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Abstract This paper presents a high-order Dα-type iterative learning control (ILC)
scheme for a class of fractional-order nonlinear time-delay systems. First, a discrete
system for Dα-type ILC is established by analyzing the control and learning pro-
cesses, and the ILC design problem is then converted to a stabilization problem for
this discrete system. Next, by introducing a suitable norm and using a generalized
Gronwall–Bellman Lemma, the sufficiency condition for the robust convergence with
respect to the bounded external disturbance of the control input and the tracking errors
is obtained. Finally, the validity of the method is verified by a numerical example.

Keywords Fractional-order · Nonlinear time-delay system · Iterative learning
control · Generalized Gronwall–Bellman lemma

1 Introduction

Fractional differential calculus [1, 2], an old mathematical topic from the 17th cen-
tury, has recently attracted a rapid growth in the number of applications. It was found
that many systems in interdisciplinary fields could be elegantly described with the
help of fractional derivatives and integrals [3, 4]. Also, fractional-order controllers
have so far been implemented to enhance the robustness and the performance of the
control systems [5–7].
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Iterative learning control (ILC) is an approach for improving the transient perfor-
mance of systems that operate repetitively over a fixed time interval [8, 9]. Owing to
its simplicity and effectiveness, ILC has been found to be a good alternative in many
areas and applications (see, for instance, [10, 11] and the referenced therein). In re-
cent years, the application of ILC to the fractional-order systems has become a new
topic [4, 12–14]. The authors in [12] were the first to propose the Dα-type ILC algo-
rithm in frequency domain. For fractional-order linear systems described in the state
space form, the convergence conditions are derived in [5]. In [13], the asymptotic sta-
bility of PDα-type ILC for a fractional-order linear time invariant (LTI) system was
investigated. The convergence condition of open-loop P-type ILC for fractional-order
nonlinear system was studied in [14].

It should be noted that the higher-order learning algorithms are the ones in which
the information from past cycles, not just from the last cycle, is taken advantage of. As
a result, developing higher-order learning algorithms can lead to better performance
in terms of both robustness and convergence rate [11, 15, 16]. The key idea of the
presented method was to use past information of more than one to update the current
adaptation learning law.

In this paper, we investigated a high-order Dα-type ILC updating law design
method for a class of fractional-order nonlinear time-delay systems. The rest of this
paper is organized as follows. In Sect. 2, the fractional derivative and some prelimi-
naries are presented. The high-order Dα-type ILC scheme as well as the convergence
condition for fractional-order systems is discussed in Sect. 3. MATLAB/SIMULINK
results are shown in Sect. 4. Finally, some conclusions are drawn in Sect. 5.

2 Fractional Derivative and Preliminaries

In this section, some basic definitions and properties (for more details see [1]) are
introduced, which will be used in the following sections.

Definition 2.1 The definition of fractional integral is described by

t0 D−α
t f (t) := 1

Γ (α)

∫ t

t0

(t − τ)α−1f (τ) dτ, α > 0,

where Γ (·) is the well-known Gamma function.

Definition 2.2 The Riemann–Liouville derivative is defined as

RL
t0

Dq
t f (t) := Dm

t0
Dq−m

t f (t), q ∈ [m − 1,m),

and the Caputo derivative is

C
t0

Dq
t f (t) := t0 Dq−m

t Dmf (t), q ∈ [m − 1,m),

where m ∈ Z
+, Dm is the classical m-order derivative.
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Definition 2.3 [1] The two-parameter Mittag–Leffler function is defined by

Eα,β(z) :=
∞∑

k=0

zk

Γ (αk + β)
, α > 0, β > 0.

Property 2.1 [1] The fractional-order differentiation or integral of Mittag–Leffler
function is

t0 Dρ
t

[
tβ−1Eα,β

(
λtα

)] = tβ−ρ−1Eα,β−ρ

(
λtα

)
,

where ρ < β , D denotes either the Riemann–Liouville or Caputo fractional-order
operator.

Lemma 2.1 If the function f (t, x) is continuous, then the initial value problem

{
C
t0

Dα
t x(t) = f (t, x(t)), 0 < α < 1,

x(t0) = x(0)

is equivalent to the following nonlinear Volterra integral equation:

x(t) = x(0) + 1

Γ (α)

∫ t

t0

(t − s)α−1f
(
s, x(s)

)
ds,

and its solutions are continuous [17]. The initial value problem:

{RL
t0

Dα
t x(t) = f (t, x(t)), 0 < α < 1,

RL
t0

Dα−1
t x(t0) = x(0)

is equivalent to the following nonlinear Volterra integral equation [18]:

x(t) = x(0)

Γ (α)
(t − t0)

α−1 + 1

Γ (α)

∫ t

t0

(t − s)α−1f
(
s, x(s)

)
ds.

Lemma 2.2 (Generalized Gronwall Inequality, [14]) Let u(t) be a continuous func-
tion on t ∈ [0, T ] and let v(t − τ) be continuous and nonnegative on the triangle
0 ≤ τ ≤ T . Moreover, let w(t) be a positive continuous and non-decreasing function
on t ∈ [0, T ]. If

u(t) ≤ h(t) +
∫ t

0
v(t − τ)u(τ) dτ, t ∈ [0, T ],

then

u(t) ≤ w(t)e
∫ t

0 v(t−τ) dτ , t ∈ [0, T ],

Throughout this paper, the 2-norm for the n-dimensional vector w = (w1,w2,

. . . ,wn) and the matrix An×n is defined as ‖w‖ :=
√∑n

i=1 w2
i , ‖A‖ := √

λmax(AT A),
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respectively. The λ-norm for n-vector-valued function h(t) : [0, T ] → R
n is defined

as
∥∥h(t)

∥∥
λ

:= sup
t∈[0,T ]

{
e−λt

∥∥h(t)
∥∥}

, λ > 0,

while the (λ, ξ)-norm for m-vector-valued function gk(t) : [0, T ] → R
m, k ∈ {0,1,

2, . . .} is defined as

∥∥gk(t)
∥∥

(λ,ξ)
:= sup

t∈[0,T ]
{
e−λt

∥∥gk(t)
∥∥ξk

}
, λ > 0,

where ‖ · ‖ can be chosen as any kind of norm.

3 High-Order Dα-Type ILC for Fractional-Order Nonlinear Time-Delay
Systems

Consider the following fractional-order nonlinear time-delay system:

{
Dα

t xk(t) = f (xk(t), xk(t − τ), t) + Buk(t),

yk(t) = Cxk(t) + DD−α
t uk(t),

(1)

where k ∈ {0,1,2, . . .}, t ∈ [0, T ],0 < α < 1.

∥∥f
(
xk(t)

)
, f

(
xk(t − τ), t

) − f
(
x̄k(t)

)
, f

(
x̄k(t − τ), t

)∥∥
≤ a

∥∥xk(t) − x̄k(t)
∥∥ + a1

∥∥xk(t − τ) − x̄k(t − τ)
∥∥,

xk(t) ∈ R
n is the state of the plant, and uk(t) ∈ R

m and yk(t) ∈ R
m are the con-

trol input and output, respectively. A,A1,B,C and D are constant system matrices
with appropriate dimensions, τ is a pure delay and with the associated function of
the initial state: xk(t) = ψ(t),−τ ≤ t ≤ 0. ψ(t) is a given continuous function on
[−τ,0]. Dα

t denotes either Caputo derivative or Riemann–Liouville derivative of or-
der α. (If one denotes the Riemann–Liouville derivative, the additional condition
Dα−1

t xk(0) = x(0) is needed.)
In this paper, the following high-order Dα-type ILC updating law is considered:

uk+1(t) = Λuk(t) + ukh(t) + Γ Dα
t ek(t), k ∈ {1,2, . . .}, (2)

where

ukh(t) =
{∑N

i=1 Λiuk−i (t),
∑N

i=1 Λi = I − Λ, k ∈ {N + 1,N + 2, . . .},
0, k ∈ {1,2, . . . ,N},

and t ∈ [0, T ],0 < α < 1, ek(t) = yd(t)−yk(t) denotes the tracking error, Γ , Λi and
Λ are unknown gain matrices to be determined.
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For fractional-order nonlinear time-delay system (1) under the Dα-type ILC up-
dating law (2), we have the following Lemmas.

Lemma 3.1 Let �uk(t) := uk(t) − uk−1(t),�xk(t) := xk(t) − xk−1(t), �fk(t) :=
fk(·) − fk−1(·) and

Qk(t) :=
[

Dα
t ek(t)

�uk(t)

]
, G :=

(
I − (CB + D)Γ (I − Λ)(CB + D)

Γ (Λ − 1)I

)
,

Fk(t) :=
[−C�fk+1(t) + (CB + D)

∑N
i=1 Λi

∑i−1
j=1 �uk−j (t)

−∑N
i=1 Λi

∑i−1
j=1 �uk−j (t)

]
,

then

Qk+1(t) = GQk(t) + Fk(t), k ≥ N. (3)

Proof It follows from (2) that, for k ≥ N ,

uk+1(t) = Λuk(t) +
N∑

i=1

Λiuk−i (t) + Γ Dα
t ek(t). (4)

Noting that
∑N

i=1 Λi = I − Λ, it can easily be shown that

uk+1(t) − uk(t) = (Λ − I )�uk(t) −
N∑

i=1

Λi

i−1∑
j=1

�uk−j (t) + Γ Dα
t ek(t). (5)

Since ek+1(t) − ek(t) = −(yk+1(t) − yk(t)), then, from (1), one has

Dα
t ek+1(t) − Dα

t ek(t) = −C�fk+1(t) − (CB + D)�uk+1(t). (6)

Taking into account (5), it yields

Dα
t ek+1(t) = [

I − (CB + D)Γ
]

Dα
t ek(t) − (Λ − I )(CB + D)�uk(t)

− C�fk+1(t) − (CB + D)

N∑
i=1

Λi

i−1∑
j=1

�uk−j (t). (7)

Therefore, from (5) and (7), one gets

[
Dα

t ek+1(t)

�uk+1(t)

]
= G

[
Dα

t ek(t)

�uk(t)

]
+ Fk(t). (8)

The proof is complete. �
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Lemma 3.2 Denote that b := ‖B‖, c := ‖C‖, and M1 := e
aT α+a1[(T −τ )α+τα ]

Γ (α+1) , M2 :=
(‖Γ ‖ + ‖Λ − I‖), h := ( a+a1e

−λτ

λα )bcM1, then
∥∥Fk(t)

∥∥
(λ,ξ)

< hM2‖Qk‖(λ,ξ)

+
N∑

i=1

(
(h + 1)‖Λi‖ + ∥∥(CB + D)Λi

∥∥) i−1∑
j=1

ξj
∥∥Qk−j (t)

∥∥
(λ,ξ)

. (9)

Proof It follows the definition of Fk(t) that
∥∥Fk(t)

∥∥ ≤ ca
∥∥�xk+1(t)

∥∥ + ca1
∥∥�xk+1(t − τ)

∥∥

+
N∑

i=1

(∥∥(CB + D)Λi

∥∥ + ‖Λi‖
) i−1∑

j=1

∥∥�uk−j (t)
∥∥. (10)

On the other hand, from Lemma 2.1 and in accordance with the property of the
fractional-order 0 < α < 1, we have

�xk+1(t) = 1

Γ (α)

∫ t

0
(t − s)α−1{(�fk+1(s) + B�uk+1(s)

}
ds. (11)

Therefore, if t ∈ [0, τ ], then

∥∥�xk+1(t)
∥∥ ≤ a

Γ (α)

∫ t

0
(t − s)α−1

∥∥�xk+1(s)
∥∥ds

+ b

Γ (α)

∫ t

0
(t − s)α−1

∥∥�uk+1(s)
∥∥ds. (12)

If t ∈ [τ, T ], then

∥∥�xk+1(t)
∥∥ ≤ a

Γ (α)

∫ t

0
(t − s)α−1

∥∥�xk+1(s)
∥∥ds

+ a1

Γ (α)

∫ τ

0
(t − s)α−1

∥∥�xk+1(s − τ)
∥∥ds

+ a1

Γ (α)

∫ t

τ

(t − s)α−1
∥∥�xk+1(s − τ)

∥∥ds

+ b

Γ (α)

∫ t

0
(t − s)α−1

∥∥�uk+1(s)
∥∥ds

≤ a

Γ (α)

∫ t

0
(t − s)α−1

∥∥�xk+1(s)
∥∥ds

+ a1

Γ (α)

∫ t

0
|t − τ − s|α−1

∥∥�xk+1(s)
∥∥ds
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+ b

Γ (α)

∫ t

0
(t − s)α−1

∥∥�uk+1(s)
∥∥ds. (13)

After combining (12) and (13), it yields, for any t ∈ [0, T ],
∥∥�xk+1(t)

∥∥ ≤ a

Γ (α)

∫ t

0
(t − s)α−1

∥∥�xk+1(s)
∥∥ds

+ a1

Γ (α)

∫ t

0
|t − τ − s|α−1

∥∥�xk+1(s)
∥∥ds

+ b

Γ (α)

∫ t

0
(t − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ
. (14)

Noting that

b

Γ (α)

∫ t

0
(t − s)α−1eλs ds = btαE1,1+α(λt),

it follows from the Property 2.1 that, for λ > 0,

dtαE1,1+α(λt)

dt
= tα−1E1,α(λt) > 0.

Therefore,

h(t) = b

Γ (α)

∫ t

0
(t − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ

+ 1

Γ (α)

∫ t

0
(t − s)α−1eλs ds

∥∥�wk+1(t)
∥∥

λ

is an increasing function. Setting

v(t − s) = a

Γ (α)
(t − s)α−1 + a1

Γ (α)
|t − τ − s|α−1,

it can be proved that, for all t ∈ [0, T ],

e
∫ t

0 v(t−s) ds ≤ e
aT α+a1[(T −τ )α+τα ]

Γ (α+1) := M1. (15)

Taking into account (15) and applying Lemma 2.2 to (14), one obtains

∥∥�xk+1(t)
∥∥ ≤ bM1

Γ (α)

∫ t

0
(t − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ
, (16)

and

∥∥�xk+1(t − τ)
∥∥ ≤ bM1

Γ (α)

∫ t−τ

0
(t − τ − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ
. (17)
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From (10), (16) and (17), it yields

∥∥Fk(t)
∥∥ ≤ abcM1

Γ (α)

∫ t

0
(t − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ

+ a1bcM1

Γ (α)

∫ t−τ

0
(t − τ − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ

+
N∑

i=1

(∥∥(CB + D)Λi

∥∥ + ‖Λi‖
) i−1∑

j=1

∥∥�uk−j (t)
∥∥. (18)

Multiplying both sides of (18) by e−λt and taking the λ-norm, one has

∥∥Fk(t)
∥∥

λ
≤ abcM1e

−λt

Γ (α)

∫ t

0
(t − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ

+ a1bcM1e
−λt

Γ (α)

∫ t−τ

0
(t − τ − s)α−1eλs ds

∥∥�uk+1(t)
∥∥

λ

+
N∑

i=1

(∥∥(CB + D)Λi

∥∥
λ
+ ‖Λi‖λ

) i−1∑
j=1

∥∥�uk−j (t)
∥∥

λ
. (19)

Note that
∫ t

0
(t − s)α−1eλs ds

t−s=w======
∫ t

0
wα−1eλ(t−w) dw = eλt

∫ t

0
wα−1e−λw dw

λw=s===== eλt

λα

∫ λt

0
sα−1e−s ds <

eλt

λα
Γ (α), (20)

and
∫ t−τ

0
(t − τ − s)α−1eλs ds <

eλt−λτ

λα
Γ (α). (21)

From (19)–(21), it yields, for any t ∈ [0, T ],
∥∥Fk(t)

∥∥
λ

<

(
a + a1e

−λτ

λα

)
bcM1

∥∥�uk+1(t)
∥∥

λ

+
N∑

i=1

(∥∥(CB + D)Λi

∥∥ + ‖Λi‖
) i−1∑

j=1

∥∥�uk−j (t)
∥∥

λ
. (22)

Moreover, it follows from (5) that

�
∥∥uk+1(t)

∥∥
λ

≤ (∥∥(Λ − I )
∥∥ + ‖Γ ‖)‖Qk‖λ +

N∑
i=1

‖Λi‖
i−1∑
j=1

∥∥�uk−j (t)
∥∥

λ
. (23)
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As a result, one obtains from (22) and (23) that
∥∥Fk(t)

∥∥
λ

≤ hM2‖Qk‖λ

+
N∑

i=1

(
(h + 1)‖Λi‖ + ∥∥(CB + D)Λi

∥∥) i−1∑
j=1

∥∥Qk−j (t)
∥∥

λ
. (24)

Applying the (λ, ξ)-norm to (24) yields (9), which completes the proof. �

Theorem 3.1 For the fractional-order nonlinear time-delay system (1) and a given
reference yd(t), suppose that yd(0) = yk(0) and

N∑
j=1

(∥∥Λj

∥∥ + ∥∥(CB + D)Λj

∥∥) = c1 < 1, (25)

ρ
{
G(t)

} ≤ ρ̄ < 1, (26)

where ρ{G(t)} is the spectral radius of G, ρ̄ is a constant, then, for all t ∈ [0, T ], and
arbitrary initial input satisfying u−i (t) = 0, i = 1,2, . . . ,N , the high-order Dα-type
ILC updating law (2) guarantees that {uk(t)} is uniformly convergent, and

lim
k→∞yk(t) = yd(t). (27)

Proof It follows from (3) that, for k > N ,

Qk(t) = Gk−NQN(t) +
k−1∑
i=N

Gk−i−1Fi(t). (28)

Therefore, for k > N ,

∥∥Qk(t)
∥∥ ≤ ρ̄k−N

∥∥QN(t)
∥∥ +

k−1∑
i=N

ρ̄k−i−1
∥∥Fi(t)

∥∥. (29)

Noting that 0 ≤ ρ̄ < 1 and c1 < 1 by assumption, there exist a constant ξ > 1 and a
sufficiently large λ such that ρ̄ξ < 1, and

0 < ĥ = 1

1 − ρ̄ξ

[
NξN+1(c1 + c2h) + ξhM2

]
< 1, (30)

where c2 = ∑N
j=1 ‖Λj‖, M2 and h as defined in Lemma 3.2.

For the above λ and ξ , multiplying both sides of (29) by e−λt ξ k and taking the
(λ, ξ)-norm, it yields

(∥∥Qk(t)
∥∥ξk

)
e−λt

≤ ρ̄−N
∥∥QN(t)

∥∥
λ
+

k−1∑
i=N

(ρ̄ξ)k−i−1ξ
∥∥Fi(t)

∥∥
(λ,ξ)

. (31)
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Now, it follows from (9) that (31) gives

(∥∥Qk(t)
∥∥ξk

)
e−λt

≤ ρ̄−N
∥∥QN(t)

∥∥
λ
+

k−1∑
i=N

(ρ̄ξ)k−i−1ξhM2‖Qk‖(λ,ξ)

+
k−1∑
i=N

(ρ̄ξ)k−i−1ξ

N∑
j=1

(
(h + 1)‖Λj‖ + ∥∥(CB + D)Λj

∥∥) j−1∑
s=1

ξ s
∥∥Qk−s(t)

∥∥
(λ,ξ)

< ρ̄−N
∥∥QN(t)

∥∥
λ
+ 1

1 − ρξ
ξhM2 sup

1≤i≤k

‖Qi‖(λ,ξ)

+ 1

1 − ρ̄ξ

N∑
j=1

(
(h + 1)‖Λj‖ + ∥∥(CB + D)Λj

∥∥) · NξN+1 sup
1≤i≤k

‖Qi‖(λ,ξ)

< ρ̄−N
∥∥QN(t)

∥∥
λ
+ 1

1 − ρ̄ξ

[
NξN+1(c1 + c2h) + ξhM2

]
sup

1≤i≤k

‖Qi‖(λ,ξ)

= ρ̄−N
∥∥QN(t)

∥∥
λ
+ ĥ sup

1≤i≤k

‖Qi‖(λ,ξ). (32)

Therefore,

sup
1≤i≤k

∥∥Qi(t)
∥∥

(λ,ξ)
< ρ−N

∥∥QN(t)
∥∥

λ
+ ĥ sup

1≤i≤k

∥∥Qi(t)
∥∥

(λ,ξ)
. (33)

Hence,

sup
1≤i≤k

∥∥Qi(t)
∥∥

(λ,ξ)
<

ρ−N

1 − ĥ

∥∥QN(t)
∥∥

λ
. (34)

Note that

∥∥Qk(t)
∥∥ = ξ−keλt

(∥∥Qk(t)
∥∥ξk

)
e−λt ≤ ξ−keλt sup

1≤i≤k

∥∥Qi(t)
∥∥

(λ,ξ)
. (35)

Consequently, one obtains from (34) and (35)

∥∥Qk(t)
∥∥ ≤ ρ−NeλT

(1 − ĥ)ξ k

∥∥QN(t)
∥∥

λ
= r

ξk
, (36)

where r = ρ−NeλT

1−ĥ
‖QN(t)‖λ. It follows from ξ > 1 and (36) that

lim
k→∞

∥∥Qk(t)
∥∥ = 0, t ∈ [0, T ]. (37)
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Therefore, for all t ∈ [0, T ], we have

lim
k→∞�uk(t) = 0, lim

k→∞ Dα
t ek(t) = 0. (38)

Furthermore, it follows from the initial conditions that {uk(t)} is uniformly robust
convergent, and limk→∞ yk(t) = yd(t). The proof is complete. �

Corollary 3.1 For fractional-order linear time-delay system

{
Dα

t xk(t) = Axk(t) + A1xk(t − τ) + Buk(t),

yk(t) = Cxk(t) + DD−α
t uk(t),

(39)

where k ∈ {0,1,2, . . .}, t ∈ [0, T ], α ∈ (0,1), and a given reference yd(t), suppose
that yd(0) = yk(0) and ρ{G(t)} ≤ ρ̄ < 1, then, for all t ∈ [0, T ], and arbitrary initial
input satisfying u−1(t) = u0(t), the second-order Dα-type ILC updating law

uk+1(t) = Λuk(t) + (1 − Λ)uk−1(t) + Γ Dα
t ek(t), (40)

guarantees that {uk(t)} is uniformly convergent, and limk→∞ yk(t) = yd(t).

Corollary 3.2 For the fractional-order linear system

{
Dα

t xk(t) = Axk(t) + Buk(t),

yk(t) = Cxk(t) + DD−α
t uk(t),

(41)

and a given reference yd(t), suppose that yd(0) = yk(0) and

ρ
(
I − (CB + D)Λ

)
< 1, (42)

then, for all t ∈ [0, T ], and arbitrary initial input satisfying u0(t), Dα-type ILC up-
dating law

uk+1(t) = uk(t) + ΛDα
t ek(t), (43)

guarantees that {uk(t)} is uniformly convergent, and limk→∞ yk(t) = yd(t).

Remark 3.1 Note that the convergence analysis of ILC updating law (43) for
fractional-order linear system (41) has been investigated in [4], in which the con-
vergence condition is

∥∥I − (CB + D)Λ
∥∥ < 1. (44)

Since ρ(I − (CB + D)Λ) ≤ ‖I − (CB + D)Λ‖, the convergence condition (42) is
less conservative than the condition (44).
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4 Numerical Example

Consider the fractional-order linear time-delay system (39) with the Caputo deriva-
tive (fractional order α = 0.85),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A =
[−3 1

2 −1

]
, A1 =

[
1 −1

0 0.5

]
,

B =
[

0 1

−1 0

]
, C =

[
1 0

0 1

]
, D = 0,

(45)

t ∈ [0,1], τ = 0.5 and ψ(t) = [0 1]T ,−0.5 ≤ t < 0. Let the reference and external
disturbance be

yd(t) =
[

12t2(1 − t)

sin(3πt)

]
, wk(t) = [0.1 sin t 0.2 cos t]T , t ∈ [0,1],

respectively. We apply the second-order Dα-type ILC updating law

uk+1(t) = 0.9uk(t) + 0.1uk−1(t) + (CB)−1 Dα
t ek(t).

with the initial control be u−1(t) = u0(t) = 0. In this case, it can be calculated that
ρ(G) = 0.3702 < 1. The simulation results are shown in Figs. 1, 2, and 3. Figures 1
and 2 show the system output yk(t) (solid) of the first five iterations and the referenced
trajectory yd(t) (dotted), while Fig. 3 shows the 2-norm of the tracking errors in the
first eight iterations. It can be seen that the output is capable of approaching the
desired trajectory accurately within few iterations.

5 Concluding Remarks

In this paper, a high-order Dα-type ILC scheme for fractional-order nonlinear time-
delay systems was investigated. By using the generalized Gronwall–Bellman Lemma,
the convergence condition was derived. The validity of the proposed method was
verified by a numerical example.

Fig. 1 The tracking performance of the system output (yk
1 (t): solid, yd

1 (t): dotted)
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Fig. 2 The tracking performance of the system output (yk
2 (t): solid, yd

2 (t): dotted)

Fig. 3 The 2-norm of the tracking errors in each iteration
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