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Abstract This paper deals with Markov Decision Processes (MDPs) on Borel spaces
with possibly unbounded costs. The criterion to be optimized is the expected total
cost with a random horizon of infinite support. In this paper, it is observed that this
performance criterion is equivalent to the expected total discounted cost with an infi-
nite horizon and a varying-time discount factor. Then, the optimal value function and
the optimal policy are characterized through some suitable versions of the Dynamic
Programming Equation. Moreover, it is proved that the optimal value function of the
optimal control problem with a random horizon can be bounded from above by the
optimal value function of a discounted optimal control problem with a fixed discount
factor. In this case, the discount factor is defined in an adequate way by the parame-
ters introduced for the study of the optimal control problem with a random horizon.
To illustrate the theory developed, a version of the Linear-Quadratic model with a
random horizon and a Logarithm Consumption-Investment model are presented.
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1 Introduction

This paper was initially motivated by the study of the discounted optimal control
problem given in Puterman’s book (see [1], Sect. 5.3). In this reference, it is proved
that a discounted control problem can be treated as a control problem where the
horizon is a random variable, which is supposed to follow a geometric distribution
independent of the process.

Retaking the idea mentioned, this article presents the study of the problem with
a random horizon independent of the process, considering in this case an arbitrary
distribution. While researching the background of this problem, it was observed that
it is natural for applications to have this kind of independence, for example, to analyze
a bankruptcy in economic models, to model a failure of a system in economic models,
to model a failure of a system in engineering, or to study the extinction of some
natural resource in biology (see [1] p. 125, [2] p. 267, [3, 4]).

Another approach to study this kind of problems is assuming that the random
horizon is measurable with respect to the filtration of the process. In this context,
a class of problems is studied as an optimal stopping problem (see [1, 2, 5]). This
problem has also been studied when the random horizon is the stopping time, see [6],
for instance. However, there was not sufficient literature found for the case when
the horizon is independent of the process, and the existing one presented limitations,
which reinforce the intention to study the problem considering this independence.

The present work approaches the control problem in the cases where the support
of the random horizon is either finite or infinite. In the case when the distribution has
a finite support, the optimal control problem can be studied using the existing theory
for MDPs (see [1, 3, 4, 7]). The same does not occur for the numerable case, on which
this article is centered.

For the goal of this paper, firstly, the optimal control problem with the expected
total cost and a random horizon as a performance criterion is presented. It is observed
that this problem is equivalent to the one with the infinite-horizon expected total
discounted cost as a performance criterion. The importance in this case is that the
discount factor is varying over time (see (6), (7), and Remark 4.3(ii)). Usually, in
the literature, the discount factor is a fixed number between 0 and 1 (see [8]). In the
development presented in this work, even the case with a fixed discount factor (see
Remark 4.3(iii)) is included.

Secondly, the optimal solution of the optimal control problem with a random hori-
zon is characterized (the value function and the optimal policy). To do this, a stan-
dard dynamic programming approach is used (see [1, 8–11]). For this problem, it is
assumed that the states and action spaces are Borel spaces, not necessarily compact,
and with the cost function that is neither necessarily bounded. These situations have
not been considered in previous papers (see [4, 7]). It is important to point out that in
the optimal control problem with a random horizon there may not exist a stationary
optimal policy (see [7]). In this case, using conditions of continuity and compact-
ness on the components of the model, it is possible to guarantee that there exists
a deterministic Markov optimal policy. This article also provides two fully worked
examples.

Thirdly, in this paper it is proved that the optimal value function of the optimal con-
trol problem with a random horizon can be bounded from above by the optimal value
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function of a discounted optimal control problem with a fixed discount factor. In this
case, the discount factor is defined in an adequate way by the parameters introduced
for the study of the optimal control problem with a random horizon. The previous
description suggests that a problem of a random horizon can be approximated using
a discounted optimal control problem. To do this, the paper presents additional con-
ditions for the random variable (see Assumptions 5.1 and 5.4), which allow finding a
bound for the difference of the value functions of the control problems.

The paper is organized as follows. Firstly, in Sect. 2, the basic theory of the Markov
decision processes is presented. Afterwards, in Sect. 3, the optimal decision problem
with a random horizon is described. Then, in Sect. 4, the optimal solution is char-
acterized through the dynamic programming approach and the theory is verified in
two examples. Finally, in Sect. 5, under certain assumptions, the problem with the
random horizon is connected to a discounted problem with an infinite horizon.

2 Preliminaries

Let (X,A, {A(x) : x ∈ X},Q, c) be a Markov decision model, which consists of the
state space X, the action set A (X and A are Borel spaces), a family {A(x) : x ∈ X}
of nonempty measurable subsets A(x) of A, whose elements are the feasible actions
when the system is in state x ∈ X. The set K := {(x, a) : x ∈ X, a ∈ A(x)} of the
feasible state-action pairs is assumed to be a measurable subset of X × A. The fo-
llowing component is the transition law Q, which is a stochastic kernel on X given K.
Finally, c : K → R is a measurable function called the cost per stage function.

A policy is a sequence π = {πt : t = 0,1, . . .} of stochastic kernels πt on the
control set A given the history Ht of the process up to time t (Ht = K × Ht−1,
t = 1,2, . . . , H0 = X). The set of all policies is denoted by Π .

F denotes the set of measurable functions f : X → A such that f (x) ∈ A(x), for
all x ∈ X. A deterministic Markov policy is a sequence π = {ft } such that ft ∈ F, for
t = 0,1,2, . . . . A Markov policy π = {ft } is said to be stationary iff ft is independent
of t , i.e., ft = f ∈ F, for all t = 0,1,2, . . . . In this case, π is denoted by f and F is
the set of stationary policies.

Remark 2.1 In many cases, the evolution of a Markov control process is specified
by a difference equation of the form xt+1 = F(xt , at , ξt ), t = 0,1,2, . . . , with x0
given, where {ξt } is a sequence of independent and identically distributed random
variables with values in a Borel space S and a common distribution μ, independent
of the initial state x0. In this case, the transition law Q is given by Q(B | x, a) =∫
S
IB(F (x, a, s))μ(ds), B ∈ B(X), (x, a) ∈ K, where B(X) is the Borel σ -algebra

of X and IB(·) denotes the indicator function of the set B .

Let (Ω, F ) be the measurable space consisting of the canonical sample space
Ω = H∞ := (X×A)∞ and F be the corresponding product σ -algebra. The elements
of Ω are sequences of the form ω = (x0, a0, x1, a1, . . .) with xt ∈ X and at ∈ A for
all t = 0,1,2, . . . . The projections xt and at from Ω to the sets X and A are called
state and action variables, respectively.
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Let π = {πt } be an arbitrary policy and μ be an arbitrary probability measure
on X called the initial distribution. Then, by the theorem of C. Ionescu-Tulcea (see
[8]), there is a unique probability measure P π

μ on (Ω, F ) which is supported on H∞,
i.e., P π

μ (H∞) = 1. The stochastic process (Ω, F ,P π
μ , {xt }) is called a discrete-time

Markov control process or a Markov decision process.
The expectation operator with respect to P π

μ is denoted by Eπ
μ . If μ is concentrated

at the initial state x ∈ X, then P π
μ and Eπ

μ are written as P π
x and Eπ

x , respectively.

3 Statement of the Problem

Let (Ω ′, F ′,P ) be a probability space and let (X,A, {A(x) : x ∈ X},Q, c) be
a Markov decision model with a planning horizon τ , where τ is considered as
a random variable on (Ω ′, F ′) with the probability distribution ρt := P(τ = t),
t = 0,1,2, . . . , T , where T is a positive integer or T = ∞. Define the performance
criterion as

jτ (π, x) := E

[
τ∑

t=0

c(xt , at )

]

,

π ∈ Π , x ∈ X, where E denotes the expected value with respect to the joint dis-
tribution of the process {(xt , at )} and τ . Then the optimal value function is defined
as

J τ (x) := inf
π∈Π

jτ (π, x), (1)

x ∈ X. The optimal control problem with a random horizon is to find a policy π∗ ∈ Π

such that jτ (π∗, x) = J τ (x), x ∈ X, in which case, π∗ is said to be optimal.

Assumption 3.1 For each x ∈ X and π ∈ Π , the induced process {(xt , at )} is inde-
pendent of τ .

Remark 3.1 Observe that under Assumption 3.1,

E

[
τ∑

t=0

c(xt , at )

]

= E

[

E

[
τ∑

t=0

c(xt , at ) | τ
]]

=
T∑

n=0

Eπ
x

[
n∑

t=0

c(xt , at )

]

ρn

=
T∑

t=0

T∑

n=t

Eπ
x

[
c(xt , at )

]
ρn

= Eπ
x

[
T∑

t=0

Ptc(xt , at )

]

,
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π ∈ Π , x ∈ X, where Pk := ∑T
n=k ρn = P(τ ≥ k), k = 0,1,2, . . . , T . Thus, the op-

timal control problem with a random horizon τ is equivalent to the optimal control
problem with a planning horizon T and a nonhomogeneous cost Ptc.

4 Characterization of the Optimal Solution using Dynamic Programming
Approach

Firstly, the finite case T < +∞ is presented.

Assumption 4.1

(a) The one-stage cost c is lower semicontinuous, nonnegative and inf-compact on K

(c is inf-compact iff the set {a ∈ A(x) : c(x, a) ≤ λ} is compact for every x ∈ X

and λ ∈ R).
(b) Q is either strongly continuous or weakly continuous.

Remark 4.1 Assumption 4.1 is well-known in the literature of MDPs. A more de-
tailed explanation can be found in [8], p. 28.

Theorem 4.1 Let J0, J1, . . . , JT +1 be the functions on X defined by JT +1(x) := 0
and for t = T ,T − 1, . . . ,0,

Jt (x) := min
a∈A(x)

[

Ptc(x, a) +
∫

X

Jt+1(y)Q(dy | x, a)

]

, x ∈ X. (2)

Under Assumption 4.1, these functions are measurable and for each t = 0,1, . . . , T ,
there is ft ∈ F such that ft (x) ∈ A(x) attains the minimum in (2) for all x ∈ X. This
implies that

Jt (x) = Ptc
(
x,ft (x)

) +
∫

X

Jt+1(y)Q
(
dy | x,ft (x)

)
,

x ∈ X and t = 0,1, . . . , T . Then the deterministic Markov policy π∗ = {f0, . . . , fT }
is optimal and the optimal value function is given by J τ (x) = jτ (π∗, x) = J0(x),
x ∈ X.

The proof of Theorem 4.1 is similar to the proof of Theorem 3.2.1 in [8].
Let UT +1 := 0 and

Ut := Jt

Pt

,

t ∈ {0,1,2, . . . , T − 1}. Then (2) is equivalent to

Ut(x) = min
a∈A(x)

[

c(x, a) + αt

∫

X

Ut+1(y)Q(dy | x, a)

]

, (3)

where

αt := Pt+1

Pt

, t ∈ {0,1,2, . . . , T − 1}. (4)
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Remark 4.2 Observe that αt = P(τ ≥ t + 1 | τ ≥ t).

Now, let us analyze the case when T = +∞. Under this condition, the perfor-
mance criterion is the following (see Remark 3.1):

jτ (π, x) = Eπ
x

[ ∞∑

t=0

Ptc(xt , at )

]

, (5)

π ∈ Π and x ∈ X.
For every n = 0,1,2, . . . , define

vτ
n(π, x) := Eπ

x

[ ∞∑

t=n

t∏

k=n

αk−1c(xt , at )

]

, (6)

π ∈ Π , x ∈ X, and

V τ
n (x) := inf

π∈Π
vτ
n(π, x), x ∈ X. (7)

vτ
n(π, x) is the expected total cost from time n onwards, applied to (5), given the

initial condition xn = x, where x is a generic element of X.

Remark 4.3

(i) Note that Pt = ∏t
k=0 αk−1, where t = 0,1,2, . . . , α−1 := P0 = 1 and αk , k =

0,1,2, . . . , is defined by (4).
(ii) Observe that V τ

0 (x) = J τ (x), x ∈ X (see (1)).
(iii) In (6), if n = 0, αk = α, k ≥ 0 and α−1 = 1, the performance criterion is reduced

to an expected total discounted cost with a fixed discount factor.

For N > n ≥ 0, we define

vτ
n,N (π, x) := Eπ

x

[
N∑

t=n

t∏

k=n

αk−1c(xt , at )

]

, (8)

with π ∈ Π , x ∈ X, and

V τ
n,N (x) := inf

π∈Π
vτ
n,N (π, x), x ∈ X. (9)

Assumption 4.2

(a) Same as Assumption 4.1.
(b) There exists a policy π ∈ Π such that jτ (π, x) < ∞ for each x ∈ X.

Remark 4.4

(i) In Assumption 4.2, it is supposed that the cost function is nonnegative. This
assumption can be changed without any loss of generality by taking a c which
is bounded below. Namely, if c ≥ m for some constant m, then the problem with
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a one-stage cost c′ := c − m, which is nonnegative, is equivalent to the problem
with a one-stage cost c.

(ii) Observe that if c ≥ m, if Assumption 4.2(b) holds and, since

jτ (π, x) ≥ m

∞∑

t=0

Pt = m
(
1 + E[τ ]),

then E[τ ] < ∞. Conversely, in the case of c bounded, if E[τ ] < ∞, then As-
sumption 4.2(b) holds.

M(X)+ denotes the cone of nonnegative measurable functions on X.

The proofs of Lemmas 4.1 and 4.2 below are similar to the proofs of Lemmas 4.2.4
and 4.2.6 in [8], respectively. This is why these proofs are omitted.

Lemma 4.1 For every N > n ≥ 0, let wn and wn,N be functions on K, which are
nonnegative, lower semicontinuous and inf-compact on K. If wn,N ↑ wn as N → ∞,
then

lim
N→∞ min

a∈A(x)
wn,N (x, a) = min

a∈A(x)
wn(x, a), x ∈ X.

Lemma 4.2 Suppose that Assumption 4.1 holds. For every u ∈ M(X)+,
mina∈A(x)[c(x, a) + αn

∫
X

u(y)Q(dy | x, a)] ∈ M(X)+. Moreover, there exists fn

in F such that

min
a∈A(x)

[

c(x, a) + αn

∫

X

u(y)Q(dy | x, a)

]

= c(x,fn) + αn

∫

X

u(y)Q(dy | x,fn),

x ∈ X.

Lemma 4.3 Suppose that Assumption 4.2(a) holds and let {un} be a sequence in
M(X)+. If un ≥ mina∈A(x)[c(x, a) + αn

∫
X

un+1(y)Q(dy | x, a)], n = 0,1,2, . . . ,
then un ≥ V τ

n , n = 0,1,2, . . . .

Proof Let {un} be a sequence in M(X)+ such that

un(x) ≥ min
a∈A(x)

[

c(x, a) + αn

∫

X

un+1(y)Q(dy | x, a)

]

,

then, by Lemma 4.2,

un(x) ≥ c
(
x,fn(x)

) + αn

∫

X

un+1(y)Q
(
dy | x,fn(x)

)
, x ∈ X.
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Iterating this inequality, one obtains

un(x) ≥ Eπ
x

[

c
(
xn,fn(xn)

) +
N−1∑

t=n+1

t∏

j=n+1

αj−1c
(
xt , ft (xt )

)
]

+
N∏

j=n+1

αj−1E
π
x

[
u(xN)

]
, x ∈ X. (10)

Here,

Eπ
x

[
u(xN)

] =
∫

X

u(y)QN
(
dy | xn,fn(xn)

)
,

where QN(· | xn,fn(xn)) denotes the N -step transition kernel of the Markov process
{xt } when the policy π = {fk} is used, beginning at a stage n. Since u is nonnegative,
αk ≤ 1 and xn = x, it is obtained from (10) that

un(x) ≥ Eπ
x

[

αn−1c
(
xn,fn(xn)

) +
N−1∑

t=n+1

t∏

j=n

αj−1c
(
xt , ft (xt )

)
]

.

Hence, letting N → ∞ yields

un(x) ≥ vτ
n(π, x) ≥ V τ

n (x), x ∈ X. �

Lemma 4.4 Suppose that Assumption 4.2 holds. Then, for every n ≥ 0 and x ∈ X,

V τ
n,N (x) ↑ V τ

n (x) as N → ∞
and V τ

n is lower semicontinuous.

Proof Using the dynamic programming equation given in (3), that is,

Ut(x) = min
a∈A(x)

[

c(x, a) + αt

∫

X

Ut+1(y)Q(dy | x, a)

]

, (11)

for t = N − 1,N − 2, . . . , n, with UN(x) = 0, x ∈ X, it is obtained that V τ
n,N (x) =

Un(x) and V τ
s,N (x) = Us(x), n ≤ s < N . Furthermore, it is proved by backwards

induction that Us , n ≤ s < N , is lower semicontinuous. For t = n, (11) is written as

V τ
n,N (x) = min

a∈A(x)

[

c(x, a) + αn

∫

X

V τ
n+1,N (y)Q(dy | x, a)

]

, (12)

and V τ
n,N (·) is lower semicontinuous. Then, by the nonnegativity of c, for each n =

0,1,2, . . . , the sequence {Vn,N : N = n,n + 1, . . .} is nondecreasing. This implies
that there exists a function un ∈ M(X)+ such that for each x ∈ X, V τ

n,N (x) ↑ un(x),
as N → ∞. Moreover,

V τ
n,N (x) ≤ vτ

n,N (π, x) ≤ vτ
n(π, x),
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x ∈ X and π ∈ Π . Hence V τ
n,N (x) ≤ V τ

n (x), N > n, then un ≤ V τ
n . Furthermore,

un being the supremum of a sequence of lower semicontinuous functions, is lower
semicontinuous. Using Lemma 4.1 and letting N → ∞ in (12), it is obtained that

un(x) = min
a∈A(x)

[

c(x, a) + αn

∫

X

un+1(y)Q(dy | x, a)

]

, (13)

n = 0,1,2, . . . and x ∈ X. Finally, by Lemma 4.3, un ≥ V τ
n , we obtain that un = V τ

n

and conclude this way the proof of Lemma 4.4. �

Theorem 4.2 Suppose that Assumption 4.2 holds, then

(a) The optimal value function V τ
n , n = 0,1,2, . . . , satisfies the optimality equation

V τ
n (x) = min

a∈A(x)

[

c(x, a) + αn

∫

X

V τ
n+1(y)Q(dy | x, a)

]

, x ∈ X, (14)

and if {un} is another sequence that satisfies the optimality equations in (14),
then un ≥ V τ

n .
(b) There exists a policy π∗ = {fn ∈ F | n ≥ 0} such that, for each n = 0,1,2, . . . ,

the control fn(x) ∈ A(x) attains the minimum in (14), i.e.,

V τ
n (x) = c

(
x,fn(x)

) + αn

∫

X

V τ
n+1(y)Q

(
dy | x,fn(x)

)
, x ∈ X, (15)

and the policy π∗ is optimal.

Proof

(a) The proof of Lemma 4.4 guarantees that the sequence {V τ
n } satisfies the opti-

mality equations in (14), and by Lemma 4.3, if {un} satisfies

un = min
a∈A(x)

[

c(x, a) + αn

∫

X

un+1(y)Q(dy | x, a)

]

,

it is concluded that un ≥ V τ
n .

(b) The existence of fn ∈ F that satisfies (15) is ensured by Lemma 4.2. Now, iterat-
ing (15) with xn = x ∈ X, it is obtained that

V τ
n (x) = Eπ

x

[

c
(
xn,fn(xn)

) +
N−1∑

t=n+1

t∏

j=n+1

αj−1c
(
xt , ft (xt )

)
]

+
N∏

j=n+1

αj−1E
π
x

[
u(xN)

]

≥ Eπ
x

[
N−1∑

t=n

t∏

j=n

αj−1c
(
xt , ft (xt )

)
]

,
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n ≥ 0 and N > n. This implies that, letting N → ∞, V τ
n (x) ≥ vτ

n(π∗, x), x ∈
X, and π∗ = {fk}. Moreover, in particular for π∗, V τ

n (x) ≤ vτ
n(π∗, x), x ∈ X.

Therefore, π∗ is optimal. �

Example 4.1 (A Linear–Quadratic Model (LQM) with a Random Horizon) Let X =
A = A(x) = R. The cost function is given by c(x, a) = qx2 + ra2, (x, a) ∈ K, such
that q ≥ 0 and r > 0. The dynamics of the system is given by xt+1 = γ xt + βat + ξt ,
t = 0,1,2, . . . , τ , with x0 known. In this case, γ,β ∈ R and {ξt } is a sequence of
independent and identically distributed random variables taking values in S = R,
such that E[ξ0] = 0 and E[ξ2

0 ] = σ 2, where ξ0 is a generic element of the sequence
{ξt }.

Now, the LQM will be solved considering the following cases.
(a) It is assumed that the distribution of the horizon τ has a finite support, that is,
P(τ = k) = ρk , k = 1,2,3, . . . , T , T < ∞.

Lemma 4.5 The optimal policy π∗ and the optimal value function J τ for LQM are
given by π∗ = (f0, f1, . . . , fT ), where

fn(x) = − αnCn+1γβ

r + αnCn+1β2
x, n = T ,T − 1, . . . ,0,

and J τ (x) = C0x
2 +D0, x ∈ X, where the constants Cn and Dn satisfy the following

recurrence relations:

CT +1 = 0,

Cn = qr + αnCn+1(qβ2 + rγ 2)

r + αnCn+1β2
, n = T ,T − 1, . . . ,0,

and

DT +1 = 0,

Dn = αn

(
Cn+1σ

2 + Dn+1
)
, n = T ,T − 1, . . . ,0.

Proof In this case, using (3), the dynamic programming equation is

Ut(x) = min
a∈R

[
qx2 + ra2 + αtE

[
Ut+1(γ x + βa + ξ)

]]
, (16)

where αt = P(τ > t + 1)/P (τ > t). For t = T in (16), with UT +1(x) = 0, it is ob-
tained that fT (x) = 0 and UT (x) = qx2, x ∈ X.

For t = T − 1, replacing UT in (16), it is obtained that

UT −1(x) = min
a∈R

[
qx2 + ra2 + αT −1E

[
q(γ x + βa + ξ)2]]

= min
a∈R

[
qx2 + ra2 + αT −1q

(
γ 2x2 + β2a2 + 2γβax + σ 2)], x ∈ X.
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Then

fT −1(x) = −αT −1CT γβ

r + αT −1CT β2
x, x ∈ X,

where CT = q . Hence UT −1(x) = CT −1x
2 + DT −1, where

CT −1 = qr + αT −1CT (qβ2 + rγ 2)

r + αT −1CT β2

and DT −1 = CT αT −1σ
2.

Continuing with the procedure, it follows that

fT −2(x) = −αT −2CT −1γβ

r + αT −2CT −1β2
x

and UT −1(x) = CT −2x
2 + DT −2, x ∈ X, where

CT −2 = qr + αT −2CT −1(qβ2 + rγ 2)

r + αT −2CT −1β2

and DT −2 = αT −2(CT −1σ
2 + DT −1).

Finally, in t = 0, it is obtained that

f0(x) = −α0C1γβ

r + α0C1β2
x,

and U0(x) = C0x
2 + D0, x ∈ X, where

C0 = qr + α0C1(qβ2 + rγ 2)

r + α0C1β2

and D0 = α0(C1σ
2 + D1). Since Assumption 4.1 clearly holds, the result is obtained

applying Theorem 4.1. �

(b) Now, it is supposed that the distribution of the horizon τ has an infinite support
with E[τ ] < ∞.

Lemma 4.6 LQM satisfies Assumption 4.2.

Proof Clearly, Assumption 4.2(a) holds. Now, consider the stationary policy h(x) =
− γ

β
x, x ∈ X. In this case, it results in

xt = ξt−1, t ≤ 1.

Then

jτ (h, x) = Eh
x

[ ∞∑

t=0

Ptc(xt , at )

]
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= Eh
x

[ ∞∑

t=0

Pt

(

q + r
γ 2

β2

)

ξ2
t−1

]

=
(

q + r
γ 2

β2

)

σ 2(E[τ ] + 1
)
.

Since E[τ ] < ∞, Assumption 4.2(b) holds. �

Example 4.2 (A Logarithm Consumption–Investment Model (LCIM)) Consider an
investor who wishes to allocate his current wealth xt between an investment at and
consumption xt − at , at each period t = 0,1,2, . . . , τ , where τ is a random variable
with an infinite support. It is assumed that the investment constrain set is A(x) =
[0, x) ⊆ A = [0,1], x ∈ (0,1] and A(0) = 0. This way the state space is X = [0,1].
In this case, the utility function is defined by u(x − a) := ln(x − a) if x ∈ (0,1], and
u(x − a) := 0 if x = 0. The relation between the investment and the accumulated
capital is given by xt+1 = at ξt , t = 0,1,2, . . . , τ with x0 = x ∈ X, where {ξt } is
a sequence of random variables taking values in (0,1), independent and identically
distributed with continuous density function Δ, such that E[| ln ξ0|] = K < ∞, where
ξ0 is a generic element of the sequence {ξt }.

In the case of maximization, equivalent results are obtained with adequate changes
in the assumptions. For instance, in Assumption 4.2, the following change is neces-
sary:

Assumption 4.3

(a) The one-stage reward g is upper semicontinuous, nonpositive and sup-compact
on K.

(b) Q is either strongly continuous or weakly continuous.
(c) There exists a policy π ∈ Π such that jτ (π, x) > −∞ for each x ∈ X.

Lemma 4.7 The problem LCIM with a random horizon satisfies Assumption 4.3.

Proof Observe that the set Aλ(u) := {a ∈ A(x) : u(x −a) ≥ λ}, λ ∈ R, is equal to {0}
if λ ≤ 0 and equal to ∅ if λ > 0 for x = 0; equal to [0, x−exp(λ)] if λ ≤ lnx and equal
to ∅ if λ > lnx for x ∈ (0,1]. Since Aλ(u) is closed and compact for every x ∈ X, for
Proposition A.1 in Appendix of [8], u is upper semicontinuous and sup-compact by
definition. So Assumption 4.3(a) holds.

Now let v : X → R be a continuous and bounded function and define

v′(x, a) :=
∫

X

v(y)Q(dy | x, a)

=
∫ 1

0
v(as)Δ(s) ds,

x ∈ X and a ∈ A(x). Observe that changing the variable u by as, it is obtained that

v′(x, a) =
∫ ∞

−∞
v(u)I[0,a](u)Δ

(
u

a

)
du

a
,
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if a �= 0 and v′(x,0) = v(0). Since Δ is continuous, v′ is continuous for a �= 0. Let
{an} be an arbitrary sequence such that an → 0, so

lim
n→∞v′(x, an) = lim

n→∞

∫ 1

0
v(ans)Δ(s) ds = v(0),

then v′ is continuous for a = 0. This way, it is verified that v′ is continuous and
bounded on K for every continuous and bounded function v on X, i.e., Q is weakly
continuous. On the other hand, using h(x) = 0, x ∈ X, it is obtained that jτ (h, x) =
P0 lnx > −∞, x ∈ X. �

5 The Optimal Control Problem with a Random Horizon as a Discounted
Problem

The optimal problem with a random horizon which is geometrically distributed with
a parameter p (0 < p < 1) coincides with a discounted problem with a discount fac-
tor p (see [4] and [1] p. 126). In this section, a condition is given that allows bounding
the problem with a random horizon τ with an appropriate discounted problem, which
is simpler in practice.

Recall that αt , t = 0,1,2 . . . , is defined as

αt := Pt+1

Pt

, (17)

where Pt = P(τ ≥ t), and consider the following assumption.

Assumption 5.1 {αt }∞t=0 ⊂ (0,1) is a sequence such that
_
α := limt→∞ αt and

αt ≤ _
α.

Remark 5.1

(i) In the case of maximization, the assumption corresponding to Assumption 5.1
is the following: {αt }∞t=0 ⊂ (0,1) is a sequence such that limt→∞ αt = _

α and
αt ≥ _

α.
(ii) It is possible to find probability distributions that satisfy Assumption 5.1.

(iia) Consider τ with Logarithmic distribution, i.e., ρk = − (1−p)k+1

(k+1) lnp
, k =

0,1,2, . . . , where 0 < p < 1. Since

αt = 1 − ρt∑∞
k=t ρk

= 1 − (1 − p)t+1

(t + 1)
∑∞

j=0
(1−p)t+j+1

t+j+1

= 1 − 1
∑∞

j=0
(1−p)j

1+ j
t+1

,
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it is directly obtained that αt ≤ αt+1 for all t = 0,1,2, . . . , and

_
α = lim

t→∞αt = 1 − p.

(iib) Take τ with a negative binomial distribution whose parameters are q and r ,
where 0 ≤ q ≤ 1 and r ∈ N. In this case,

αt = 1 − ρt∑∞
k=t ρk

= 1 −
(r+t−1)!

t !
∑∞

j=0
(r+t+j−1)!qj

(t+j)!

= 1 − (1 + 1
t
)(1 + 2

t
) · · · (1 + r−1

t
)

∑∞
j=0(1 + j+1

t
)(1 + j+2

t
) · · · (1 + j+r−1

t
)qj

,

then
_
α = lim

t→∞αt = q.

Moreover, it is verified that αt+1 ≤ αt .

Now, consider the Markov decision model (X,A, {A(x) | x ∈ X},Q, c) and the
performance criterion as

v(π, x) := Eπ
x

[ ∞∑

t=0

_
α

t
c(xt , at )

]

,

π ∈ Π , x ∈ X and
_
α = limt→∞ αt (see Assumption 5.1). Let

V (x) := inf
π∈Π

v(π,x), x ∈ X. (18)

Consider the following assumption.

Assumption 5.2 There exists a policy π ∈ Π such that v(π, x) < ∞, for each x ∈ X.

Lemma 5.1 Suppose that Assumptions 4.2(a), 5.1, and 5.2 hold. Then J τ (x) ≤ V (x),
x ∈ X.

Proof By Theorem 4.2.3 in [8], there exists f ∈ F such that

V (x) = c
(
x,f (x)

) + _
α

∫

X

V (y)Q
(
dy | x,f (x)

)
, x ∈ X. (19)

Iterating (19), it is obtained that

V (x) = E
f
x

[
n−1∑

t=0

_
α

t
c
(
xt , f (xt )

)
]

+ _
α

n
E

f
x

[
V (xn)

]
,
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n ≥ 1, x ∈ X, where

E
f
x

[
V (xn)

] =
∫

X

V (y)Qn
(
dy | x,f (x)

)
,

Qn(· | x,f ) denotes the n-step transition kernel of the Markov process {xt } when

using f ∈ F. By Assumption 5.1, it results in

n−1∑

t=0

_
α

t
c
(
xt , f (xt )

) ≥
n−1∑

t=0

t∏

k=0

αk−1c
(
xt , f (xt )

) =
n−1∑

t=0

Ptc
(
xt , f (xt )

)
,

hence

V (x) ≥ E
f
x

[
n−1∑

t=0

Ptc
(
xt , f (xt )

)
]

+ _
α

n
E

f
x

[
V (xn)

]
,

n ≥ 1, x ∈ X. Since V is nonnegative,

V (x) ≥ E
f
x

[
n−1∑

t=0

Ptc
(
xt , f (xt )

)
]

,

n ≥ 1, x ∈ X. Letting n → ∞ yields

V (x) ≥ jτ (f, x) ≥ J τ (x), x ∈ X. �

Let f ∗ ∈ F be the stationary optimal policy of the discounted problem and con-
sider the following assumption:

Assumption 5.3 There exist positive numbers m and k, with 1 ≤ k < 1/
_
α, and a

function w ∈ M(X)+ such that, for all (x, a) ∈ K,

(a) c(x, a) ≤ mw(x), and
(b)

∫
X

w(y)Q(dy | x, a) ≤ kw(x).

Remark 5.2

(i) Assumption 5.3 implies Assumption 4.2(b).
(ii) Observe that

Eπ
x

[
w(xt )

] ≤ ktw(x), (20)

t = 0,1,2, . . . and x ∈ X.

For t = 0, (20) trivially holds, and for t ≥ 1, using Assumption 5.3(b), it is
obtained that

Eπ
x

[
w(xt ) | ht−1, at−1

] =
∫

X

w(y)Q(dy | xt−1, at−1) ≤ kw(xt−1).
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Taking expectations into account results in

Eπ
x

[
w(xt )

] ≤ kEπ
x

[
w(xt−1)

]
. (21)

Iterating (21), (20) is obtained.

Lemma 5.2 Under Assumptions 4.2(a), 5.1, and 5.3,

0 ≤ V (x) − jτ
(
f ∗, x

) ≤ mw(x)

∞∑

t=0

( _
α

t − Pt

)
kt .

Proof Firstly, observe that
∑∞

t=0(
_
α

t − Pt )k
t ≤ ∑∞

t=0(
_
αk)t < ∞, since 0 <

_
αk < 1

by Assumption 5.3. Then, under Assumption 5.3(a) and (20), for a stationary policy
f ∈ F, it is obtained that

v(f, x) − jτ (f, x) =
∞∑

t=0

( _
α

t − Pt

)
E

f
x

[
c
(
xt , f (xt )

)]

≤ m

∞∑

t=0

( _
α

t − Pt

)
E

f
x

[
w(xt )

]

≤ mw(x)

∞∑

t=0

( _
α

t − Pt

)
kt .

Taking f = f ∗, where f ∗ is the deterministic stationary optimal policy of the dis-
counted problem, the proof is concluded. �

Let Dn : K → R be the discrepancy functions defined as

Dn(x, a) := c(x, a) + αn

∫

X

V τ
n+1(y)Q(dy | x, a) − V τ

n (x), (x, a) ∈ K.

Assumption 5.4 P(τ < +∞) = 1.

Theorem 5.1 Under Assumptions 4.2(a), 5.1, 5.3, and 5.4,

V (x) − J τ (x) ≤ mw(x)

∞∑

t=0

( _
α

t − Pt

)
kt +

∞∑

t=0

t∏

k=0

αk−1E
π
x

[
Dt

(
xt , f

∗)], (22)

x ∈ X and π ∈ Π .

Proof For x ∈ X, by Lemma 5.2,

V (x) − J τ (x) = V (x) − jτ
(
f ∗, x

) + jτ
(
f ∗, x

) − J τ (x)

≤ mw(x)

∞∑

t=0

( _
α

t − Pt

)
kt + jτ

(
f ∗, x

) − J τ (x).
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Now, for π ∈ Π and x ∈ X,

vτ
n(π, x) = Eπ

x

[ ∞∑

t=n

t∏

k=n

αk−1c(xt , at )

]

= Eπ
x

[ ∞∑

t=n

t∏

k=n

αk−1Dt(xt , at )

]

− Eπ
x

[ ∞∑

t=n

t+1∏

k=n

αk−1

(∫

X

V τ
t+1(y)Q(dy | xt , at ) − V τ

t (xt )

)]

= Eπ
x

[ ∞∑

t=n

t∏

k=n

αk−1Dt(xt , at )

]

− Eπ
x

[ ∞∑

t=n

(
t+1∏

k=n

αk−1E
π
x

[
V τ

t+1(xt+1) | xt , at

] −
t∏

k=n

αk−1V
τ
t (xt )

)]

= Eπ
x

[ ∞∑

t=n

t∏

k=n

αk−1Dt(xt , at )

]

−
∞∑

t=n

[
t+1∏

k=n

αk−1E
π
x

[
V τ

t+1(xt+1)
] −

t∏

k=n

αk−1E
π
x

[
V τ

t (xt )
]
]

. (23)

Observe that, for some positive integer M ,

∞∑

t=n

[
t+1∏

k=n

αk−1E
π
x

[
V τ

t+1(xt+1)
] −

t∏

k=n

αk−1E
π
x

[
V τ

t (xt )
]
]

= lim
M→∞

M∑

t=n

[
t+1∏

k=n

αk−1E
π
x

[
V τ

t+1(xt+1)
] −

t∏

k=n

αk−1E
π
x

[
V τ

t (xt )
]
]

= lim
M→∞

[
M+1∏

k=n

αk−1E
π
x

[
V τ

M+1(xM+1)
] − αn−1V

τ
n (xn)

]

= lim
M→∞

[
PM+1

Pn−1
Eπ

x

[
V τ

M+1(xM+1)
] − αn−1V

τ
n (xn)

]

,

and by Assumption 5.4, limM→∞ PM+1
Pn−1

= 0. Then it is obtained in (23) that

vτ
n(π, x) = Eπ

x

[ ∞∑

t=n

t∏

k=n

αk−1Dt(xt , at )

]

+ αn−1V
τ
n (xn).
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Since αn−1 ≤ 1 and x = xn, it is obtained that

vτ
n(π, x) − V τ

n (x) ≤
∞∑

t=n

t∏

k=n

αk−1E
π
x

[
Dt(xt , at )

]
.

Finally, since vτ
0 (π, x) = jτ (π, x), and taking π = f ∗, (22) is obtained. �

6 Concluding Remarks

The results obtained in this paper permit working with discounted control problems
with a varying-time discount factor, possibly depending on the state of the system
and on the corresponding action as well. Besides, for MDPs taken into account in the
article, i.e., MDPs with a total cost and a random horizon, it is possible to develop
methods, as the rolling horizon procedure or the policy iteration algorithm, in order
to approximate the optimal value function and the optimal policy.
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