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Abstract In this paper, an overview of fractional-order iterative learning control
(FOILC) is presented including main developments of this field since 2001. Many
theoretical and experimental results are provided to show the advantages of FOILC
such as the improvement of transient and steady-state performances. Some unique
characters of fractional-order operators are illustrated to show the new features and
techniques of FOILC. A number of unsolved problems are briefly presented.
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1 Introduction

The formal concept of iterative learning control (ILC) was published in 1978 by
Uchiyama (in Japanese) and in 1984 by Arimoto et al. (in English) [1]. Some ear-
lier works of ILC can be traced back to 1967 in the US patent 3555252 “Learning
control of actuators in control systems” and the multi-pass system analysis in 1974
by Edwards and Owens [2]. The ILC method is a batch process that operates a given
objective system repeatedly on a fixed time interval so that the reference signal can be
perfectly tracked as the operation repeats. Along with the global Lipschitz condition,
the ILC schemes can be easily applied to both nonlinear and linear systems with less
prior model knowledge [1–7]. Thus both the theory and applications of ILC gained
increasing attention and have been highly developed in the past three decades [8–12].
Many interesting problems of ILC have been discussed in [13–22], and all of them
are linked to the “repetition” of the control system, such as the batch process and
periodic uncertainties and disturbances, etc. [5–7, 23, 24]. In simple words, an ILC
scheme is to improve the system control performance by using the historical data
even without a complete knowledge of the system to be controlled [3, 8, 9, 21, 22].

The FOILC is a relatively new topic in ILC, which can be traced back to 2001 [25].
In [25], a Dα-type fractional-order learning law is proposed and the convergence con-
ditions are analyzed in frequency domain, which becomes an important technique in
FOILC. The high-pass characteristic of the Dα term ((jω)α) is applied to compro-
mise the low-pass characteristic of the controlled system. Allowing for the practi-
cal applications, the implementation of (jω)α is discussed as well. Besides, given a
manipulator model, it is verified that the optimal ILC scheme is pointed towards a
fractional-order one [25]. Since then, many fractional-order ILC problems are pre-
sented aiming at enhancing the performance of ILC scheme for various systems [26–
29]. Particularly, in recent years, a number of new questions have emerged in FOILC
such as the time domain analysis, the applications to various fractional-order sys-
tems, the tuning and auto-tuning rules, the combination with robust feedback con-
trol strategies, etc. [2]. The strategy of FOILC addresses the fractional-order systems
and/or the fractional-order learning laws. In earlier references, it is proved that the
convergence conditions of FOILC are exactly the same with the corresponding ILC
cases if the fractional-order system and the fractional-order learning law share the
same fractional-order α [27]. The good news is that the FOILC can be directly ap-
plied to the more complicated fractional-order systems using the same convergence
conditions. Many nice results are derived under the knowledge of α. However, some
researchers point out that the above strategy may be impractical, because the accu-
rate identification of the system order α is not easy in some circumstances. Thus
the order-adaptive problems are raised, and several early discussions can be found
in [12, 25]. The rejection of the order uncertainty or the order disturbance in both
time and frequency domains become a specific topic in FOILC. But, as far as the
authors know, the knowledge of adaptive control cannot be directly applied to these
problems so that new control strategies should be further investigated in this field.
Several papers and their references are cited here to illustrate some other recent de-
velopments of FOILC [27, 30]. It can be seen from the above literatures that the
FOILC not only retains the advantages of the classical ILC but also offers potential
for better performances in a variety of complex physical processes.
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In this survey, a summary of FOILC in the past 12 years is organized as follows.
Some mathematical preliminaries of fractional calculus are introduced in Sect. 2.
The main idea of FOILC is generalized in Sect. 3, which is further divided into three
parts: the linear time-invariant FOILC (Sect. 4), order-dependent FOILC (Sect. 5)
and order-independent FOILC (Sect. 6). Some applications of FOILC are discussed
with citations, and a number of unsolved problems for FOILC are presented briefly
in Sect. 7. The conclusions are shown in Sect. 8.

2 Preliminaries

In this section, some mathematical preliminaries, such as Laplace transform, convo-
lution, Riemann–Liouville and Caputo fractional-order operators, and Mittag–Leffler
functions, are presented.

2.1 Laplace Transform

The Laplace transform of f (t) is defined as [31]: f (s) = L{f (t)} = ∫ ∞
0− e−stf (t)dt ,

where f (t) is piecewise continuous on every finite interval in [0,∞) satisfying
|f (t)| ≤ Meat for all t ∈ [0,∞[, s > a and a sufficiently large constant M > 0.

2.2 Convolution

The convolution defined according to the above Laplace transform is shown as [31]:
f (t) ∗ g(t) = ∫ t

0− f (t − τ)g(τ )dτ = ∫ t

0− f (τ)g(t − τ)dτ , where f (t) and g(t) are
integrable functions on [0−, t].
2.3 Fractional Calculus

Fractional calculus plays an important role in modern sciences [29, 32, 33]. In this pa-
per, we use both Riemann–Liouville and Caputo fractional operators. The definition
of the Riemann–Liouville fractional integral with α ∈]0,1[ is

t0D
−α
t f (t) = 1

Γ (α)

∫ t

t0

f (τ)

(t − τ)1−α
dτ,

where f (t) is an integrable function, t0D
−α
t is the fractional integral of order α on

[t0, t], and Γ (·) denotes the Gamma function. For an arbitrary real number p, the
Riemann–Liouville and Caputo fractional derivatives/integrals are respectively de-
fined as

RL
t0

D
p
t f (t) = d[p]+1

dt [p]+1

[
t0D

−([p]−p+1)
t f (t)

]

and

C
t0
D

p
t f (t) = t0D

−([p]−p+1)
t

[
d[p]+1

dt [p]+1
f (t)

]

,

where [p] stands for the integer part of p, RLD and CD are Riemann–Liouville (RL)
and Caputo (C) fractional operators, respectively.
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2.4 Mittag–Leffler Function

The Mittag–Leffler function, which is the fundamental solution of fractional differ-

ential equations, has the following form: Eα(z) = ∑∞
k=0

zk

Γ (kα+1)
, where α > 0 and

z ∈ C
n×n. The Mittag–Leffler function in two parameters is defined as Eα,β(z) =

∑∞
k=0

zk

Γ (kα+β)
, where α,β > 0 and z ∈ C

n×n [32].

Lemma 2.1 For any α,β > 0 and A ∈ C
n×n, L{tβ−1Eα,β(Atα)} = sα−β(sαIn −

A)−1, where |s| > ‖A‖1/α .

Proof The proof can be found in [27, 32]. �

Lemma 2.2 The following equivalent relationship holds for any A ∈ C
n×n, t ∈ R

and α > 0:

Eα

(
Atα

) = tαAEα,1+α

(
Atα

) + In.

Proof By using the definition of Mittag–Leffler function, we have

tαEα,1+α

(
Atα

)
A + In = Atα

∞∑

k=0

(Atα)k

Γ (kα + 1 + α)
+ In = Eα

(
Atα

)
.

�

3 Fractional-Order Iterative Learning Control

The fractional-order iterative learning control is dedicated to improve the transient
and steady-state performances of ILC strategy for both integer order and fractional-
order systems. It includes but is not limited to the applications of FOILC to integer
order systems, and the applications of FOILC to fractional-order systems, etc. As a
summary, a generalized FOILC scheme can be illustrated as follows.

Given a fractional-order nonlinear state-space system

x(α)(t) = f (t, x,u), (1)

y(t) = g(t, x,u), (2)

where all the variables and parameters have proper dimensions, the initial condition
is well-defined, α ∈]0,1[, and (·) denotes either the RL or the C fractional-order
derivative. Moreover, it is always required that both f and g satisfy the global Lip-
schitz conditions with respect to u, and the uniqueness and existence conditions are
guaranteed for the above system. When α = 1, it is corresponding to the integer order
systems.

The main objective of FOILC is to search the desired control input ud(t) by using
the recursive algorithm

uk+1(t) = L
{
uk(t), ei(t)

}
(k = 0,1,2, . . .), (3)
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where t ∈ [0, tf ], i ∈ {1,2, . . . , k + 1}, ei(t) = yd(t) − yi(t), yd(t) is the desired
system output and L is a linear or nonlinear operator, so that, if the system is repetitive
and the convergence conditions are met, we will finally have

lim
k→∞uk(t) = ud(t). (4)

Remark 3.1 In the above discussions, if i = k + 1, it means that the error of the cur-
rent iteration is included in the scheme, i.e. the FOILC scheme is a combination of
feedforward and feedback loops, which improves the robustness of the control system
and guarantees the perfect tracking simultaneously. Various fractional-order opera-
tors can be included in L{·, ·}. Moreover, if information from more than one previous
iterations (uk,uk−1, . . .) is included in (3), it is pointing towards the higher-order
FOILC scheme, and two fundamental references are cited in here [34–36]. Lastly,
the initial control input u0(t) can be arbitrarily chosen, theoretically. However, a bet-
ter u0(t) will surely lead to a faster convergence speed. Therefore, the optimization
of the initial control input is a practically important problem in FOILC.

4 Linear Time-Invariant FOILC

In this section, some theoretical methods of the classical ILC are extended to FOILC
parallelly. Particularly, the linear time-invariant cases of FOILC can be analyzed by
using the fractional-order linear operators and the fractional-order transfer functions.

Theorem 4.1 For the system yk = Tsuk , and the linear time-invariant FOILC

uk+1 = Tuuk + Te(yd − yk), (5)

where Ts, Tu and Te are all fractional-order linear operators, it can be proved that

lim
k→∞uk(t) = ud(t)

(
t ∈ [0, tf ]),

if

‖Tu − TeTs‖op < 1, (6)

where ud(t) is the desired control input, and ‖ · ‖op denotes the operator norm. More-
over, it can be proved that

lim
k→∞ ek(t) = [

I − Ts(I − Tu + TeTs)
−1Te

]
yd(t),

where ek(t) = yd(t) − yk(t).

Proof The proof is the same as the corresponding ILC cases by using the fixed-point
theorem [37, 38]. �
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Remark 4.1 It can be easily seen from Theorem 4.1 that, if Tu = I , we can finally
arrive at limk→∞ ek(t) = 0 for all t ∈ [0, tf ]. Otherwise, the error limk→∞ ek(t) �= 0
over the entire interval.

To date, most FOILC schemes are linear ones. Thus it is common to analyze it in
frequency domain, even it is a finite time problem [19, 26]. Given a control system
G(s), the input–output relationship at the kth iteration can be described by

Yk(s) = G(s)Uk(s), (7)

where yk(0) = yd(0), yd(t) being the desired output. Moreover, let the learning law
in the Laplace domain be

Uk+1(s) = Uk(s) + γH(s)Ek(s), (8)

where γ is a scalar learning gain, and H(s) is the learning compensator in the Laplace
domain.1 It follows from (7) and (8) that

Ek+1(s) = [
1 − γG(s)H(s)

]
Ek(s),

where the commutative property of γ and G(s) should be satisfied in the Laplace
domain. It can be proved that the convergence condition of the above ILC scheme
is [39, 40]:

∥
∥I − γG(jω)H(jω)

∥
∥∞ < 1, (9)

where s = jω and ‖ · ‖∞ denotes the H∞-norm.
It should be noted that if γ is a time-varying constant or more generally an output

of a dynamic system, (9) does not hold any more. Moreover, in reality, many systems
cannot be fully recovered to the desired initial state yd(0), so that the perturbed ini-
tial conditions should be considered in these cases. Some further discussions will be
shown in Sect. 7.

Remark 4.2 It can be seen from the operator and frequency domain discussion of
FOILC that the classical linear ILC schemes are special cases of FOILC, i.e. the
FOILC should have better, at least equivalent, performance than ILC, theoretically.
Moreover, the convergence conditions of FOILC remain the same as ILC, which are
shown in the previous discussions of this section. However, either the fractional-order
system or the fractional operator makes the analysis of FOILC more complicated and
therefore some novel methods and techniques should be explored.

5 Order-Dependent FOILC

Motivated by the above frequency domain results, it is straightforward to convert the
FOILC schemes back to the time domain, which naturally leads to the convolution

1If either G(s) or H(s) is related to sν , where ν is a non-integer constant, then (8) becomes a FOILC
learning law. Moreover, in this case Tu = I , so that limk→∞ ek(t) = 0 for all t ∈ [0, tf ].
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operators. Particularly, the fractional-order RL and C operators defined by the convo-
lutions play fundamental roles in FOILC. Most of FOILC schemes are P -, Dα-, PDα-
and PIβDα-type FOILC schemes, etc. [28, 41–49], where D denotes either the RL
or C fractional-order operator. These linear FOILC schemes have been successfully
applied to the linear, nonlinear, affine and time-delay systems, etc. [28, 41–49].

For simplicity, let the fractional-order nonlinear system be

y(α)(t) = f
(
t, y(t), u(t)

)
, (10)

where α ∈]0,1[, the initial conditions are properly defined, f is global Lipschitz
with respect to u, and the uniqueness and existence conditions are satisfied. A typical
first-order open-loop PIβDα-type FOILC learning law can be written as

uk+1(t) = uk(t) + Kpek(t) + Kie
(−β)
k (t) + Kde

(α)
k (t), (11)

where β ∈]0,1] and the α in (11) is exactly the same as the one in (10), i.e. it is
system order dependant.

In [41, 46], the P -type ILC is applied to the fractional-order nonlinear time-delay
systems by using the generalized Gronwall–Bellman lemma. However, the results
deserve further study, because the convergence conditions are related to the final
time tf , and the learning speed may not be fast by using the proportional term only.

Fortunately, the above issues of P -type FOILC can be almost ignored in
the Dα-type FOILC [25, 44, 47] and PDα-type FOILC [28, 42, 45, 48, 49], which
attracted much attention in FOILC. Especially, the PDα-type FOILC has become a
hot spot, because, for example, the convergence conditions of Dα-type and PDα-
type FOILC schemes are exactly the same as the corresponding ILC cases, and the
P term can efficiently improve the transient performance of FOILC although it does
not influence the convergence [47].

Several PIβDα-type FOILC schemes are illustrated in [43]. Note that here, either
the ILC or FOILC is typically a kind of integral along the iteration axis so that there
is a trade-off of using or not using the Iβ terms [50].

In the above-mentioned works, a commonly used relationship should be intro-
duced regarding the λ-norm and fractional-order systems.

Lemma 5.1 For the fractional-order nonlinear systems (10) and an arbitrary pos-
itive constant q > 1/α, suppose ‖ ∂f

∂u
‖∞ ≤ γ ‖u‖∞, there exists a large enough λ

satisfying

‖e‖λ ≤ O
(
λ−1/q

)‖δu‖λ,

where

O
(
λ−1/q

) = γ (1 − e−qλT )T
qα−1

q Γ
q−1
q (

qα−1
q−1 )

(qλ)1/qΓ (α) − c(1 − e−qλT )T
qα−1

q Γ
q−1
q (

qα−1
q−1 )

.

Proof A proof can be found in [47, 48]. �
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Lastly, some time domain results of FOILC are summarized as follows. Firstly,
the advantages of the time domain analysis of FOILC include but are not limited to:

• The P and Dα terms in the FOILC learning laws can be tuned to accelerate the
convergence speed. Better knowledge of the system model can lead to better per-
formance of the FOILC scheme.

• Given the system order α, the convergence condition of the PDα-type FOILC is ex-
actly the same with the corresponding ILC scheme, which extends the applications
of FOILC to a great extent.

However, there are also some issues in the above time-dependent FOILC in applica-
tions:

• In the above-mentioned references, the system order α is supposed to be known in
advance so that the FOILC can be designed according to the exact value of α. For
example, suppose the system order is α, the order of a Dα-type FOILC is α as well.
However, the accurate identification of α could be very hard, such as an irrational
value identification. The misidentification of α may lead to bad performance, or
even divergence, of the FOILC schemes [27].

• In some references [41, 46], the order-unknown FOILC is discussed for fractional-
order nonlinear systems. Nevertheless, the final time tf is included in the conver-
gence conditions. Thus, it is still impractical to use such kind of FOILC scheme,
although the system order can be unknown.

• One of the known issues of λ-norm is that the tracking errors can get worse in
some iterations even if their λ-norms are monotonically convergent. This happens
in both ILC and FOILC [51].

It should be highlighted that the α-dependent FOILC schemes are still very mean-
ingful for many reasons. For instance, the exact knowledge of the fractional-order
system provides a possible way to derive the optimal ILC scheme. Particularly, to
our best knowledge, the FOILC always performs better than the conventional ILC for
fractional-order systems [25, 27].

6 Order-Independent FOILC

The original motivations of the order-independent FOILC were from the first FOILC
paper [25], in which a number of advantages of FOILC schemes are proved or il-
lustrated. Besides, there are more tuning parameters in FOILC schemes, such as the
fractional orders of the learning law, so that a better performance can be expected.
Moreover, the FOILC has a larger learnable band in frequency domain, i.e. better
performance can be arrived on certain range of frequencies [26, 52]. Some other re-
sults are summarized as follows.

6.1 Order Adaptation

The order-adaptive FOILC was first proposed in [25], and it is verified by using a
single joint manipulator. It is shown that “the most notable improvement of FOILC
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is that the learning convergence gets more and more monotonic, and much faster
convergence speed when fractional-order derivative (a Dγ -type FOILC) is applied.”

A theoretical proof of the Dγ -type FOILC for state-space systems can be found
in [27], in which the system order α is unknown and the order γ is an undetermined
constant. It was shown that the fastest tracking speed is pointed towards α = γ in
terms of the λ-norm. In [47], a non-smooth tracking reference is illustrated to show
that the overshoots at the non-smooth points get larger even if the λ-norms monoton-
ically decrease. Moreover, it was also shown that the Dγ -type FOILC may diverge
for γ > α, which partially explains the experimental results of [25].

Nevertheless, if other conditions are satisfied, γ ≤ α is sufficient but not necessary
for the convergence of FOILC [25]. Besides, to allow for the non-smooth cases, a low-
pass type FOILC is proposed in [30], which can filter the high frequency noises and
guarantee the convergence despite the system order α. Both the digital and analog
implementations of the FOILC compensators are considered in it as well. Particu-
larly, the fractional-order RC circuits are shown to be an analog implementation of
fractional-order learning laws [53].

6.2 Half-order FOILC

In [26], a half-order FOILC is proposed by applying a 0.5th order derivative in for-
ward time and a −0.5th order integral in the backward time, which is equivalent to a
unit-gain (all-pass) non-casual shifter. It has a wider learnable band to ensure higher
tracking accuracy, and the learning speed will not be sacrificed at any frequency due
to the unit-gain property.

6.3 Band-stop FOILC

It is well known that a low-pass type ILC compensator will lead to slow learning
speed at high frequencies, and a D- or Dα-type ILC shows slow learning speed at low
frequencies. Thus the previous unit-gain design has become an important technique
in ILC [26]. For example, the combination of a low-pass filter and a differentiator can
guarantee the learning speed at both low and high frequencies, i.e. the development
of the band-stop type FOILC.

In [30], the classical PIβDα-type FOILC is extended to a generalized one:

uk+1(t) = uk(t) + L̃
{
ek(t)

}
, (12)

where L̃ denotes an arbitrary bounded linear operator. It should be noted that, to
date, almost all the single-term FOILC schemes without feedback terms are special
cases of (12), and therefore the advantages of classical ILC schemes, and the order
adaptiveness, etc., can be inherited. Particularly, it allows the design of FOILC with
multi-terms of fractional-order compensators so that the low-pass and high-pass fil-
ters can be cascaded together [30, 49]. For example, let the FOILC learning law be

uk+1(t) = uk(t) + Γ φ(t) ∗ e(α)(t), (13)
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where

φ(t) = a

λ
tβ−1Eβ,β

(

−atβ

λ

)

+ d

dt
Eβ̃

(

−ct β̃

b

)

,

β, β̃ ∈]0,1[, and

L
{
φ(t)

} = b

b + λsβ
+ asβ̃

c + asβ̃
.

Note that the above two terms are fractional-order low-pass and high-pass filters,
respectively. Moreover, given arbitrary bounds of the system order α ∈]0,1], the α

in (13) can be absorbed in β and β̃ so that the order adaptiveness can be achieved as
well.

Remark 6.1 Given the linear fractional-order systems

y(β)(t) = −b

λ
y(t) + b

λ
x(t),

y(β̃)(t) = − c

a
y(t) + x(β̃)(t),

it can be easily proved that the transfer functions of the above two equations are

Y(s) = b

b + λsβ
X(s),

Y (s) = asβ̃

c + asβ̃
X(s).

Both of them can be easily realized by using the idea of the fractional-order element
networks, or the fractional-order circuits [53]. On the other hand, the digital imple-
mentations of the above two equations can be found in [54].

7 Notes and Open Problems of FOILC

A number of interesting works in FOILC have been proposed since [25]. Neverthe-
less, for future developments, some notes and unsolved problems are briefly pre-
sented as follows.

• In many circumstances, the heredity (memory) of fractional-order system makes
the system non-repeatable at the first several iterations, which is pretty like the
precondition in material science.

• The initial condition of a fractional-order system is history-dependent, i.e. the
whole history of the system can influence the current state. Thus, the formal
Laplace transform can be replaced by the bilateral form

∫ +∞
−∞ e−st f (t)dt , or re-

placed by the Fourier transform. Several related references are [55–59].
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• The optimization of the time-varying gains of FOILC. The trade-off here is that the
accurate system identification is unnecessary for the ILC schemes; however, the
precise knowledge of system parameters is indeed helpful to enhance the leaning
speed. Thus, based on proper filtering methods, the time-varying FOILC based on
the different filtering methods can be widely used to optimize the FOILC scheme.

• The order-adaptive FOILC-based iterative learning identification methods, espe-
cially the system order identification, will be meaningful works to improve the
performances of FOILC and ILC schemes. Besides, the fractional-order iterative
learning identification is also suitable for variable-order systems.

• The optimal initial control input and the iteration-varying reference case of a
fractional-order system deserve special attention in practice.

• The discrete FOILC scheme will be widely used in the digital computers so that
the users can benefit from the supervector formulation, and analyze and design the
FOILC schemes systematically.

• The power-law and non-Gaussian (heavy-tail) phenomena are widely seen in re-
ality. Fractional-order operators are expected to improve the performance of ILC
schemes.

• The combination of partial differential equations and FOILC will be an interesting
topic, and a possible application is the remote robotic surgery, where biomechan-
ical systems should be modeled as fractional-order ones and the control tasks are
usually repetitive. Besides, the combination of networked control with FOILC is
also urgently required [60].

• The development of nonlinear FOILC learning laws can be considered if there
are substantial advantages. The well-known homomorphic filtering technique is a
possible way to be applied.

• New mathematical tools are required to extend the applicability of ILC and FOILC,
such as the geometric and algebra methods, etc.

• The reliable implementation of FOILC is a key point for its widespread real
world applications. Nowadays most of the digital implementations are actually
the integer-order approximations in Z, Laplace or Fourier domain. Nevertheless,
the wide existence of fractional-order elements [61, 62] can surely provide rich
resources for the analog implementations of FOILC.

• The single-term FOILC schemes can be seen as special cases of the corresponding
higher-order ones; however, it is still unclear how to conclude the advantages and
applicability of using a single term or information from more than one previous
iterations.

8 Conclusions

In this paper, the present status of FOILC since 2001 is summarized including the
discussion of convergence analysis, transient and steady-state performances, and im-
plementations, etc. Some open problems are briefly presented with a hope to attract
attention from other fields as mathematics, engineering, science, medicine, etc.
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