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Abstract This paper studies the optimization of complex-order algorithms for the
discrete-time control of linear and nonlinear systems. The fundamentals of fractional
systems and genetic algorithms are introduced. Based on these concepts, complex-
order control schemes and their implementation are evaluated in the perspective
of evolutionary optimization. The results demonstrate not only that complex-order
derivatives constitute a valuable alternative for deriving control algorithms, but also
the feasibility of the adopted optimization strategy.
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1 Introduction

Fractional calculus (FC) generalizes the classical differential calculus and deals with
integrals and derivatives of real, or even complex, order [1–7]. In the last decades,
a vast number of applications emerged in the areas of physics and engineering, and
active research is being pursued [8–19]. It was demonstrated that fractional models
capture easily dynamic phenomena with long range memory behavior, in opposition
with classical integer order models that reveal difficulties in capturing those effects.
Nevertheless, many aspects of this mathematical tool are still to be explored and fur-
ther research efforts are necessary for the development of practical models. Further-
more, fractional derivatives (FDs) are more elaborated than their integer counterparts
and their calculation requires some type of approximation [20–26].

Evolutionary strategies [27, 28] were proposed during the last years for optimizing
fractional algorithms [29–36]. Therefore, embedding the FC concepts and evolution-
ary optimization is a fruitful strategy for controller design.
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Several studies focussed onto the application of complex-order derivatives (CDs)
[37–44]. CDs yield complex valued results and, therefore, are of apparently limited
interest. To overcome this difficulty, the use of conjugated-order differintegrals was
proposed, that is, of pairs of derivatives whose orders are complex conjugates. These
pairs allow the use of CDs while still producing real-valued responses and transfer
functions. This article describes the adoption of CDs in control systems. Since CDs
are a further step of generalization of FDs, we can foresee significant advantages in
the resulting algorithms.

Bearing these ideas in mind, this paper addresses the optimal tuning of controllers
using CDs and is organized as follows. Section 2 introduces FDs and their numeri-
cal approximation, and formulates the problem of optimization through genetic algo-
rithms (GAs). Section 3 formulates the concepts underlying CDs and presents a set of
experiments that demonstrate the effectiveness of the proposed optimization strategy.
Finally, Sect. 4 outlines the main conclusions.

2 Fundamental Concepts

2.1 Fractional Calculus

There are several definitions of FDs of order α of the function f (t). The most com-
monly adopted are the Riemann–Liouville, Grünwald–Letnikov, and Caputo defini-
tions:
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where Γ (·) is Euler’s gamma function, [x] means the integer part of x, and h is the
step time increment.

The Laplace transform leads to the expression:
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where s and L represent the Laplace variable and operator, respectively.
The long standing discussion about the advantages of the different definitions is

outside the scope of this paper, but, in short, while the Riemann–Liouville formu-
lation involves an initialization of fractional order, the Caputo counterpart requires
integer order initial conditions which are easier to apply. The Grünwald–Letnikov
expression is often adopted in real-time control systems because it leads directly to a
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discrete-time algorithm based on the approximation of the time increment h through
the sampling period Ts . In fact, for converting expressions from continuous to dis-
crete time, the Euler and Tustin formulae are often considered:
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where z and Ts represent the Z-transform variable and controller sampling period,
respectively. Expression H0 is simply the Grünwald–Letnikov definition of FD with
the infinitesimal time increment h replaced by the sampling period Ts . Weighting H0

and H1 by the factors p and 1 − p leads to the arithmetic average:

Hα
av

(
z−1) = pHα

0

(
z−1) + (1 − p)Hα

1

(
z−1). (7)

For obtaining rational expressions, the Taylor or Padé expansions of order r in
the neighborhood of z = 0 are usually adopted. In [45], several averages based on
the generalized mean are evaluated, and in [46] the performances of series and frac-
tion approximations for closed-loop discrete control systems are compared. In this
paper, for simplicity, the Euler backward formula and the Taylor series expansion are
considered. Therefore, for the real-valued fractional derivative and integral we have
(α > 0):
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2.2 Genetic Algorithms

Genetic Algorithms (GAs) constitute a computational scheme for finding the solution
of optimization problems. The GA computer simulation involves an evolving popula-
tion with representatives of candidate solutions of the optimization problem accessed
by means of the fitness function J . The GA starts by initializing the population ran-
domly, and then evolves it towards better solutions through the iterative application of
crossover, mutation, and selection operators. Therefore, in each generation, a part of
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the population is selected to breed an offspring. To avoid premature convergence to-
wards sub-optimal solutions, and to guarantee diversity, some elements are modified
randomly. The solutions are then evaluated through the fitness function, where fitter
solutions are more likely to be selected to form a new population in the next iteration.
The GA ends when a given termination criteria is accomplished, for example, when
a maximum number of generations N is calculated, or a satisfactory fitness value is
reached. The GA pseudo-code is:

1. Generate an initial population.
2. Evaluate the fitness of each element in the initial population.
3. Repeat.

(a) Select the elements with best fitness for reproducing.
(b) Generate new generation through crossover producing offspring and evaluate

their fitness.
(c) Mutate randomly some elements in the population and evaluate their fitness.
(d) Replace the worst ranked part of population with the best elements of off-

spring.
4. Until termination criteria is reached.

For easing the GA convergence, a common scheme, denoted as elitism, consists
in selecting the best elements of the population to be part of the next generation.

3 Complex-Order Controllers

3.1 Complex-Order Operators

The FC theory can be adopted in control systems and a typical case is the generaliza-
tion of the classical Proportional-Integral-Differential (PID) controller. The fractional
PID, or FrPID, consists of an algorithm with the integer I and D actions replaced by
their fractional generalizations of orders 0 < α ≤ 1 and 0 < β ≤ 1, yielding the trans-
fer function:

Gc(s) = Kp + Kis
−α + Kdsβ, (10)

where s denotes the Laplace variable, and Kp , Ki , and Kd represent the proportional,
integral, and derivative gains, respectively. Therefore, the classical PID is simply a
particular case where α = 1 and β = 1.

For a sine function, at steady-state, the CD of order α ± ıβ is given by:
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where ı = √−1, t denotes time, and ω is the angular frequency.
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Fig. 1 Polar diagram of the frequency response of expressions (12)–(13) for (α,β) = {(−1,1), (1,1),

( 1
2 ,−1), (− 1

2 ,−1)}

Since we are interested in applications, for getting only real-valued results, we can
group the conjugate order, into the operators:
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Figure 1 shows the polar diagram of the frequency response of expressions (12)–
(13) for (α,β) = {(−1,1), (1,1), ( 1

2 ,−1), (− 1
2 ,−1)}.
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For real-time calculation, Taylor expansions of order r in the neighborhood of
z = 0 are adopted. Therefore, the pair of operators becomes:
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We verify that the pair of operators {ϕ1(z
−1), ϕ2(z

−1)} represents a weighted av-
erage of ψ1 and ψ2 by means of the terms cos[β ln(Ts)] and sin[β ln(Ts)]. These
factors are due to the presence of 1

T
α±ıβ
s

in (14)–(15). In the calculation of FDs of

real order, the term 1
T α

s
is usually included in the control gain and only the z-series is

considered. In this line of thought, the pair {ψ1(z
−1),ψ2(z

−1)} is also considered as
another set of possible complex-order operators.

3.2 Application in Control Systems

We start by defining an appropriate optimization index in the perspective of system
control. We consider the integral square error (ISE) and integral time square error
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(ITSE) defined as:

ISE =
∫ Tw

0
e2(t) dt, (20)

ITSE =
∫ Tw

0
te2(t) dt, (21)

where e(t) represents the closed-loop control system error and Tw is a time period
sufficiently long for settling the response close to steady-state. Other optimization
indexes, such as the IAE and ITAE, can also be adopted, leading to the same type of
conclusions.

The set of controllers to be compared consists of four options:

– PID,
– FrPID,
– proportional action and pair {ψ1(z

−1),ψ2(z
−1)},

– proportional action and pair {ϕ1(z
−1), ϕ2(z

−1)}
given by
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(
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(
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where k0, k1, k2 are gains.
The system to be controlled may consist of three cases of increasing dynamical

difficulty, namely:

– S1, a linear second order system with transfer function Gp(s) = 1
s(s+1)

,

– S2, a second order system Gp(s) = 1
s(s+1)

followed by a static backlash [47, 48]
with width � = 1, and

– S3, a second order system with delay Gp(s) = 1
s(s+1)

e−s .

For the experiments, the optimization of either J = ISE or J = ITSE is considered
by means of a GA with a population of N = 500 elements with I = 200 iterations.
Elitism is used and, during evolution, any unstable system is eliminated and substi-
tuted by a new randomly-generated element, so that the population number remains
constant. The closed loop system is excited by a unit step input, the sampling pe-
riod is Ts = 0.005, the truncation order of the Taylor series is r = 10, the system is
simulated using a Runge–Kutta algorithm of order four, and the time window for the
calculation of the optimization indices is Tw = 15.

Figures 2, 3 and 4 show the closed-loop system time response for the ISE and
ITSE indices under the action of the four controllers for the system S1, S2, and S3,
respectively.
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Fig. 2 Closed-loop system time response for the ISE and ITSE indices under the action of the four con-
trollers for system S1

Fig. 3 Closed-loop system time response for the ISE and ITSE indices under the action of the four con-
trollers for system S2

Fig. 4 Closed-loop system time response for the ISE and ITSE indices under the action of the four con-
trollers for system S3
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Table 1 Controller optimal tuning for the ISE index

ISE k0 k1 k2 α1 β1 α2 β2

Gc1, S1 0.0775 11.916 0.055 0.435

Gc2, S1 0.0600 6.023 0.057 92.975 0.055 0.513

Gc3, S1 0.0279 38.128 10.380 90.914 −1.492 −0.933 1.002 −0.207

Gc4, S1 0.0297 107.037 188.394 126.462 −0.558 −1.433 −0.433 −0.426

Gc1, S2 0.1225 2.766 0.099 0.475

Gc2, S2 0.1129 1.007 0.029 82.575 0.070 0.887

Gc3, S2 0.0289 33.593 10.380 40.679 −1.492 −0.933 0.893 −0.972

Gc4, S2 0.0330 67.479 156.864 60.894 −0.467 −1.296 −0.830 −0.729

Gc1, S3 0.3350 0.568 3.7E-5 0.497

Gc2, S3 0.3344 0.169 0.279 97.747 0.004 0.987

Gc3, S3 0.2825 48.218 48.027 32.788 0.342 1.172 1.121 −0.038

Gc4, S3 0.2833 105.037 187.535 67.770 −0.332 0.829 −0.621 −0.416

Table 2 Controller optimal tuning for the ITSE index

ITSE k0 k1 k2 α1 β1 α2 β2

Gc1, S1 0.0461 6.499 0.019 0.457

Gc2, S1 0.0302 0.042 0.073 92.975 0.044 0.513

Gc3, S1 0.0035 28.494 10.380 22.445 −1.492 −0.933 0.590 −0.920

Gc4, S1 0.0044 69.291 142.551 100.595 −0.682 1.061 −0.455 −0.906

Gc1, S2 0.1554 1.531 0.099 0.468

Gc2, S2 0.1020 0.201 0.073 82.575 0.044 0.887

Gc3, S2 0.0065 33.690 48.262 41.807 −0.607 −0.702 0.168 0.666

Gc4, S2 0.0058 38.772 144.603 77.955 −0.414 −1.426 −1.129 −0.320

Gc1, S3 0.3133 0.528 3.8E-5 0.492

Gc2, S3 0.3026 0.314 0.001 99.480 0.172 0.980

Gc3, S3 0.2275 26.661 72.970 7.331 0.596 0.840 1.227 −0.859

Gc4, S3 0.2292 71.564 40.272 48.309 −0.011 1.072 −0.565 0.986

The results for the two optimization indices, four controllers, and three types of
systems is summarized in Tables 1 and 2. We verify that the new complex-order con-
trollers lead to better time responses in all cases. In what concerns the two proposed
variants, we observe almost identical behavior, with Gc3 slightly better than Gc4.

In conclusion, complex order algorithms reveal promising performances and may
constitute the next step of development with non-integer controllers.



J Optim Theory Appl (2013) 156:2–12 11

4 Conclusions

The advances in FC demonstrate the importance of this mathematical concept. Dur-
ing the last years, several control algorithms based on real-order FDs were proposed.
This paper proposed a further step of generalization by adoption complex-order op-
erators. For that purpose, several combinations of CDs were examined. Two alterna-
tive complex operators were proposed and their performance compared with classical
integer-order and fractional order control actions. The tuning of the controller was ac-
complished by means of genetic algorithms and three systems were evaluated. The
results reveal the superior performance and the adaptability of the complex-order op-
erators.
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