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Abstract In this paper, we prove two strong convergence theorems for finding a com-
mon point of the set of zero points of the addition of an inverse-strongly monotone
mapping and a maximal monotone operator and the set of zero points of a maximal
monotone operator, which is related to an equilibrium problem in a Hilbert space.
Such theorems improve and extend the results announced by Y. Liu (Nonlinear Anal.
71:4852–4861, 2009). As applications of the results, we present well-known and new
strong convergence theorems which are connected with the variational inequality, the
equilibrium problem and the fixed point problem in a Hilbert space.

Keywords Equilibrium problem · Fixed point · Inverse-strongly monotone
mapping · Maximal monotone operator · Resolvent · Strict pseudo-contraction

1 Introduction

The theory of nonexpansive mappings in a Hilbert space is very important because
it is applied to convex optimization, the theory of nonlinear evolution equations and
others. Browder and Petryshyn [1] introduced a class of nonlinear mappings, called
strict pseudo-contractions, which includes the class of nonexpansive mappings. For
strict pseudo-contractions, we are interested in finding fixed points of the mappings.
We also know the class of inverse-strongly monotone mappings which is related to
nonexpansive mappings. For inverse-strongly monotone mappings, we are interested
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in finding zero points of the mappings. On the other hand, the generalized equilib-
rium problems which are formulated by the Ky Fan inequality have many important
applications in optimization problems, variational inequalities, minimax problems,
economics and others. Some methods have been proposed for solving the general-
ized equilibrium problems in Hilbert spaces; see, for example, [2, 3]. Recently, Liu
[4] studied strong convergence theorems for strict pseudo-contractions with equilib-
rium problems in a Hilbert space. We know from [5] that the solutions of equilibrium
problems in [4] are written by using the resolvent of a maximal monotone operator
with some domain condition. Furthermore, the class of strict pseudo-contractions is
related to the class of inverse-strongly monotone mappings in a Hilbert space.

In this paper, motivated by these results, we prove implicit and explicit strong con-
vergence theorems for finding a common point of the set of zero points of the addition
of an inverse-strongly monotone mapping and a maximal monotone operator and the
set of zero points of a maximal monotone operator which is related to an equilib-
rium problem in a real Hilbert space. Such theorems improve and extend the results
announced by Liu [4]. The limit point of the implicit strong convergence theorem is
simply proved by using an implicit contraction mapping which does not appear in
other references. Such a unique fixed point of the mapping is used in the proof of the
explicit strong convergence theorem. Using this explicit strong convergence theorem,
we obtain well-known and new strong convergence theorems in a Hilbert space.

2 Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real
numbers, respectively. We also denote by H a real Hilbert space with inner product
〈 · , · 〉 and norm ‖ · ‖. When {xn} is a sequence in H , we denote the strong conver-
gence of {xn} to x ∈ H by xn → x and the weak convergence by xn ⇀ x. We have
from [6], for any x, y ∈ H and λ ∈ R,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 (1)

and
∥
∥λx + (1 − λ)y

∥
∥2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2. (2)

Furthermore we have, for x, y,u, v ∈ H ,

2〈x − y,u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2. (3)

Let C be a nonempty, closed and convex subset of H . Let T be a mapping of C

into H . We denote by F(T ) the set of fixed points of T . A mapping T : C → H

is called nonexpansive iff ‖T x − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. If T : C → H

is nonexpansive, then F(T ) is closed and convex; see [6]. For a nonempty, closed
and convex subset D of H , the nearest point projection of H onto D is denoted
by PD , that is, ‖x − PDx‖ ≤ ‖x − y‖ for all x ∈ H and y ∈ D. Such PD is called
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the metric projection of H onto D. We know that the metric projection PD is firmly
nonexpansive, that is,

‖PDx − PDy‖2 ≤ 〈PDx − PDy,x − y〉
for all x, y ∈ H . Furthermore 〈x−PDx,y−PDx〉 ≤ 0 holds for all x ∈ H and y ∈ D;
see [7].

For a positive number α > 0, a mapping A : C → H is called α-inverse-strongly
monotone iff

〈x − y,Ax − Ay〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C. (4)

If A : C → H is α-inverse-strongly monotone, then 〈x −y,Ax −Ay〉 ≥ 0 and ‖Ax −
Ay‖ ≤ (1/α)‖x − y‖ for all x, y ∈ C; see, for example, [8, 9] for inverse-strongly
monotone mappings.

Let B be a mapping of H into 2H . The effective domain of B is denoted by
dom(B), that is, dom(B) = {x ∈ H : Bx 
= ∅}. A multi-valued mapping B is said to
be a monotone operator on H iff 〈x − y,u − v〉 ≥ 0 for all x, y ∈ dom(B), u ∈ Bx,
and v ∈ By. A monotone operator B on H is said to be maximal iff its graph is not
properly contained in the graph of any other monotone operator on H . For a maximal
monotone operator B on H and r > 0, we may define a single-valued operator Jr =
(I + rB)−1 : H → dom(B), which is called the resolvent of B for r . We denote by
Ar = 1

r
(I − Jr) the Yosida approximation of B for r > 0. We know from [10] that

Arx ∈ BJrx, ∀x ∈ H,r > 0. (5)

Let B be a maximal monotone operator on H and let

B−10 = {x ∈ H : 0 ∈ Bx}.
It is known that B−10 = F(Jr) for all r > 0 and the resolvent Jr is firmly nonexpan-
sive, i.e.,

‖Jrx − Jry‖2 ≤ 〈x − y,Jrx − Jry〉, ∀x, y ∈ H. (6)

We also know the following lemma from [5].

Lemma 2.1 Let H be a real Hilbert space and let B be a maximal monotone opera-
tor on H . For r > 0 and x ∈ H , define the resolvent Jrx. Then the following holds:

s − t

s
〈Jsx − Jtx, Jsx − x〉 ≥ ‖Jsx − Jtx‖2

for all s, t > 0 and x ∈ H .

From Lemma 2.1, we have

‖Jλx − Jμx‖ ≤ (|λ − μ|/λ)‖x − Jλx‖
for all λ,μ > 0 and x ∈ H ; see also [7, 11].
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To prove our main results, we need the following lemma [12, 13]:

Lemma 2.2 Let {sn} be a sequence of non-negative real numbers, let {αn} be a se-
quence of [0,1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of non-negative real

numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with
lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1 − αn)sn + αnγn + βn

for all n = 1,2, . . . . Then limn→∞ sn = 0.

3 Strong Convergence Theorems

In this section, we first prove the following implicit strong convergence theorem of
Browder’s type [14] in a Hilbert space. Before proving it, we need some definitions.
Let H be a Hilbert space. A mapping g : H → H is a contraction iff there exists
k ∈]0,1[ such that‖g(x) − g(y)‖ ≤ k‖x − y‖ for all x, y ∈ H . We call such g a
k-contraction. A linear bounded operator G : H → H is called strongly positive iff
there exists γ > 0 such that 〈Gx,x〉 ≥ γ ‖x‖2 for all x ∈ H . We call such G a strongly
positive operator with coefficient γ > 0. Marino and Xu [15] proved the following
result.

Lemma 3.1 Let H be a Hilbert space and let G be a strongly positive bounded
linear self-adjoint operator on H with coefficient γ > 0. If 0 < γ ≤ ‖G‖−1, then
‖I − γG‖ ≤ 1 − γ γ .

Theorem 3.1 Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H . Let α > 0 and let A be an α-inverse-strongly monotone mapping
of C into H and let B be a maximal monotone operator on H . Let F be a maximal
monotone operator on H such that the domain of F is included in C. Let Jλ = (I +
λB)−1 and Tr = (I + rF )−1 be the resolvents of B and F for λ > 0 and r > 0,
respectively. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let G be a
strongly positive bounded linear self-adjoint operator on H with coefficient γ > 0.
Let 0 < γ <

γ
k

and suppose (A + B)−10 ∩ F−10 
= ∅. Assume that {αn} ⊂]0,1[,
{λn} ⊂]0,∞[ and {rn} ⊂]0,∞[ satisfy

lim
n→∞αn = 0, 0 < a ≤ λn ≤ 2α, and lim inf

n→∞ rn > 0.

Then, the following hold:

(i) For sufficiently large n ∈ N, define Tn : H → H by

Tnx = αnγg(x) + (I − αnG)Jλn(I − λnA)Trnx, ∀x ∈ H.

Then, Tn has a unique fixed point xn in H and {xn} is bounded.
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(ii) For any nonempty closed convex subset D of H , PD(I − G + γg) has a unique
fixed point z0 in D. This point z0 ∈ D is also a unique solution of the variational
inequality

〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ D.

In particular, the set (A + B)−10 ∩ F−10 is a nonempty, closed and convex
subset of H and P(A+B)−10∩F−10(I − G + γg) has a unique fixed point z0 in
(A + B)−10 ∩ F−10.

(iii) The sequence {xn} converges strongly to z0 ∈ (A+B)−10∩F−10, where {z0} =
VI((A + B)−10 ∩ F−10,G − γg).

Proof Let us prove (i). For sufficiently large n ∈ N, define Tn : H → H by

Tnx = αnγg(x) + (I − αnG)Jλn(I − λnA)Trnx, ∀x ∈ H.

From αn → 0, we have αn ≤ ‖G‖−1. Then we have from Lemma 3.1 that for any
x, y ∈ H ,

‖Tnx − Tny‖ = ∥
∥αnγg(x) + (I − αnG)Jλn(I − λnA)Trnx

− {

αnγg(y) + (I − αnG)Jλn(I − λnA)Trny
}∥
∥

≤ αnγ
∥
∥g(x) − g(y)

∥
∥

+ ‖I − αnG‖∥∥Jλn(I − λnA)Trnx − Jλn(I − λnA)Trny
∥
∥

≤ αnγ k‖x − y‖ + (1 − αnγ )
∥
∥(I − λnA)Trnx − (I − λnA)Trny

∥
∥

≤ αnγ k‖x − y‖ + (1 − αnγ )‖Trnx − Trny‖
≤ αnγ k‖x − y‖ + (1 − αnγ )‖x − y‖
= (αnγ k + 1 − αnγ )‖x − y‖
= (

1 − αn(γ − γ k)
)‖x − y‖.

Since 0 < 1 − αn(γ − γ k) < 1, Tn is a (1 − αn(γ − γ k))-contraction of H into itself
and hence Tn has a unique fixed point xn in H . Next, we show that {xn} is bounded.
Let u ∈ (A + B)−10 ∩ F−10. Using u = αnGu + u − αnGu, we have, for all n ∈ N,

‖xn − u‖ = ‖Tnxn − αnGu − u + αnGu‖
= ∥

∥αn

(

γg(xn) − Gu
) + (I − αnG)

(

Jλn(I − λnA)Trnxn − u
)∥
∥

≤ αn

∥
∥γg(xn) − Gu

∥
∥ + ‖I − αnG‖∥∥Jλn(I − λnA)Trnxn − u

∥
∥

≤ αnγ k‖xn − u‖ + αn

∥
∥γg(u) − Gu

∥
∥ + (1 − αnγ )‖xn − u‖.

Thus we have αn(γ − γ k)‖xn − u‖ ≤ αn‖γg(u) − Gu‖ and hence

(γ − γ k)‖xn − u‖ ≤ ∥
∥γg(u) − Gu

∥
∥.

So, we have ‖xn − u‖ ≤ ‖γg(u)−Gu‖
γ−γ k

. This implies that {xn} is bounded.



786 J Optim Theory Appl (2013) 157:781–802

Let us prove (ii). Since g : H → H is a k-contraction and G is a strongly positive
bounded linear self-adjoint operator on H with coefficient γ > 0, we have, for any
x, y ∈ H ,

〈

x − y, (G − γg)x − (G − γg)y
〉

= 〈

x − y,G(x − y)
〉 − 〈x − y, γgx − γgy〉

≥ γ ‖x − y‖2 − γ k‖x − y‖2

= (γ − γ k)‖x − y‖2.

Then G − γg : H → H is a (γ − γ k)-strongly monotone operator. Furthermore,
taking a positive number μ with μ(‖G‖ + γ k)2 < 2(γ − γ k) and 2μ(γ − γ k) < 1,
we have, for any x, y ∈ H ,

∥
∥x − μ(G − γg)x − (

y − μ(G − γg)y
)∥
∥2

= ‖x − y‖2 − 2
〈

x − y,μ(G − γg)x − μ(G − γg)y
〉

+ ∥
∥μ(G − γg)x − μ(G − γg)y

∥
∥2

≤ ‖x − y‖2 − 2μ(γ − γ k)‖x − y‖2

+ μ2(‖G‖2 + 2‖G‖γ k + (γ k)2)‖x − y‖2

= {

1 − 2μ(γ − γ k) + μ2(‖G‖ + γ k)2}‖x − y‖2

= (

1 − μ
{

2(γ − γ k) − μ(‖G‖ + γ k)2})‖x − y‖2

and

0 < 1 − μ
{

2(γ − γ k) − μ(‖G‖ + γ k)2} < 1.

So, I −μ(G− γg) is a contraction of H into itself and hence PD(I −μ(G− γg)) is
also a contraction of D into itself. Thus there exists a unique point z0 ∈ D such that
z0 = PD(I − μ(G − γg))z0. We also have, for w ∈ D,

w = PD

(

I − μ(G − γg)
)

w

⇐⇒ 〈

w − μ(G − γg)w − w,w − q
〉 ≥ 0, ∀q ∈ D

⇐⇒ 〈

(G − γg)w,w − q
〉 ≤ 0, ∀q ∈ D

⇐⇒ 〈w − Gw + γgw − w,w − q〉 ≥ 0, ∀q ∈ D

⇐⇒ w = PD(I − G + γg)w.

Thus VI(D,G − γg) = {z0}. Next, we show that (A + B)−10 ∩ F−10 is closed and
convex. Since F is a maximal monotone operator, we know from [6] that F−10 is
closed and convex. Furthermore, we know from [16] that for any λ > 0,

w ∈ (A + B)−10 ⇐⇒ w ∈ F
(

Jλ(I − λA)
)

.
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If 0 < λ ≤ 2α, then I − λA is nonexpansive and then Jλ(I − λA) is nonexpan-
sive. Thus F(Jλ(I − λA)) is closed and convex and so is (A + B)−10. Therefore,
(A + B)−10 ∩ F−10 is closed and convex. Thus P(A+B)−10∩F−10(I − G + γg) has a
unique fixed point z0 in (A + B)−10 ∩ F−10.

Let us prove (iii). Put yn = Jλn(I −λnA)Trnxn and un = Trnxn for all n ∈ N. Since
{xn} is bounded, {yn} and {un} are bounded. Furthermore, {g(xn)} and {Gxn} are also
bounded. Let z ∈ (A + B)−10 ∩ F−10. We note that

‖yn − z‖ = ∥
∥Jλn(I − λnA)un − z

∥
∥ ≤ ‖un − z‖ (7)

and

‖un − yn‖ ≤ ‖un − xn‖ + ‖xn − yn‖
= ‖un − xn‖ + ∥

∥αnγg(xn) + (I − αnG)yn − yn

∥
∥

= ‖un − xn‖ + αn

∥
∥γg(xn) − Gyn

∥
∥. (8)

Using (6), we have

2‖un − z‖2 = 2‖Trnxn − Trnz‖2

≤ 2〈xn − z,un − z〉
= ‖xn − z‖2 + ‖un − z‖2 − ‖un − xn‖2

and hence

‖un − z‖2 ≤ ‖xn − z‖2 − ‖un − xn‖2. (9)

Then we have from (1) and (9)

‖xn − z‖2 = ‖(I − αnG)(yn − z) + αn

(

γg(xn) − Gz
)‖2

≤ (1 − αnγ )2‖yn − z‖2 + 2αn

〈

γg(xn) − Gz,xn − z
〉

≤ (1 − αnγ )2‖un − z‖2 + 2αn

〈

γg(xn) − Gz,xn − z
〉

≤ (1 − αnγ )2(‖xn − z‖2 − ‖xn − un‖2)

+ 2αnγ k‖xn − z‖2 + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn − z‖

= {

1 − 2αn(γ − γ k) + α2
nγ

2}‖xn − z‖2

− (1 − αnγ )2‖xn − un‖2 + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn − z‖

≤ ‖xn − z‖2 + α2
nγ

2‖xn − z‖2 − (1 − αnγ )2‖xn − un‖2

+ 2αn

∥
∥γg(z) − Gz

∥
∥‖xn − z‖

and hence

(1 − αnγ )2‖xn − un‖2 ≤ α2
nγ

2‖xn − z‖2 + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn − z‖.
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From αn → 0, we have

‖xn − un‖ → 0. (10)

Then we have from (8)

‖yn − un‖ → 0. (11)

Take λ0 ∈ [a,2α]. Putting zn = (I − λnA)un, we have from Lemma 2.1
∥
∥Jλ0(I − λ0A)un − yn

∥
∥

≤ ∥
∥Jλ0(I − λ0A)un − Jλ0(I − λnA)un

∥
∥ + ∥

∥Jλ0(I − λnA)un − yn

∥
∥

≤ ∥
∥(I − λ0A)un − (I − λnA)un

∥
∥ + ∥

∥Jλ0zn − Jλnzn

∥
∥

≤ |λn − λ0| ‖Aun‖ + |λn − λ0|
λ0

‖Jλ0zn − zn‖. (12)

Furthermore, we have
∥
∥Jλ0(I − λ0A)un − un

∥
∥ ≤ ∥

∥Jλ0(I − λ0A)un − yn

∥
∥ + ‖yn − un‖. (13)

We will use these inequalities (12) and (13) later. We know from (ii) that there exists
a unique z0 ∈ (A + B)−10 ∩ F−10 such that

〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ (A + B)−10 ∩ F−10.

In order to show that xn → z0, it suffices to show that if {xni
} is any subsequence of

{xn}, then we can find a subsequence of {xni
} converging strongly to z0. Since {xni

}
is bounded and {λni

} ⊂ [a,2α], without loss of generality there exist a subsequence
{xnij

} of {xni
} and a subsequence {λnij

} of {λni
} such that xnij

⇀ w and λnij
→ λ0

for some λ0 ∈ [a,2α]. From xn − un → 0, we have unij
⇀ w. Since {unij

} ⊂ C and
C is closed and convex, we have w ∈ C. Using λnij

→ λ0 and (12), we have

∥
∥Jλ0(I − λ0A)unij

− ynij

∥
∥ → 0.

Furthermore we have from ‖ynij
− unij

‖ → 0 and (13) that

∥
∥Jλ0(I − λ0A)unij

− unij

∥
∥ → 0.

Since Jλ0(I − λ0A) is nonexpansive, we have w = Jλ0(I − λ0A)w and hence w ∈
(A+B)−10. We show w ∈ F−10. Since F is a maximal monotone operator, we have
from (5) that Arnij

xnij
∈ FTrnij

xnij
, where Ar is the Yosida approximation of F for

r > 0. Furthermore we have, for any (u, v) ∈ F ,
〈

u − unij
, v −

xnij
− unij

rnij

〉

≥ 0.

Since lim infn→∞ rn > 0, unij
⇀ w and xnij

− unij
→ 0, we have

〈u − w,v〉 ≥ 0.
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Since F is a maximal monotone operator, we have 0 ∈ Fw and hence w ∈ F−10.
Thus we have w ∈ (A + B)−10 ∩ F−10. On the other hand, we have

xn − z0 = αn

(

γg(xn) − Gz0
) + (I − αnG)(yn − z0).

So we have

‖xn − z0‖2 = αn

〈

γg(xn) − Gz0, xn − z0
〉 + 〈

(I − αnG)(yn − z0), xn − z0
〉

≤ αn

〈

γg(xn) − Gz0, xn − z0
〉 + ‖I − αnG‖‖yn − z0‖‖xn − z0‖

≤ αn

〈

γg(xn) − Gz0, xn − z0
〉 + (1 − αnγ )‖xn − z0‖2.

Then we have

αnγ ‖xn − z0‖2 ≤ αn

〈

γg(xn) − Gz0, xn − z0
〉

and hence

‖xn − z0‖2 ≤ 1

γ

〈

γg(xn) − Gz0, xn − z0
〉

= 1

γ

〈

γg(xn) − γg(z0) + γg(z0) − Gz0, xn − z0
〉

≤ 1

γ
γ k‖xn − z0‖2 + 1

γ

〈

γg(z0) − Gz0, xn − z0
〉

.

This implies that

‖xn − z0‖2 ≤ 〈γg(z0) − Gz0, xn − w〉
γ − γ k

.

In particular we have

‖xnij
− z0‖2 ≤

〈γg(z0) − Gz0, xnij
− z0〉

γ − γ k
.

Since xnij
⇀ w, w ∈ (A + B)−10 ∩ F−10 and

〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ (A + B)−10 ∩ F−10,

we have

lim sup
j→∞

‖xnij
− z0‖2 ≤ lim

j→∞
〈γg(z0) − Gz0, xnij

− z0〉
γ − γ k

= 〈γg(z0) − Gz0,w − z0〉
γ − γ k

≤ 0.
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Thus xnij
→ z0. Then {xn} converges strongly to z0 ∈ (A + B)−10 ∩ F−10 such that

〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ (A + B)−10 ∩ F−10.

We also know that this z0 is a unique fixed point of P(A+B)−10∩F−10(I − G + γg).
This completes the proof. �

Compare the proof of Theorem 3.1(ii) with the proof in [4]. We prove simply that
PD(I −G+γg) has a unique fixed point by using another contraction mapping which
is different from PD(I −G+γg). Using this result, we prove Theorem 3.1(iii). Next,
we prove a strong convergence theorem of Halpern’s type [17] in a Hilbert space; see
also [18].

Theorem 3.2 Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H . Let α > 0 and let A be an α-inverse-strongly monotone map-
ping of C into H and let B be a maximal monotone operator on H . Let F be a
maximal monotone operator on H such that the domain of F is included in C. Let
Jλ = (I + λB)−1 and Tr = (I + rF )−1 be the resolvents of B and F for λ > 0 and
r > 0, respectively. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let
G be a strongly positive bounded linear self-adjoint operator on H with coefficient
γ > 0. Let 0 < γ <

γ
k

and suppose (A + B)−10 ∩ F−10 
= ∅. Let x1 = x ∈ H and let
{xn} ⊂ H be a sequence generated by

xn+1 = αnγg(xn) + (I − αnG)Jλn(I − λnA)Trnxn

for all n ∈ N, where {αn} ⊂]0,1[, {λn} ⊂]0,∞[ and {rn} ⊂]0,∞[ satisfy

lim
n→∞αn = 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn − αn+1| < ∞, 0 < a ≤ λn ≤ 2α,

∞
∑

n=1

|λn − λn+1| < ∞, lim inf
n→∞ rn > 0, and

∞
∑

n=1

|rn − rn+1| < ∞.

Then {xn} converges strongly to a point z0 of (A + B)−10 ∩ F−10, where
z0 ∈ (A+B)−10∩F−10 is a unique fixed point of P(A+B)−10∩F−10(I −G+γg). This
point z0 ∈ (A + B)−10 ∩ F−10 is also a unique solution of the variational inequality

〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ (A + B)−10 ∩ F−10.

Proof Put un = Trnxn and yn = Jλn(I − λnA)Trnxn for all n ∈ N. Let
z ∈ (A + B)−10 ∩ F−10. Then, we have from z = Trnz and z = Jλn(I − λnA)z
that

‖yn − z‖ = ∥
∥Jλn(I − λnA)Trnxn − z

∥
∥

= ∥
∥Jλn(I − λnA)Trnxn − Jλn(I − λnA)Trnz

∥
∥

≤ ∥
∥(I − λnA)Trnxn − (I − λnA)Trnz

∥
∥

≤ ‖Trnxn − Trnz‖
≤ ‖xn − z‖. (14)
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Since xn+1 = αnγg(xn) + (I − αnG)yn and z = αnGz + z − αnGz, we have

‖xn+1 − z‖ = ∥
∥αn

(

γg(xn) − Gz
) + (I − αnG)(yn − z)

∥
∥

≤ αn

∥
∥γg(xn) − Gz

∥
∥ + ‖I − αnG‖‖xn − z‖

≤ αnγ k‖xn − z‖ + αn

∥
∥γg(z) − Gz

∥
∥ + (1 − αnγ )‖xn − z‖

= {

1 − αn(γ − γ k)
}‖xn − z‖ + αn

∥
∥γg(z) − Gz

∥
∥

= {

1 − αn(γ − γ k)
}‖xn − z‖ + αn(γ − γ k)

‖γg(z) − Gz‖
γ − γ k

.

Putting

K = max

{‖γg(z) − Gz‖
γ − γ k

,‖x1 − z‖
}

,

we have ‖xn − z‖ ≤ K for all n ∈ N. Then {xn} is bounded. Furthermore, {un} and
{yn} are bounded. Since

xn+2 − xn+1 = αn+1γg(xn+1) + (I − αn+1G)yn+1 − (

αnγg(xn) + (I − αnG)yn

)

= αn+1γg(xn+1) − αn+1γg(xn) + αn+1γg(xn) − αnγg(xn)

+ (I − αn+1G)yn+1 − (I − αn+1G)yn

+ (I − αn+1G)yn − (I − αnG)yn,

we have

‖xn+2 − xn+1‖ ≤ αn+1γ k‖xn+1 − xn‖ + |αn+1 − αn|γ
∥
∥g(xn)

∥
∥

+ (1 − αn+1γ )‖yn+1 − yn‖ + |αn+1 − αn|‖Gyn‖
≤ αn+1γ k‖xn+1 − xn‖

+ (1 − αn+1γ )‖yn+1 − yn‖ + 2|αn+1 − αn|M1,

where M1 = sup{γ ‖g(xn)‖+‖Gyn‖ : n ∈ N}. Putting zn = (I −λnA)Trnxn, we have
from Lemma 2.1 that

‖yn+1 − yn‖ = ∥
∥Jλn+1(I − λn+1A)Trn+1xn+1 − Jλn(I − λnA)Trnxn

∥
∥

≤ ∥
∥Jλn+1(I − λn+1A)Trn+1xn+1 − Jλn+1(I − λn+1A)Trnxn

∥
∥

+ ∥
∥Jλn+1(I − λn+1A)Trnxn − Jλn+1(I − λnA)Trnxn

∥
∥

+ ∥
∥Jλn+1(I − λnA)Trnxn − Jλn(I − λnA)Trnxn

∥
∥

≤ ∥
∥Trn+1xn+1 − Trnxn

∥
∥ + ∥

∥(I − λn+1A)Trnxn − (I − λnA)Trnxn

∥
∥

+ ∥
∥Jλn+1zn − Jλnzn

∥
∥

≤ ∥
∥Trn+1xn+1 − Trn+1xn

∥
∥ + ∥

∥Trn+1xn − Trnxn

∥
∥

+ ∥
∥(I − λn+1A)Trnxn − (I − λnA)Trnxn

∥
∥ + ∥

∥Jλn+1zn − Jλnzn

∥
∥
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≤ ‖xn+1 − xn‖ + |rn+1 − rn|
rn+1

‖Trn+1xn − xn‖

+ |λn+1 − λn|‖ATrnxn‖ + |λn+1 − λn|
λn+1

‖Jλn+1zn − zn‖

≤ ‖xn+1 − xn‖ + |rn+1 − rn|
b

‖Trn+1xn − xn‖

+ |λn+1 − λn|‖ATrnxn‖ + |λn+1 − λn|
a

‖Jλn+1zn − zn‖
≤ ‖xn+1 − xn‖ + |rn+1 − rn|M2 + 2|λn+1 − λn|M2,

where

M2 = sup

{
1

b
‖Trn+1xn − xn‖ + 1

a
‖Jλn+1zn − zn‖ + ‖ATrnxn‖ : n ∈ N

}

and 0 < b ≤ rn for all n ∈ N. Thus we have

‖xn+2 − xn+1‖ ≤ αn+1γ k‖xn+1 − xn‖ + 2|αn+1 − αn|M1

+ (1 − αn+1γ )‖yn+1 − yn‖
≤ αn+1γ k‖xn+1 − xn‖ + 2|αn+1 − αn|M1

+ (1 − αn+1γ )
{‖xn+1 − xn‖ + |rn+1 − rn|M2 + 2|λn+1 − λn|M2

}

≤ {

1 − αn+1(γ − γ k)
}‖xn+1 − xn‖ + |αn+1 − αn|M3

+ |rn+1 − rn|M3 + |λn+1 − λn|M3

≤ {

1 − αn+1(γ − γ k)
}‖xn+1 − xn‖

+ (|αn+1 − αn| + |rn+1 − rn| + |λn+1 − λn|
)

M3,

where M3 = 2M1 + 2M2. Using Lemma 2.2, we obtain

‖xn+2 − xn+1‖ → 0. (15)

We also have from xn+1 = αnγg(xn) + (I − αnG)yn that

‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖
= ‖xn − xn+1‖ + αn‖γg(xn) − αnGyn‖.

Since αn → 0 and ‖xn+1 − xn‖ → 0, we get

yn − xn → 0. (16)

As in the proof of Theorem 3.1, we have

‖un − z‖2 ≤ ‖xn − z‖2 − ‖un − xn‖2. (17)
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Then we have from (1) and (17) that

‖xn+1 − z‖2 = ‖(I − αnG)(yn − z) + αn

(

γg(xn) − Gz
)‖2

≤ (1 − αnγ )2‖yn − z‖2 + 2αn

〈

γg(xn) − Gz,xn+1 − z
〉

≤ (1 − αnγ )2‖un − z‖2 + 2αn

〈

γg(xn) − Gz,xn+1 − z
〉

≤ (1 − αnγ )2(‖xn − z‖2 − ‖xn − un‖2)

+ 2αnγ k‖xn − z‖‖xn+1 − z‖ + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn+1 − z‖

= {

1 − 2αnγ + α2
nγ

2}‖xn − z‖2 − (1 − αnγ )2‖xn − un‖2

+ 2αnγ k‖xn − z‖‖xn+1 − z‖ + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn+1 − z‖

≤ ‖xn − z‖2 + α2
nγ

2‖xn − z‖2 − (1 − αnγ )2‖xn − un‖2

+ 2αnγ k‖xn − z‖‖xn+1 − z‖ + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn+1 − z‖

and hence

(1 − αnγ )2‖xn − un‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + α2
nγ

2‖xn − z‖2

+ 2αnγ k‖xn − z‖‖xn+1 − z‖ + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn+1 − z‖

≤ ‖xn − xn+1‖
(‖xn − z‖ + ‖xn+1 − z‖) + α2

nγ
2‖xn − z‖2

+ 2αnγ k‖xn − z‖‖xn+1 − z‖ + 2αn

∥
∥γg(z) − Gz

∥
∥‖xn+1 − z‖.

From αn → 0 and ‖xn+1 − xn‖ → 0, we have

‖xn − un‖ → 0. (18)

Then we have from (16) and (18) that

‖yn − un‖ ≤ ‖yn − xn‖ + ‖xn − un‖ → 0. (19)

From
∑∞

n=1 |λn − λn+1| < ∞, we find that {λn} is a Cauchy sequence. So, we
have λn → λ0 ∈ [a,2α]. Since un = Trnxn, zn = (I − λnA)un and yn = Jλn(I −
λnA)Trnxn, we have from Lemma 2.1 that

∥
∥Jλ0(I − λ0A)un − yn

∥
∥

= ∥
∥Jλ0(I − λ0A)un − Jλn(I − λnA)un

∥
∥

= ∥
∥Jλ0(I − λ0A)un − Jλ0(I − λnA)un

+ Jλ0(I − λnA)un − Jλn(I − λnA)un

∥
∥

≤ ∥
∥(I − λ0A)un − (I − λnA)un

∥
∥ + ‖Jλ0zn − Jλnzn‖

≤ |λ0 − λn|‖Aun‖ + |λ0 − λn|
λ0

‖Jλ0zn − zn‖ → 0. (20)
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We also have from (19) and (20) that

∥
∥un − Jλ0(I − λ0A)un

∥
∥ ≤ ‖un − yn‖ + ∥

∥yn − Jλ0(I − λ0A)un

∥
∥ → 0. (21)

We will use (20) and (21) later. From Theorem 3.1, we can take a unique solution
z0 ∈ (A + B)−10 ∩ F−10 of the variational inequality

〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ (A + B)−10 ∩ F−10.

We show that lim supn→∞〈(G − γg)z0, xn − z0〉 ≥ 0. Put

l = lim sup
n→∞

〈

(G − γg)z0, xn − z0
〉

.

Without loss of generality, there exists a subsequence {xni
} of {xn} such that l =

limi→∞〈(G − γg)z0, xni
− z0〉 and {xni

} converges weakly to some point w ∈ H .
From ‖xn − un‖ → 0, we also find that {uni

} converges weakly to w ∈ C. On the
other hand, from λn → λ0 ∈ [a,2α] we have λni

→ λ0 ∈ [a,2α]. Using (20), we
have

∥
∥Jλ0(I − λ0A)uni

− yni

∥
∥ → 0.

Furthermore, from (21) we have

∥
∥uni

− Jλ0(I − λ0A)uni

∥
∥ → 0.

Since Jλ0(I − λ0A) is a nonexpansive mapping of C into H , we have from [19,
Lemma 4.1] that w = Jλ0(I −λ0A)w. This means that 0 ∈ Aw+Bw. As in the proof
of Theorem 3.1, we can also show w ∈ F−10. Thus we have w ∈ (A+B)−10∩F−10.
So, we have

l = lim
i→∞

〈

(G − γg)z0, xni
− z0

〉 = 〈

(G − γg)z0,w − z0
〉 ≥ 0.

Since xn+1 − z0 = αn(γg(xn) − Gz0) + (I − αnG)(yn − z0), we find from (1) that

‖xn+1 − z0‖2 ≤ (1 − αnγ )2‖yn − z0‖2 + 2
〈

αn

(

γg(xn) − Gz0
)

, xn+1 − z0
〉

≤ (1 − αnγ )2‖xn − z0‖2 + 2αn

〈

γg(xn) − Gz0, xn+1 − z0
〉

≤ (1 − αnγ )2‖xn − z0‖2 + 2αnγ k‖xn − z0‖‖xn+1 − z0‖
+ 2αn

〈

γg(z0) − Gz0, xn+1 − z0
〉

≤ (1 − αnγ )2‖xn − z0‖2 + αnγ k
(‖xn − z0‖2 + ‖xn+1 − z0‖2)

+ 2αn

〈

γg(z0) − Gz0, xn+1 − z0
〉

= {

(1 − αnγ )2 + αnγ k
}‖xn − z0‖2

+ αnγ k‖xn+1 − z0‖2 + 2αn

〈

γg(z0) − Gz0, xn+1 − z0
〉
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and hence

‖xn+1 − z0‖2 ≤ 1 − 2αnγ + (αnγ )2 + αnγ k

1 − αnγ k
‖xn − z0‖2

+ 2αn

1 − αnγ k

〈

γg(z0) − Gz0, xn+1 − z0
〉

=
(

1 − 2(γ − γ k)αn

1 − αnγ k

)

‖xn − z0‖2 + (αnγ )2

1 − αnγ k
‖xn − z0‖2

+ 2αn

1 − αnγ k

〈

γg(z0) − Gz0, xn+1 − z0
〉

=
(

1 − 2(γ − γ k)αn

1 − αnγ k

)

‖xn − z0‖2 + αn · αnγ
2

1 − αnγ k
‖xn − z0‖2

+ 2αn

1 − αnγ k

〈

γg(z0) − Gz0, xn+1 − z0
〉

= (1 − βn)‖xn − z0‖2

+ βn

(
αnγ

2‖xn − z0‖2

2(γ − γ k)
+ 1

γ − γ k

〈

γg(z0) − Gz0, xn+1 − z0
〉
)

,

(22)

where βn = 2(γ−γ k)αn

1−αnγ k
. Since

∑∞
n=1 βn = ∞, we have from Lemma 2.2 and (22) that

xn → z0, where z0 = P(A+B)−10∩F−10(I − G + γg)z0. This completes the proof. �

4 Applications

In this section, using Theorem 3.2, we obtain new strong convergence theorems for in
a Hilbert space. Let H be a Hilbert space and let f be a proper lower semicontinuous
convex function of H into ]−∞,∞]. Then, the subdifferential ∂f of f is defined as
follows:

∂f (x) := {

z ∈ H : f (x) + 〈z, y − x〉 ≤ f (y), ∀y ∈ H
}

for all x ∈ H . From Rockafellar [20], we know that ∂f is a maximal monotone oper-
ator. Let C be a nonempty, closed and convex subset of H and let iC be the indicator
function of C. Then iC is a proper lower semicontinuous and convex function on H .
So, we can define the resolvent Jλ of ∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)−1x

for all x ∈ H . We have, for any λ > 0, x ∈ H and u ∈ C,
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u = Jλx ⇐⇒ x ∈ u + λ∂iCu ⇐⇒ x ∈ u + λNCu

⇐⇒ 1

λ
〈x − u,v − u〉 ≤ 0, ∀v ∈ C

⇐⇒ 〈x − u,v − u〉 ≤ 0, ∀v ∈ C

⇐⇒ u = PCx,

where NCu is the normal cone to C at u, i.e.,

NCu := {

z ∈ H : 〈z, v − u〉 ≤ 0, ∀v ∈ C
}

.

Let f : C×C → R be a bifunction and let A be a mapping of C into H . A generalized
equilibrium problem (with respect to C) is to find x̂ ∈ C such that

f (x̂, y) + 〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C. (23)

The set of such solutions x̂ is denoted by EP(f,A), i.e.,

EP(f,A) = {

x̂ ∈ C : f (x̂, y) + 〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C
}

.

In the case of A = 0, EP(f,A) is denoted by EP(f ). In the case of f = 0, EP(f,A)

is also denoted by VI(C,A). This is the set of solutions of the variational inequality
for A.

Using Theorem 3.2, we prove a strong convergence theorem for inverse-strongly
monotone operators in a Hilbert space.

Theorem 4.1 Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H . Let α > 0 and let A be an α-inverse-strongly monotone mapping
of C into H . Let 0 < k < 1 and let g be a k-contraction of H into itself and let G be
a strongly positive bounded linear self-adjoint operator on H with coefficient γ > 0.
Take γ with 0 < γ <

γ
k

and suppose VI(C,A) 
= ∅. Let x1 = x ∈ H and let {xn} ⊂ H

be a sequence generated by

xn+1 = αnγg(xn) + (I − αnG)PC(I − λnA)PCxn

for all n ∈ N, where {αn} ⊂]0,1[ and {λn} ⊂]0,∞[ satisfy

αn → 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn − αn+1| < ∞,

0 < a ≤ λn ≤ 2α, and
∞
∑

n=1

|λn − λn+1| < ∞.

Then, the sequence {xn} converges strongly to a point z0 of VI(C,A), where z0 ∈
VI(C,A) is a unique fixed point of PVI(C,A)(I − G + γg). This point z0 ∈ VI(C,A)

is also a unique solution of the variational inequality
〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ VI(C,A).
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Proof Put B = F = ∂iC in Theorem 3.2. Then, we have, for λn > 0 and rn > 0,

Jλn = Trn = PC.

Furthermore, we have (∂iC)−10 = C and (A+∂iC)−10 = VI(C,A). In fact, we have,
for z ∈ C,

z ∈ (A + ∂iC)−10 ⇐⇒ 0 ∈ Az + ∂iCz

⇐⇒ 0 ∈ Az + NCz

⇐⇒ 〈−Az,v − z〉 ≤ 0, ∀v ∈ C

⇐⇒ 〈Az,v − z〉 ≥ 0, ∀v ∈ C

⇐⇒ z ∈ VI(C,A).

Thus we obtain the desired result by Theorem 3.2. �

Let C be a nonempty, closed and convex subset of H . Then, U : C → H is called
a widely strict pseudo-contraction iff there exists r ∈ R with r < 1 such that

‖Ux − Uy‖2 ≤ ‖x − y‖2 + r
∥
∥(I − U)x − (I − U)y

∥
∥2

, ∀x, y ∈ C.

We call such U a widely r-strict pseudo-contraction. If 0 ≤ r < 1, then U is a strict
pseudo-contraction [1]. Furthermore, if r = 0, then U is nonexpansive. Conversely,
let T : C → H be a nonexpansive mapping and define U : C → H by U = 1

1+n
T +

n
1+n

I for all x ∈ C and n ∈ N. Then U is a widely (−n)-strict pseudo-contraction.
In fact, from the definition of U , it follows that T = (1 + n)U − nI . Since T is
nonexpansive, we have, for any x, y ∈ C,

∥
∥(1 + n)Ux − nx − (

(1 + n)Uy − ny
)∥
∥

2 ≤ ‖x − y‖2

and hence

‖Ux − Uy‖2 ≤ ‖x − y‖2 − n
∥
∥(I − U)x − (I − U)y

∥
∥2

.

Using Theorem 3.2, we obtain an extension of Zhou’s strong convergence theorem
[21] in a Hilbert space.

Theorem 4.2 Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H . Let r ∈ R with r < 1 and let U be a widely r-strict pseudo-
contraction of C into H such that F(U) 
= ∅. Let u ∈ C, x1 = x ∈ C and let {xn} ⊂ C

be a sequence generated by

xn+1 = αnu + (1 − αn)PC

{

(1 − tn)U + tnI
}

xn

for all n ∈ N, where {αn} ⊂]0,1[ and {tn} ⊂] − ∞,1[ satisfy

lim
n→∞αn = 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn − αn+1| < ∞,

r ≤ tn ≤ b < 1 and
∞
∑

n=1

|tn − tn+1| < ∞.
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Then, the sequence {xn} converges strongly to a point z0 of F(U), where z0 =
PF(U)u.

Proof Put B = F = ∂iC and A = I − U in Theorem 3.2. Furthermore, put g(x) = u

and G(x) = x for all x ∈ H . Then, we can take γ = 1
2 . Since ‖g(x) − g(y)‖ =

0 ≤ 1
3‖x − y‖ for all x, y ∈ H , we can take k = 1

3 and hence set γ = 1. Putting
a = 1 − b,λn = 1 − tn and 2α = 1 − r in Theorem 3.2, we get from r ≤ tn ≤ b < 1
that 0 < a ≤ λn ≤ 2α,

∞
∑

n=1

|λn+1 − λn| =
∞
∑

n=1

|tn+1 − tn| < ∞

and

I − λnA = I − (1 − tn)(I − U) = (1 − tn)U + tnI.

Furthermore, we have, for z ∈ C,

z ∈ (A + ∂iC)−10 ⇐⇒ 0 ∈ Az + ∂iCz

⇐⇒ 0 ∈ z − Uz + NCz

⇐⇒ Uz − z ∈ NCz

⇐⇒ 〈Uz − z, v − z〉 ≤ 0, ∀v ∈ C

⇐⇒ PCUz = z.

Since F(U) 
= ∅, we find, as in the proof of [21, Fact 3], that F(PCU) = F(U). We
also have z0 = PF(U)(I − G + γg)z0 = PF(U)(z0 − z0 + 1 · u) = PF(U)u. Thus, we
obtain the desired result by Theorem 3.2. �

For solving the equilibrium problem, let us assume that the bifunction f : C ×
C → R satisfies the following conditions:

(A1) f (x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f (x, y) + f (y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f
(

tz + (1 − t)x, y
) ≤ f (x, y);

(A4) for all x ∈ C, f (x, ·) is convex and lower semicontinuous.

Then, we know the following lemma which appears implicitly in Blum and Oettli
[22].

Lemma 4.1 (Blum and Oettli) Let C be a nonempty, closed and convex subset of H

and let f be a bifunction of C ×C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H .
Then, there exists z ∈ C such that

f (z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.
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The following lemma was also given in Combettes and Hirstoaga [23].

Lemma 4.2 Assume that f : C × C → R satisfies (A1)–(A4). For r > 0 and x ∈ H ,
define a mapping Tr : H → C as follows:

Trx :=
{

z ∈ C : f (z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

for all x ∈ H . Then, the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H ,

‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;
(3) F(Tr) = EP(f );
(4) EP(f ) is closed and convex.

We call such Tr the resolvent of f for r > 0. Using Lemmas 4.1 and 4.2, Taka-
hashi, Takahashi and Toyoda [5] obtained the following lemma. See [24] for a more
general result.

Lemma 4.3 Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H . Let f : C × C → R satisfy (A1)–(A4). Let Af be a set-valued mapping
of H into itself defined by

Af x :=
{

{z ∈ H : f (x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then, EP(f ) = A−1
f 0 and Af is a maximal monotone operator such that dom(Af ) ⊂

C. Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the
resolvent of Af , i.e.,

Trx = (I + rAf )−1x.

Using Lemma 4.3 and Theorem 3.2, we obtain the following result which gener-
alizes Liu’s strong convergence theorem [4].

Theorem 4.3 Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H . Let r ∈ R with r < 1 and let U be a widely r-strict pseudo-
contraction of C into H and let f be a bifunction of C × C into R satisfying (A1)–
(A4). Let Tr be the resolvent of f for r > 0. Let 0 < k < 1 and let g be a k-contraction
of H into itself. Let G be a strongly positive bounded linear self-adjoint operator
on H with coefficient γ > 0. Let 0 < γ <

γ
k

and suppose F(U) ∩ EP(f ) 
= ∅. Let
x1 = x ∈ H and let {xn} ⊂ H be a sequence generated by

xn+1 = αnγg(xn) + (I − αnG)
{

(1 − tn)U + tnI
}

Trnxn
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for all n ∈ N, where {αn} ⊂]0,1[, {tn} ⊂]−∞,1[ and {rn} ⊂]0,∞[ satisfy

αn → 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn − αn+1| < ∞, r ≤ tn ≤ b < 1,

∞
∑

n=1

|tn − tn+1| < ∞, lim inf
n→∞ rn > 0, and

∞
∑

n=1

|rn − rn+1| < ∞.

Then, the sequence {xn} converges strongly to a point z0 of F(U) ∩ EP(f ), where
z0 ∈ F(U) ∩ EP(f ) is a unique fixed point of PF(U)∩EP(f )(I − G + γg). This point
z0 ∈ F(U) ∩ EP(f ) is also a unique solution of the variational inequality

〈

(G − γg)z0, q − z0
〉 ≥ 0, ∀q ∈ F(U) ∩ EP(f ).

Proof For the bifunction f : C × C → R, we can define Af in Lemma 4.3. Putting
A = I − U , Bx = 0 for all ∈ H and F = Af in Theorem 3.2, we obtain from
Lemma 4.3 that Jλn = I for all λn > 0 and Trn = (I + rnAf )−1 for all rn > 0. As
in the proof of Theorem 4.2, the sequence {tn} and U are changed in {λn} and A. We
have also from Lemma 4.3 that

EP(f ) = (Af )−10 = F−10.

Furthermore, we have, for z ∈ C,

z ∈ (A + B)−10 ⇐⇒ z ∈ F(U).

So, we obtain the desired result by Theorem 3.2. �

Remark 4.1 We note that two assumptions 0 ≤ r and limn→∞ tn = b in Liu’s theorem
[4] do not appear in Theorem 4.3.

5 Concluding Remarks

(1) We cannot directly prove that the mapping PD(I − G + rg) in Theorem 3.1 is a
contraction. We proved that the mapping has a unique fixed point by using another
contraction which is different from the mapping. Then we showed two strong con-
vergence theorems (Theorems 3.1 and 3.2) by using this result. It seems that such
methods are new.

(2) The domain of the maximal monotone operator Af in Lemma 4.3, which is
deduced from an equilibrium problem, is included in C. Thus the maximal monotone
operator F in Theorems 3.1 and 3.2 covers the equilibrium problem. Our methods
for the resolvents of the maximal monotone operator F , which are used in the proofs
of Theorems 3.1 and 3.2, are more general than methods for solving the equilibrium
problem.

(3) Since the class of inverse-strongly monotone mappings contains strict pseudo-
contractions, our two theorems are general and useful.
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(4) For the fixed point problem of nonself-mappings, we use generally the metric
projections. For such a problem, we used the resolvents of a maximal monotone op-
erator B in Theorems 3.1 and 3.2. Consequently, we solve the problem of finding a
zero point of the addition of an inverse-strongly monotone mapping and a maximal
monotone operator.

(5) Our results (Theorems 3.1 and 3.2) are also used for finding a common fixed
point of two commuting nonexpansive mappings defined on a bounded, closed and
convex subset of a Hilbert space.
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