh(t), (39)

ξ̂ h(t) = x +
∫ t

0

∫

U

[[
l
(
α̂h(s)

)
(1 − φ) + φb

(
α̂h(s)

)]
ξ̂ h(s)

+ c
(
α̂h(s)

)]
m̂h

T̂ h(s)
(dφ)dT̂ h(s)

+
∫ t

0

∫

U
φσ

(
α̂h(s)

)
ξ̂ h(s)M̂

T̂ h(s)
(dφ)dT̂ h(s)

− R̂h(t) − ẑh(t) − ĝh(t) + εh(t), (40)

and

V h(x, i) = inf
mh∈Γ h

J h
(
x, i,mh

)
. (41)

Now we give the definition of existence and uniqueness of a weak solution.

Definition 4.1 With the regular control replaced by the relaxed control, by a weak
solution of (6) we mean that there exists a probability space (Ω, F ,P ), a filtration Ft ,
and a process (X(·), α(·),m(·),W(·),N(·)) such that W(·) is a standard Ft -Wiener
process, α(·) is a Markov chain with generator Q and state space M, N(·) is an Ft -
Poisson process, m(·) is admissible with respect to X(·) and is Ft -adapted, and (6)
is satisfied. For an initial condition (x, �), by the weak sense uniqueness we mean
that the probability law of the admissible process (α(·),m(·),W(·),N(·)) determines
the probability law of solution (X(·), α(·),m(·),W(·),N(·)) to (6), irrespective of
probability space.

To proceed, we need some assumptions.



J Optim Theory Appl (2013) 159:246–271 263

(A1) Let u(·) be an admissible ordinary control with respect to W(·), α(·), and N(·),
and suppose that u(·) is piecewise constant and takes only a finite number of
values. For each initial condition, there exists a solution to (39), where m(·)
is the relaxed control representation of u(·), and this solution is unique in the
weak sense.

4.3 Convergence of a Sequence of Surplus Processes

Lemma 4.1 Using the transition probabilities {ph(·)} defined in (23), the interpo-
lated process of the constructed Markov chain {α̂h(·)} converges weakly to α̂(·), the
rescaled Markov chain with generator Q = (q�ι).

Proof The proof is similar to Theorem 3.1 in [18]. By using the same technique in
the rescaled process, the convergence can be achieved. �

Theorem 4.1 Let the approximating chain {ξh
n ,αh

n,n < ∞} constructed with tran-
sition probabilities defined in (23) be locally consistent with (6), the relaxed con-
trol representation of {uh

n,n < ∞} be mh(·), (ξh(·), αh(·)) be the continuous-
time interpolation defined in (17), and the corresponding rescaled processes be
{ξ̂ h(·), α̂h(·), m̂h(·), Ŵ h(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂ h(·)}. Then

{
ξ̂ h(·), α̂h(·), m̂h(·), Ŵ h(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂ h(·)}

is tight.

The proof of the tightness of the sequence is similar to that of Theorem 4.5 in [14].
Since {ξ̂ h(·), α̂h(·), m̂h(·), Ŵ h(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂ h(·)} is tight, we

can extract a weakly convergent subsequence. Let {X̂(·), α̂(·), m̂(·), Ŵ (·), N̂(·), R̂(·),
ẑ(·), ĝ(·), T̂ (·)} be the limit of the subsequence. Also, the paths of {X̂(·), α̂(·), m̂(·),
Ŵ (·), N̂(·), R̂(·), ẑ(·), ĝ(·), T̂ (·)} are continuous w.p. 1.

Theorem 4.2 Let W(·) be a standard Ft -Wiener process, and m(·) be admissible.
We also have that {ξ̂ h(·), α̂h(·), m̂h(·), Ŵ h(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂ h(·)} gen-
erates the σ -algebra F̂t . Then we obtain that Ŵ (t) = W(T̂ (t)) is an F̂t -martingale
with quadratic variation T̂ (t). The limit processes satisfy

X̂(t) = x +
∫ t

0

∫

U

[[
l
(
α̂(s)

)
(1 − φ) + φb

(
α̂(s)

)]
X̂(s) + c

(
α̂(s)

)]
m̂h

T̂ (s)
(dφ)dT̂ (s)

+
∫ t

0

∫

U
φσ

(
α̂(s)

)
X̂(s)M̂

T̂ (s)
(dφ)dT̂ (s) − R̂(t) − ẑ(t) − ĝ(t). (42)
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Proof For δ > 0, define the process f (·) by f h,δ(t) = f h(nδ), t ∈ [nδ, (n + 1)δ).
Then, by the tightness of {ξ̂ h(·), α̂h(·)}, (40) can be rewritten as

ξ̂ h(t) = x +
∫ t

0

∫

U

[[
l
(
α̂h(s)

)
(1 − φ) + φb

(
α̂h(s)

)]
ξ̂ h(s)

+ c
(
α̂h(s)

)]
m̂h

T̂ h(s)
(dφ) × dT̂ h(s)

+
∫ t

0

∫

U
φσ

(
α̂h,δ(s)

)
ξ̂ h,δ(s)M̂

T̂ h(s)
(dφ)dT̂ h(s)

R̂h(t) − ẑh(t) − ĝh(t) + εh,δ(t), (43)

where

lim
δ→0

lim sup
h→0

E
∣
∣εh,δ(t)

∣
∣ = 0. (44)

If we can verify that Ŵ (·) is an F̂t -martingale, then (42) could be obtained by
taking limits in (43). To characterize W(·), let t > 0, δ > 0,p, κ , and {tk : k ≤ p}
be given such that tk ≤ t ≤ t + δ for all k ≤ p, ϕj (·) for j ≤ κ are real-valued and
continuous functions on U × [0,∞) having compact supports for all j ≤ q . Define

(ϕj , m̂)t =
∫ t

0

∫

U
ϕj (φ, s)m̂h

T̂ (s)
(dφ)dT̂ (s). (45)

Let {Γ κ
j , j ≤ κ} be a sequence of nondecreasing partition of Γ such that Π(∂Γ κ

j ) = 0
for all j and all κ , where ∂Γ κ

j is the boundary of the set Γ κ
j . As κ → ∞, let the

diameters of the sets Γ κ
j go to zero. Let K(·) be a real-valued and continuous function

of its arguments with compact support. In view of the definition of Ŵ (t), for each
i ∈ M, we have

EK
(
ξ̂ h(tk), α̂

h(tk), Ŵ
h(tk), N̂

h
(
tk,Γ

κ
j

)
,
(
ϕj ,m

h
)
tk
, R̂h(tk), z

h(tk), ĝ
h(tk),

j ≤ κ, k ≤ p
) × [

Ŵh(t + δ) − Ŵh(t)
] = 0. (46)

By using the Skorokhod representation and the dominant convergence theorem, let-
ting h → 0, we obtain

EK
(
ξ̂ h(tk), α̂

h(tk), Ŵ
h(tk), N̂

h
(
tk,Γ

κ
j

)
,
(
ϕj ,m

h
)
tk
, R̂h(tk), ẑ

h(tk), ĝ
h(tk),

j ≤ κ, k ≤ p
) × [

Ŵ (t + δ) − Ŵ (t)
] = 0. (47)

Since Ŵ (·) has continuous sample paths, (47) implies that Ŵ (·) is a continuous
Ft -martingale. On the other hand, since

E
[(

Ŵh(t +δ)
)2 − (

Ŵh(t)
)2] = E

[(
Ŵh(t +δ)−Ŵh(t)

)2] = T̂ (t +δ)− T̂ (t), (48)
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by using the Skorokhod representation and the dominant convergence theorem to-
gether with (48) we have

EK
(
ξ̂ h(tk), α̂

h(tk), Ŵ
h(tk), N̂

h
(
tk,Γ

κ
j

)
,
(
ϕj ,m

h
)
tk
, R̂h(tk), ẑ

h(tk), ĝ
h(tk),

j ≤ κ, k ≤ p
) × [

Ŵ 2(t + δ) − Ŵ 2(t) − (
T̂ (t + δ) − T̂ (t)

)] = 0. (49)

The quadratic variation of the martingale Ŵ (t) is �T̂ , then Ŵ (·) is an F̂t -Wiener
process.

Letting h → 0, by using the Skorokhod representation we obtain

E

∣
∣
∣
∣

∫ t

0

∫

U

[[
l
(
α̂h(s)

)
(1 − φ) + φb

(
α̂h(s)

)]
ξ̂ h(s) + c

(
α̂h(s)

)]
m̂h

T̂ h(s)
(dφ)dT̂ h(s)

−
∫ t

0

∫

U

[[
l
(
α̂(s)

)
(1 − φ) + φb

(
α̂(s)

)]
X̂(s) + c

(
α̂(s)

)]
m̂h

T̂ (s)
(dφ)dT̂ (s)

∣
∣
∣
∣ → 0

(50)

uniformly in t . On the other hand, {m̂h(·)} converges in the compact weak topol-
ogy, that is, for any bounded and continuous function ϕ(·) with compact support, as
h → 0,

∫ ∞

0

∫

U
ϕ(φ, s)m̂h

T̂ h(s)
(dφ)dT̂ h(s) →

∫ ∞

0

∫

U
ϕ(φ, s)m̂

T̂ (s)
(dφ)dT̂ (s). (51)

Again, the Skorokhod representation (with a slight abuse of notation) implies that, as
h → 0,

∫ t

0

∫

U

[[
l
(
α̂h(s)

)
(1 − φ) + φb

(
α̂h(s)

)]
ξ̂ h(s) + c

(
α̂h(s)

)]
m̂h

T̂ h(s)
(dφ)dT̂ h(s)

→
∫ t

0

∫

U

[[
l
(
α̂(s)

)
(1 − φ) + φb

(
α̂(s)

)]
X̂(s) + c

(
α̂(s)

)]
m̂

T̂ (s)
(dφ)dT̂ (s) (52)

uniformly in t on any bounded interval.
In view of (43), since ξh,δ(·) and αh,δ(·) are piecewise constant functions,

∫ t

0

∫

U
φσ

(
α̂h,δ(s)

)
ξ̂ h,δ(s)M̂

T̂ h(s)
(dφ)dT̂ h(s)

→
∫ t

0

∫

U
φσ

(
α̂δ(s)

)
ξ̂ δ(s)M̂

T̂ (s)
(dφ)dT̂ (s) (53)

as h → 0. Combining (45)–(53), we have

X̂(t) = x +
∫ t

0

∫

U

[[
l
(
α̂(s)

)
(1 − φ) + φb

(
α̂(s)

)]
X̂(s) + c

(
α̂(s)

)]
m̂h

T̂ (s)
(dφ)dT̂ (s)

+
∫ t

0

∫

U
φσ

(
α̂δ(s)

)
X̂δ(s)M̂

T̂ (s)
(dφ)dT̂ (s) − R̂(t) − ẑ(t) − ĝ(t) + εδ(t),

(54)
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where limδ→0 E|εδ(t)| = 0. Finally, taking limits in the above equation as δ → 0,
(42) is obtained. �

Theorem 4.3 For t < ∞, define the inverse L(t) = inf{s : T̂ (s) > t}. Then L(t) is
right continuous and L(t) → ∞ as t → ∞ w.p. 1. For any process ψ̂(·), define
the rescaled process ψ(·) by ψ(t) = ψ̂(L(t)). Then, W(·) is a standard Ft -Wiener
process, N(·) is a Poisson measure, and (6) holds.

Proof Since T̂ (t) → ∞ w.p. 1 as t → ∞, L(t) exists for all t , and L(t) → ∞ as
t → ∞ w.p. 1. Similar to (47) and (49), for each i ∈ M,

EK
(
ξh(tk), α

h(tk),W
h(tk),N

h
(
tk,Γ

κ
j

)
,
(
ψj ,m

h
)
tk
,Rh(tk), z

h(tk), g
h(tk),

j ≤ κ, k ≤ p
) × [

W(t + δ) − W(t)
] = 0,

EK
(
ξh(tk), α

h(tk),W
h(tk),N

h
(
tk,Γ

κ
j

)
,
(
ψj ,m

h
)
tk
,Rh(tk), z

h(tk), g
h(tk),

j ≤ κ, k ≤ p
) × [

W 2(t + δ) − W 2(t) − (
L(t + δ) − L(t)

)] = 0.

Thus, we can verify that W(·) is an Ft -Wiener process. A rescaling of (42) yields

X(t) = x +
∫ t

0

∫

U

[[
l
(
α(s)

)
(1 − φ) + φb

(
α(s)

)]
X(s) + c

(
α(s)

)]
ms(dφ)ds

+
∫ t

0

∫

U
φσ

(
α(s)

)
X(s)Ms(dφ)ds − R(t) − z(t) − g(t). (55)

In other words, (6) holds. �

4.4 Convergence of Cost and Value Functions

Theorem 4.4 Let {ξ̂ h(·), α̂h(·), m̂h(·), Ŵ h(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂ h(·)} be
the weak convergent subsequence of the sequence with limit {X̂(·), α̂(·), m̂(·), Ŵ (·),
N̂(·), R̂(·), ẑ(·), ĝ(·), T̂ (·)}. Then,

Jh
(
x, �,πh

) → Eπ
x,�

∫ τ

0

∫

U
e−rT̂ (t)dẐ = Eπ

x,�

∫ τ

0

∫

U
e−rt dZ = J (x, �,π). (56)

Proof Noting that �zh = �gh = h, the uniform integrability of dZ can be easily ver-
ified. Due to the tightness and uniform integrability properties, for any t ,

∫ t

0 dẐ can
be well approximated by a Riemann sum uniformly in h. By the weak convergence
and the Skorokhod representation,

Jh
B

(
x, �,πh

) = E

ηh−1∑

k=1

e−rthk �zh
k → Eπ

x,�

∫ τ

0

∫

U
e−rT̂ (t)dẐ.

By an inverse transformation,

Eπ
x,�

∫ τ

0

∫

U
e−rT̂ (t)dẐ = Eπ

x,�

∫ τ

0

∫

U
e−rt dZ.
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Thus, as h → 0,

Jh
(
x, �,πh

) → J (x, �,π). �

Theorem 4.5 V h(x, �) and V (x, �) are value functions defined in (41) and (8), re-
spectively. Then V h(x, �) → V (x, �) as h → 0.

The proof of the convergence of the value functions is similar to that in [14]. Thus,
we omit it.

5 Numerical Examples

This section is devoted to several examples. For simplicity, we consider the case
that the discrete event has two states. That is, the continuous-time Markov chain has
two states with given claim size distributions. By using value iteration methods we
numerically solve the optimal control problems and set the error tolerance to be 10−8.

Example 5.1 The continuous-time Markov chain α(t) representing the discrete event
state has the generator Q = ( −0.5 0.5

5 −5

)
and takes values in M = {1,2}. The premium

rate depends on the discrete state with c(1) = 1 and c(2) = 3. The portfolio rate u(t)

taking values in [0,1] is the control. Corresponding to the different discrete states,
the yield rate of the riskless asset is l(1) = 0.03 and l(2) = 0.04, whereas the risky
asset return rate is b(1) = 0.06 and b(2) = 0.08. The volatility of the financial market
σ(α(t)) is valued as σ(1) = 0.2 and σ(2) = 2. R(t) is the compound Poisson process
with uniform claim sizes ρ = 0.01. Then {νn+1 − νn} is a sequence of exponentially
distributed random variables with mean 1/4. Let λ = 4. Furthermore, the initial sur-
plus x is supposed to have the maximum 20 and the minimum 0. The discount rate
r = 0.1. We obtain the computation results depicted in Fig. 1 as follows.

Example 5.2 Comparing to Example 5.1, we consider a more general claim size
distribution. R(t) is a compound Poisson process interpreted as aggregated claims
with R(t) = ∑

νn≤t ρn, where ρn ∈ {0.01,0.02} with distribution Π(0.01) = 0.6,

Π(0.02) = 0.4. See Fig. 2 for this case.

Example 5.3 Comparing to Example 5.2, we change the generator of the Markov

chain α(t) to Q′ = ( −5 5
5 −5

)
.

The generator is symmetric. We obtain Fig. 3 in this case.

All the figures contain at least two lines since we consider the two-regime case.
Figures 1(a), 2(a), and 3(a) show that the value function is concave and increases
with unity slope after some barrier level, which means that the extra surplus will all
be paid out as the dividend after reaching certain barrier. It is also shown that the
total expected discounted value of all dividends is bounded in all cases in Figs. 1(b),
2(b), and 3(b), which is consistent with our results in Proposition 2.1. This result is
under the assumption that the discount rate r is higher than the maximal yield rate b̄,
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Fig. 1 Compound Poisson process with uniform claim sizes

Fig. 2 Compound Poisson process with general claim size distribution
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Fig. 3 Faster switching Markov chains

whereas if r < b̃, the total expected discounted value of all dividends could lead to
infinity.

Regarding the investment strategy, we observe from Figs. 1(c), 2(c), and 3(c) that
the proportion of investment in the risky asset will be zero after certain threshold.
To maximize the total expected discounted value of all the dividends, the rational
insurers seem to be risk averse. Especially in Fig. 3(c), the insurer is totally risk
averse with portfolio in risky asset being zero all the time. In addition, we observe
that from Figs. 1(c) and 2(c) that the insurer prefers to put big weight money in
the risky asset when the surplus is not high enough. At the mean time, the optimal
discounted dividend increases with a faster pace (the derivative is greater than 1). In
other words, with small amount of money, the rational investor makes the investment
more efficient by choosing investment strategy aggressively. Furthermore, from the
two lines in the graphs it is shown that the investment strategy varies in different
regimes due to the Markov switching.

In Figs. 1(d), 2(d), and 3(d), we use “1” to denote the region in QVIs when regular
control is dominant and “2” to denote the region in QVIs when singular control is
dominant. Although the optimal values of the discounted total dividend in different
regimes do not have big difference, the dividend payment policies are very different
in different regimes. In particular regime, from Figs. 1(c), 2(c), and 3(c) we find that
the singular control is dominant when the investment in risky assets becomes zero.
It seems that the insurer chooses to put money in the riskless asset or pay out the
surplus as dividend when it is high enough to avoid the possible risk.
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6 Concluding Remarks

In this work, we have developed numerical approximation schemes for finding the
optimal investment and dividend payment policy to maximize the total discounted
dividend paid out until the lifetime of ruin. A generalized regime-switching jump dif-
fusion formulation of surplus with singular control is presented. Although one could
derive the associated system of integro-differential QVIs by using the usual dynamic
programming approach together with the use of properties of regime-switchings,
solving the mixed regular-singular control problem is very difficult to solve analyt-
ically. As an alternative, we presented a Markov chain approximation method using
mainly probabilistic methods. For the singular control part, a technique of time rescal-
ing is used. In the actual computation, the optimal value function can be obtained by
using the value or policy iteration methods. The method proposed in this paper can
be extended to more complicated payoff functions.

In addition, not only will the numerical approaches provide guidance for the deci-
sion makers in the financial and insurance industries but also help researchers to gain
further understanding for more complex problems encountered. The numerical results
that may not be obtained by using classical models will provide insight in studying
the dividend payment and investment strategies and have the potential to benefit soci-
ety as a whole. Furthermore, although the primary motivation stems from investment
and dividend payout strategies, the techniques and the algorithms suggested in fact
are applicable to a wide range of regime-switching impulse control problems.
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