
J Optim Theory Appl (2012) 155:1073–1083
DOI 10.1007/s10957-012-0110-x

Homogeneous Self-dual Algorithms for Stochastic
Semidefinite Programming

S. Jin · K.A. Ariyawansa · Y. Zhu

Received: 19 July 2011 / Accepted: 15 June 2012 / Published online: 29 June 2012
© Springer Science+Business Media, LLC 2012

Abstract Ariyawansa and Zhu have proposed a new class of optimization problems
termed stochastic semidefinite programs to handle data uncertainty in applications
leading to (deterministic) semidefinite programs. For stochastic semidefinite pro-
grams with finite event space, they have also derived a class of volumetric barrier
decomposition algorithms, and proved polynomial complexity of certain members of
the class. In this paper, we consider homogeneous self-dual algorithms for stochastic
semidefinite programs with finite event space. We show how the structure in such
problems may be exploited so that the algorithms developed in this paper have com-
plexity similar to those of the decomposition algorithms mentioned above.

Keywords Semidefinite programming · Homogeneous self-dual algorithms ·
Computational complexity · Stochastic semidefinite programming

1 Introduction

While linear programs have enjoyed wide applicability, they are based on determinis-
tic data. Stochastic Linear Programs [1] (SLPs) were defined to handle uncertainty in
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data defining linear programs leading to dramatic enhancement of areas of applica-
bility. Deterministic semidefinite programs (DSDPs) have been the focus of intense
research during the past 20 years, especially in the context of interior point methods
for optimization [2]. DSDPs generalize linear programs and have a wide variety of
applications, especially beyond those covered by linear programs. It then becomes
natural to seek a generalization of DSDPs to handle uncertainty in data similar to the
way SLPs generalize linear programs. In [3], Ariyawansa and Zhu have defined such
a class of problems termed stochastic semidefinite programs (SSDPs).

Ariyawansa and Zhu [4] have presented a class of volumetric barrier decompo-
sition algorithms for SSDPs and proved polynomial complexity of certain members
of the class. Their derivation is for the case where the event space of the random
variables in the SSDP is finite with K realizations. Another important feature of the
algorithms in [4] is that the most expensive part of the algorithm naturally separates
into K subproblems, which allows efficient parallel implementations.

Decomposition can be viewed as a way of exploiting the special structure in
SSDPs. In this paper, we propose homogeneous self-dual algorithms for SSDPs (with
finite event spaces of their random variables) as an alternative to decomposition for
handling the special structure. We show that the complexity of these algorithms is
similar to those in [4], and that the most expensive part of the algorithms separates
into K independent subproblems.

2 Notation and Terminology

The notation and terminology we use in the rest of this paper follow that in [2].
We let R

m×n and R
n∨n denote the vector spaces of real m × n matrices and real

symmetric n × n matrices, respectively. We write X � 0 (X � 0) to mean that X

is positive semidefinite (positive definite) and we use U � V or V � U to mean that
U −V � 0. For U,V ∈ R

m×n we write U •V := trace (UTV ) to denote the Frobenius
inner product of U and V .

Given Ai ∈ R
n∨n for i = 1,2, . . . ,m, we define the operator A : R

n∨n → R
m by

AX := [A1 • X,A2 • X, . . . ,Am • X]T, (1)

for X ∈ R
n∨n. The adjoint operator of A with respect to the standard inner products

in R
n∨n and R

m is the operator A∗ : R
m → R

n∨n defined by A∗y := ∑m
i=1 yiAi , for

y ∈ R
m.

The Kronecker product P � Q, where P,Q ∈ R
n∨n is the operator from R

n∨n to
itself defined by (P � Q)U := 1

2 (PUQT + QUP T), for U ∈ R
n∨n.

Finally, we recall that the operator svec : R
n∨n → R

n̄ (see [5]) where n̄ :=
(1/2)n(n + 1) is defined by svec(U) := [U11,

√
2U21, . . . ,

√
2Un1,U22,

√
2U32, . . . ,√

2Un2, . . . ,Unn]T for U ∈ R
n∨n.
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3 Homogeneous Self-dual Methods for DSDPs

Given data Ai ∈ R
n∨n for i = 1,2, . . . ,m, b ∈ R

m and C ∈ R
n∨n, a DSDP in primal

standard form is defined as

minimize C • X

subject to AX = b

X � 0,

(2)

where X ∈ R
n∨n is the variable. The dual of (2) is

maximize bTy

subject to A∗y + S = C

S � 0,

(3)

where y ∈ R
m and S ∈ R

n∨n are the variables.
We briefly review the homogeneous interior point algorithm for DSDPs as in [6].

The homogeneous model for (2)–(3) is as follows:

AX −bτ = 0

−A∗y −S +τC = 0

−C • X +bTy −κ = 0

X � 0, S � 0, τ ≥ 0, κ ≥ 0.

(4)

It is easy to show from (4) that X • S + τκ = 0. The main step at each iteration
of the homogeneous interior point algorithm (shown below in Algorithm 1) is the
computation of the search direction (�X,�y,�S) from the symmetrized Newton
equations with respect to an invertible matrix P (which is chosen as a function of
(X,y,S)) defined by:

A�X −b�τ = ηrp

−A∗�y −�S +�τC = ηRd

−C • �X +bT�y −�κ = ηrg

κ�τ +τ�κ = γμ − τκ

E �X +F �S = γμI − HP (XS),

(5)

where rp := bτ − AX, Rd := A∗y + S − τC, rg := C • X − bTy + κ , μ :=
[1/(n + 1)](X • S + τκ), η and γ are two parameters, HP : R

n∨n −→ R
n∨n is

the symmetrization operator defined by HP (U) := 1
2 (PUP −1 + (P −1)TUTP T), and

E : R
n∨n −→ R

n∨n and F : R
n∨n −→ R

n∨n are the linear operators defined by
E := P � (P −1)TS and F := PX � (P −1)T, respectively.

Currently, the most common choices of symmetrization for search directions in
practice are as follows [7]:

– Helmberg–Rendel–Vanderbei–Wolkowicz/Kojima–Shindoh–Hara/Monteiro
(HKM) direction, corresponding to P := S1/2. In this case, we have that E = I
and F = X � S−1.

– Kojima, Shindoh, and Hara (KSH) direction (rediscovered by Monteiro), corre-
sponding to P := X−1/2. In this case, we have that E = S � X−1 and F = I .
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– Nesterov–Todd (NT) direction, corresponding to P := H−1/2, here H is the unique
symmetric positive definite matrix satisfying HXH = X, which can be calculated
by H = X1/2(X1/2SX1/2)−1/2X1/2. In this case, we have E = I and F = H � H .

Lemma 3.1 Suppose that X � 0, S � 0, and A1,A2, . . . ,Am are linearly indepen-
dent. Then for each of the above three choices of P , E −1 and F −1 exist, and E −1 F
and F −1 E are positive definite and self-adjoint.

Proof See [2]. �

We state the generic homogeneous algorithm as in [6].

Algorithm 1 Generic homogeneous self-dual algorithm for solving (2)–(3)
(X,y,S, τ, κ) := (I,0, I,1,1)

while a stopping criterion is not satisfied do
choose η, γ

compute the solution (�X,�y,�S,�τ,�κ) of the linear system (5)
compute a step length θ̄ so that
X + θ̄�X � 0,
S + θ̄�S � 0,
τ + θ̄�τ > 0, and
κ + θ̄�κ > 0
(X,y,S, τ, κ) := (X,y,S, τ, κ) + θ̄ (�X,�y,�S,�τ,�κ)

end while

4 Homogeneous Self-dual Algorithms for SSDPs

4.1 SSDPs with Finite Event Space

The general definition of a SSDP in primal standard form is stated in [3]. We consider
the special case in which the event space is finite with K realizations. Let (determin-
istic) data W

(i)
0 ∈ R

n0∨n0 for i = 1,2, . . . ,m0, h0 ∈ R
m0 and C0 ∈ R

n0∨n0 ; and real-

izations of random data B
(i)
k ∈ R

n0∨n0 , W
(i)
k ∈ R

n1∨n1 for i = 1,2, . . . ,m1, hk ∈ R
m1

and Ck ∈ R
n1∨n1 for k = 1,2, . . . ,K be given. Then a SSDP with finite event space

in primal standard form is the problem

minimize C0 • X0 + C1 • X1 + · · · + CK • XK

subject to W0X0 = h0

B1X0 + W1X1 = h1

...
. . .

...

BKX0 + WKXK = hK

X0, X1, · · · XK � 0,

(6)
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where X0 ∈ R
n0∨n0 and Xk ∈ R

n1∨n1 for k = 1,2, . . . ,K are the first-stage and
second-stage variables, respectively.

Problem (6) is a DSDP in primal standard form with block diagonal structure.
Algorithms that exploit this special structure are especially important when K is large
as is the case in typical applications.

The dual of (6) is

maximize hT
0y0 + hT

1y1 + · · · + hT
KyK

subject to W ∗
0 y0 + B∗

1y1 + · · · + B∗
KyK + S0 = C0

W ∗
1 y1 + S1 = C1

. . .
...

W ∗
KyK + SK = CK

S0, S1, · · · SK � 0,

(7)

where y ∈ R
(m0+Km1) and Sk ∈ R

(n0+Kn1)∨(n0+Kn1) for k = 1,2, . . . ,K are the vari-
ables.

Now Algorithm 1 can be applied to problem (6)–(7). In practice, K is very large.
Then problem (6)–(7) is large, and in particular, the computation of the search di-
rection in Algorithm 1 (i.e., the solution of the system (5)) is very expensive. As we
shall see in the next section, this computational work can be reduced significantly by
exploiting the special structure of problem (6, 7). In addition, the method we describe
in next section for the computation of the search direction decomposes into K smaller
computations that can be performed in parallel.

4.2 An Efficient Method for Computing Search Directions

We now describe a method for computing the search direction in Algorithm 1 that
exploits the special structure in (6), (7). The homogeneous model (4) for problem
(6)–(7) is

W0X0 − h0τ = 0

BkX0 + WkXk − hkτ = 0

−W ∗
0 y0 −

K∑

k=1

B∗
kyk + τC0 − S0 = 0

−W ∗
k yk + τCk − Sk = 0

K∑

k=0

hT
kyk −

K∑

k=0

Ck • Xk − κ = 0

Xk � 0, Sk � 0, k = 0,1,2, . . . ,K, τ ≥ 0, κ ≥ 0

(8)

where W ∗
k and B∗

k are adjoint operators with appropriate dimensions for k =
1,2, . . . ,K .
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The search direction system corresponding to (8) can be derived via (5) as

W0�X0 − h0�τ = ηrp0

Bk�X0 + Wk�Xk − hk�τ = ηrpk

−W ∗
0 �y0 −

K∑

k=1

B∗
k�yk + �τC0 − �S0 = ηRd0

−W ∗
k �yk + �τCk − �Sk = ηRdk

E0�X0 + F0�S0 = γμI0 − HP0(X0S0)

Ek�Xk + Fk�Sk = γμIk − HPk
(XkSk)

κ�τ + τ�κ = γμ − τκ

K∑

k=0

hT
k�yk −

K∑

k=0

Ck • �Xk − �κ = ηrg,

(9)

where rp0 := h0τ − W0X0; rpk
:= hkτ − BkX0 − WkXk ; Rd0 := W ∗

0 y0 +
∑K

k=1 B∗
kyk + S0 − τC0; Rdk

:= W ∗
k yk + Sk − τCk ; rg := κ − ∑K

k=0 hT
kyk +

∑K
k=0 Ck • Xk ; μ := (

∑K
k=0 Xk • Sk + τκ)/(n0 + Kn1 + 1); η and γ are two pa-

rameters; and Ek, Fk , and HPk
are linear operators which depend only on Xk and Sk ;

for 1,2, . . . ,K .
Now we present the crux of our method for finding the search direction as a so-

lution to (9). By the sixth equation of (9) and the fact that F −1
k for k = 1,2, . . . ,K

exist, we have �Sk = −F −1
k Ek�Xk + F −1

k (γμIk −HPk
(XkSk)) for k = 1,2, . . . ,K .

Substituting this into the fourth equation of (9), we get −W ∗
k �yk + �τCk +

F −1
k Ek�Xk = ηRdk

+ F −1
k (γμIk − HPk

(XkSk)) for k = 1,2, . . . ,K . By this equa-
tion and by the fact that (F −1

k Ek)
−1 = E −1

k Fk , because E −1
k exist, for k = 1,2, . . . ,K ,

we can express �Xk as

�Xk = E −1
k Fk W ∗

k �yk − E −1
k Fk(�τCk + ηRdk

)

+ E −1
k

(
γμIk − HPk

(XkSk)
)
. (10)

Substituting (10) into the second equation of (9), we have Bk�X0 +
Wk(E −1

k Fk W ∗
k �yk − E −1

k Fk(�τCk +ηRdk
)+ E −1

k (γμIk −HPk
(XkSk)))−hk�τ =

ηrpk
for k = 1,2, . . . ,K . Thus,

�yk = −M−1
k Bk�X0 + qk�τ + νk, (11)

where

Mk := Wk E −1
k Fk W ∗

k , qk := M−1
k

(
Wk E −1

k FkCk + hk

)
,

νk := M−1
k

(
ηrpk

− ηWk E −1
k FkRdk

− Wk E −1
k

(
γμIk − HPk

(XkSk)
))

,
(12)

for k = 1,2, . . . ,K . By the fifth equation of (9) and the fact that F −1
0 exists, we

get �S0 = −F −1
0 E0�X0 + F −1

0 (γμI0 − HP0(X0S0)). We use this equality and (11)

in the third equation of (9) and get −W ∗
0 �y0 − ∑K

k=1 B∗
k (−M−1

k Bk�X0 + qk�τ +
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νk) + �τC0 + F −1
0 E0�X0 − F −1

0 (γμI0 − HP0(X0S0)) = ηRd0 . From this relation,
we have

�X0 = M−1
0

(

W ∗
0 �y0 +

(
K∑

k=1

B∗
kqk − C0

)

�τ

)

+ M−1
0

(
K∑

k=1

B∗
kνk + ηRd0 + F −1

0

(
γμI0 − HP0(X0S0)

)
)

= M−1
0 W ∗

0 �y0 − T0�τ + U0, (13)

where

M0 := F −1
0 E0 +

K∑

k=1

B∗
kM

−1
k Bk, T0 := M−1

0

(

C0 −
K∑

k=1

B∗
kqk

)

,

U0 := M−1
0

(
K∑

k=1

B∗
k νk + ηRd0 + F −1

0

(
γμI0 − HP0(X0S0)

)
)

.

(14)

Now, substituting (13) into the first equation of (9), we have W0(M−1
0 W ∗

0 �y0 −
T0�τ + U0) − h0�τ = ηrp0 . Because W0 M−1

0 W ∗
0 is nonsingular (a fact to be dis-

cussed in Sect. 5), this equation leads us to

�y0 = (
W0 M−1

0 W ∗
0

)−1(
(W0T0 + h0)�τ + ηrp0 − W0U0

) = α0�τ + β0, (15)

where

α0 := (
W0 M−1

0 W ∗
0

)−1
(W0T0 + h0),

β0 := (
W0 M−1

0 W ∗
0

)−1
(ηrp0 − W0U0).

(16)

Now we substitute backward. First, we substitute (15) in (13) to get

�X0 = M−1
0 W ∗

0 (α0�τ + β0) − T0�τ + U0 = Ψ0�τ + Φ0, (17)

where

Ψ0 := M−1
0 W ∗

0 α0 − T0, Φ0 := M−1
0 W ∗

0 β0 + U0. (18)

Substituting (17) in (11), we obtain

�yk = −(
Wk E −1

k Fk W ∗
k

)−1 Bk(Ψ0�τ + Φ0) + qk�τ + νk = αk�τ + βk, (19)

where

αk := −(
Wk E −1

k Fk W ∗
k

)−1 BkΨ0 + qk, βk := αk − qk + νk (20)

for k = 1,2, . . . ,K . Furthermore, we substitute (19) in (10) to get

�Xk = E −1
k Fk W ∗

k (αk�τ + βk) − E −1
k Fk(�τCk + ηRdk

)

+ E −1
k

(
γμIk − HPk

(XkSk)
) = Ψk�τ + Φk, (21)

where

Ψk := E −1
k Fk W ∗

k αk − E −1
k FkCk

Φk := E −1
k Fk W ∗

k βk − E −1
k FkηRdk

+ E −1
k

(
γμIk − HPk

(XkSk)
)
,

(22)
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for k = 1,2, . . . ,K . Now, we substitute (15), (17), (19), and (21) in the last equation
of (9). By the seventh equation of (9), this yields

K∑

k=0

hT
k (αk�τ + βk) −

K∑

k=0

Ck • (Ψk�τ + Φk) − 1

τ
(−κ�τ + γμ − τκ) = ηrg.

Finally, �τ is given by

�τ = τηrg + τ
∑K

k=0(Ck • Φk − hT
kβk) + (γμ − τκ)

τ
∑K

k=0(h
T
kαk − Ck • Ψk) + κ

. (23)

We get other directions by (23), and move to the next iteration in Algorithm 1.

5 Complexity Analysis

In this section, we first show that under reasonable conditions the operations de-
scribed above are valid. Then we estimate the computational complexity of Algo-
rithm 1 with the method described in Sect. 4.2 applied on problem (6)–(7). Finally,
we compare that complexity to the complexity of Algorithm 1 applied on problem
(6)–(7) treating it as a generic primal-dual DSDP pair.

5.1 Validation of Computations

We assume that W
(1)
0 ,W

(2)
0 , . . . ,W

(m0)
0 , and W

(1)
k ,W

(2)
k . . . ,W

(m1)
k for k = 1,2,

. . . ,K are linearly independent. Then Mk for k = 1,2, . . . ,K in (12) are nonsingular
and positive definite by Lemma 3.1.

Now we will show that M0 in (14) is nonsingular and that W0 M−1
0 W ∗

0 is also
nonsingular.

Lemma 5.1 Suppose that W
(1)
0 ,W

(2)
0 , . . . ,W

(m0)
0 and that W

(1)
k ,W

(2)
k . . . ,W

(m1)
k are

linearly independent for k = 1,2, . . . ,K . Then M0 in (14) and W0 M−1
0 W ∗

0 are
positive definite.

Proof From (14), we have M0 = F −1
0 E0 + ∑K

k=1 B∗
kM

−1
k Bk . We have that F −1

0 E0

is positive definite by Lemma 3.1, so it suffices to show that B∗
kM

−1
k Bk is positive

semidefinite for k = 1,2, . . . ,K . Letting BkU = [B(1)
k •U,B

(2)
k •U, . . . ,B

(m1)
k •U ]T,

for each U ∈ R
n0∨n0 and M−1

k = [φ(k)
ij ]m1×m1 , we have

B∗
kM

−1
k BkU = B∗

k

[
φ

(k)
ij

]
m1×m1

[
B

(1)
k • U, . . . ,B

(m1)
k • U

]T

=
∑

i

∑

j

(
φ

(k)
ij B

(j)
k • U

)
B

(i)
k ,

for k = 1,2, . . . ,K . So

B∗
kM

−1
k BkU • U =

∑

i

∑

j

(
φ

(k)
ij B

(j)
k • U

)
B

(i)
k • U = (BkU)TM−1

k (BkU) ≥ 0.
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Table 1 Complexity estimates
for dominant steps in method of
Sect. 4.2

Equation number
of computation

Estimate of the number
of arithmetic operations

(12) O(K(m3
0 + m0n3

0))

(14) O(Km2
0n4

0 + n6
0)

(16) O(m2
0n2

0 + m3
0)

(18) O(m0n2
0)

(20) O(m2
0n2

0 + m3
0)

(22) O(m0n2
0)

The last inequality is due to the fact that M−1
k is positive definite. As in [2], we can

then show that W0 M−1
0 W ∗

0 is positive definite. �

5.2 Complexity Estimates

Theorem 5.1 Suppose that m1 = m0, n1 = n0 and that W
(1)
k ,W

(2)
k , . . . ,W

(m0)
k are

linearly independent for k = 0,1, . . . ,K . By utilizing method described in Sect. 4.2
for computing the search directions in Algorithm 1, we have that the number of arith-
metic operations in each iteration of Algorithm 1 is O(K(m3

0 + m2
0n

4
0) + n6

0).

Proof The dominant computations of the method in Sect. 4.2 occur at (12), (14),
(16), (18), (20), and (22). The corresponding numbers of arithmetic operations for
these computations are listed in Table 1. In particular, the computation in (14) will
be analyzed in detail. The total number of arithmetic operations is dominated by
O(K(m3

0 + m2
0n

4
0) + n6

0) for choices of P stated in Sect. 3.
We analyze the work of computation in (14). Now B∗

kM
−1
k Bk is a mapping from

R
n0∨n0 to itself. We use the operator svec : R

n0∨n0 → R
n̄0 where n̄0 := 1

2n0(n0 + 1),

to get the matrix of B∗
kM

−1
k Bk . For any U ∈ R

n0∨n0 ,

svec
(

B∗
kM

−1
k BkU

) = svec

(∑

i

∑

j

(
φ

(k)
ij B

(j)
k • U

)
B

(i)
k

)

=
∑

i

∑

j

(
φ

(k)
ij B

(j)
k • U

)
svec

(
B

(i)
k

)

=
∑

i

∑

j

φ
(k)
ij

(
svec

(
B

(j)
k

)T
svec(U)

)
svec

(
B

(i)
k

)

=
∑

i

∑

j

φ
(k)
ij

(
svec

(
B

(i)
k

)
svec

(
B

(j)
k

)T)
svec(U).
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The third equality above is from the relationship U • V = svec(U)T svec(V ) for
U,V ∈ R

n0∨n0 (see [5]). So the matrix of M0 = F −1
0 E0 +∑K

k=1 B∗
kM

−1
k Bk in R

n0∨n0

is given by

H0 +
K∑

k=1

m0∑

i=1

m0∑

j=1

φ
(k)
ij

(
svec

(
B

(i)
k

)
svec

(
B

(j)
k

)T)
, (24)

where H0 is the matrix of F −1
0 E0, which depends on different choices of symmetriza-

tion for search directions.
The number of arithmetic operations needed to compute svec(B(i)

k ) svec(B(j)
k )T is

O(n̄2
0) = O(n4

0), so the number of arithmetic operations needed for the second term in
(24) is O(Km2

0n
4
0). The inverse of (24) needs O(n̄3

0) = O(n6
0) arithmetic operations.

Finally, the arithmetic operations needed for M−1
0 is O(Km2

0n
4
0 + n6

0). Thus, the
arithmetic operations for (14) is dominated by O(K(m3

0 + m2
0n

4
0) + n6

0). �

If we use a generic homogeneous algorithm such as the one in [5], then the num-
ber of arithmetic operations required to compute the search directions for (6), (7)
is O(mn3 + m2n2 + m3), where n := (n0 + Kn1) and m := (m0 + Km1). Set-
ting m1 = m0 and n1 = n0 and substituting n = (1 + K)n0 and m = (1 + K)m0 in
O(mn3 +m2n2 +m3), we have that the complexity of such a generic method of com-
puting the search directions is O(K4(m0n

3
0 + m2

0n
2
0) + K3m3

0). This is much larger
than the complexity O(K(m3

0 + m2
0n

4
0) + n6

0) obtained for the method in Sect. 4.2
when K � m0 and K � n0.

If problem (6)–(7) has a solution, then the KSH method is globally convergent [6].
The algorithm finds an optimal solution or determines that the primal-dual pair has
no solution of norm less than a given number in at most O(n1/2L) iterations. Here,
n is the size of the problem and L is the logarithm of the ratio of the initial error and
the tolerance. So, by using the method in Sect. 4.2 for computing the search direc-
tion with KSH symmetrization, the complexity of Algorithm 1 in terms of the total
number of arithmetic operations is O(K1.5(m3

0n
0.5
0 +m2

0n
4.5
0 )+K0.5n6.5

0 ) to find a so-
lution or ascertain that the (8) has no solution. In comparison, the short- and long-step
decomposition algorithms of Ariyawansa and Zhu [4] have complexities of O(K1.5)

and O(K2), respectively, in terms of the total number of arithmetic operations.
We note that the efficient computation of the Schur computation matrix Mk in (12)

is crucial as this is the most expensive step in each iteration where usually 80 % of
the total CPU time is spent if the algorithm in [7] is used. However, in each iteration,
each Mk can be computed independently, and so distributed processing may be used
to achieve substantial reductions in computation time.

6 Concluding Remarks

In this paper, we have proposed homogeneous self-dual algorithms for Stochastic
Semidefinite Programming whose complexity is comparable to those of algorithms
in [4]. The efficient method for calculating the search directions we developed can
take advantage of parallel and distributed processing.
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