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Abstract In this paper, we propose an active set modified Polak–Ribiére–Polyak
method for solving large-scale optimization with simple bounds on the variables. The
active set is guessed by an identification technique at each iteration and the recently
developed modified Polak–Ribiére–Polyak method is used to update the variables
with indices outside of the active set. Under appropriate conditions, we show that the
proposed method is globally convergent. Numerical experiments are presented using
box constrained problems in the CUTEr test problem libraries.

Keywords Bound constrained optimization · Conjugate gradient method · Global
convergence

1 Introduction

The bound constrained problem is very important in practical optimization. Many
practical problems can be converted into the form of the problem. In addition, it often
a subproblem of augmented Lagrangian or penalty schemes for general constrained
optimization [1]. In recent works on complementarity and variational inequalities,
these problems are reduced to bound constrained minimization problems in an effi-
cient way [2]. Thus, the development of numerical algorithms to efficiently solve it,
especially when the dimension is large, is important in both theory and applications.
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The bound constrained optimization problem has received much attention in recent
decades. We refer to papers [1, 3] for a review on recent advances in this area.

Active set methods are widely used in solving the bound constrained optimiza-
tion problem. Early active set methods [4] are quite efficient for small dimensional
problems, but are unattractive for large-scale problems [5]. The main reason is that
typically at each step of the algorithm, at most one constraint can be added to or
dropped from the active set. The potential worst-case may appear, where each of the
possible 3n active sets is visited before discovering the optimal one [1]. Recently,
there has been a growing interest in the design of active set methods that are capable
of making rapid changes incorrect predictions [1, 6–11].

In [7], Facchinei, Júdice, and Soares proposed an efficient identification technique
of the active set at the solution and developed an active set Newton’s algorithm for
large-scale nonlinear programming with box constraints. The reported numerical re-
sults in [7] showed that this identification technique works well. Recently, based
on the identification technique, Xiao and Hu [12] proposed an active set subspace
Barzilai–Borwein gradient method (SBB). Preliminary numerical results show that
the identification technique works well and the SBB method is competitive with the
well-known SPG2 method [13].

Conjugate gradient methods are very efficient for solving large-scale uncon-
strained optimization problems due to their simplicity and low storage [14]. However,
the study of conjugate gradient method for nonquadratic bound constrained optimiza-
tion is relatively rare. In this paper, by the use of the active identification technique in
[7] and the recently developed modified Polak–Ribiére–Polyak (PRP) method [15],
we propose an active set modified PRP method for bound constrained optimization
problem. Specifically, at each iteration, the active variables and free variables are
defined by the identification technique [7]; we use the method in [7] to update the
active variables and use the modified PRP method to update the free variables. The
use of the modified PRP method makes the method require lower storage. Hence, the
method can be used to solve large-scale problems. In addition, the method possesses
the following advantages: all iterates are feasible and rapid changes in the active
set are allowed. Under appropriate conditions, we show that the proposed method is
globally convergent. The numerical experiments are also given using the bound opti-
mization problems from CUTEr [16] collection with more than 500 variables, which
shows that the proposed method is competitive with some existing methods such as
the SPG2 method [13] and the ASA method [3].

The remainder of the paper is organized as follows. We propose the algorithm in
Sect. 2. In Sect. 3, we show that the proposed algorithm is globally convergent. In
Sect. 4, we test the performance of the proposed algorithm and compare it with the
SPG2 method and the ASA method.

2 Motivation and Properties

Throughout the paper, ‖.‖ denotes the Euclidean norm of vectors. Let PΩ(x) denote
the projection of x on the set Ω . If w = (w1,w2, . . . ,wn)

T is a n dimension vector
and I is an index set such that I ⊂ {1,2, . . . , n}, we denote by wI the subvector
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with components wi, i ∈ I , and denote by wI ≥ 0 the subvector with components
wi ≥ 0, i ∈ I .

Consider the solution of the bound constrained nonlinear programming problem
{
minf (x), x ∈ Ω := {

x ∈ Rn : l ≤ x ≤ u
}}

, (1)

where f is a real-valued, continuously differentiable function in an open set contain-
ing Ω , l and u are constant vectors, and the inequalities are valid component wise.
Let x̄ be a stationary of (1), and consider the associated active sets

L̄ := {i : x̄i = li}, Ū := {i : x̄i = ui}.
Furthermore, let

F̄ := {1, . . . , n}\(L̄ ∪ Ū )

be the set of the free variables. By using this notation, a vector x̄ is said to be a
stationary point for (1) iff it satisfies:

⎧
⎨

⎩

i ∈ L̄ ⇒ gi(x̄) ≥ 0
i ∈ F̄ ⇒ gi(x̄) = 0
i ∈ Ū ⇒ gi(x̄) ≤ 0

(2)

where gi(x) is the ith component of the gradient vector of f at x. Facchinei, Júdice,
and Soares [7] gave the following approximations L(x), F(x) and U(x) to L̄, F̄ , Ū ,
respectively,

L(x) := {
i : xi ≤ li + ai(x)gi(x)

}
,

U(x) := {
i : xi ≥ ui + bi(x)gi(x)

}
,

F (x) := {1, . . . , n}\(
L(x) ∪ U(x)

)
,

where ai(x) and bi(x), i = 1, . . . , n are nonnegative, continuous, and bounded func-
tions defined on Ω , such that if xi = li or xi = ui then ai(x) > 0 or bi(x) > 0, re-
spectively. The following theorem shows that L(x), F(x), and U(x) are indeed good
estimates of L̄, F̄, and Ū . For the proof, see Theorem 3.1 in [7].

Theorem 2.1 For any x ∈ Ω , L(x) ∩ U(x) = O. Furthermore, if x̄ is a stationary
point of problem (1) at which the strict complementarity holds, then there exists a
neighborhood N(x̄) of x̄ such that

L(x) = L̄, F (x) = F̄ , U(x) = Ū , ∀ x ∈ N(x̄).

Following the idea of [7], we are going to develop an active set modified PRP
method as follows. We firstly define the search direction. Let xk ∈ Ω be the current
point at iteration k. For simplicity, we let Lk := L(xk), Uk := U(xk), and Fk :=
F(xk). Define the direction dk = (dk

Lk , d
k
Fk , d

k
Uk )

T by

dk
i := li − xk

i , i ∈ Lk (3)

and

dk
i := ui − xk

i , i ∈ Uk. (4)
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In what follows, we are going to define dk
Fk . For this, we define the active set indices

of f at xk as follows:

A
(
xk

) := {
i : xk

i = li or xk
i = ui

}
.

The active indices are further subdivided into those indices:

A1
(
xk

) := {
i : xk

i = li , gi

(
xk

) ≥ 0
}
, A2

(
xk

) := {
i : xk

i = li , gi

(
xk

)
< 0

}

and

A3
(
xk

) := {
i : xk

i = ui, gi

(
xk

) ≤ 0
}
, A4

(
xk

) := {
i : xk

i = ui, gi

(
xk

)
> 0

}
.

It is clearly that a direction d is a feasible direction of f at xk if and only if di ≥ 0, i ∈
A1(x

k) ∪ A2(x
k) and di ≤ 0, i ∈ A3(x

k) ∪ A4(x
k). Furthermore, from the definitions

of L(xk), U(xk) and A1(x
k) − A4(x

k) we can observe that the following fact holds:

A1
(
xk

) ⊆ L
(
xk

)
, A3

(
xk

) ⊆ U
(
xk

)
and

A2
(
xk

) ∩ L
(
xk

) = ∅, A4
(
xk

) ∩ U
(
xk

) = ∅.

By (3) and (4), we have dk
i ≥ 0, i ∈ A1(x

k) and dk
i ≤ 0, i ∈ A3(x

k). However, we
can not determine the relation between A2(x

k) and U(xk) and the relation between
A4(x

k) and L(xk). Let A∗
2(x

k) := A2(x
k) ∩ U(xk), A∗

4(x
k) := A4(x

k) ∩ L(xk) and
F ∗(xk) := F(xk)|((A4(x

k)−A∗
4(x

k))∪ (A2(x
k)−A∗

2(x
k))). It follows from (3) and

(4) that dk
i ≥ 0, i ∈ A∗

2(x
k) and dk

i ≤ 0, i ∈ A∗
4(x

k). Thus, we let

dk
i := −gk

i , i ∈ (
A4

(
xk

) − A∗
4

(
xk

)) ∪ (
A2

(
xk

) − A∗
2

(
xk

))
(5)

and

dk
F ∗k :=

{−gk
F ∗k , iff k = 0 or

∥
∥gk−1

F ∗k

∥
∥ ≤ ε,

−gk
F ∗k + βPRP

k dk−1
F ∗k − ηky

k−1
F ∗k , iff k > 0 and

∥∥gk−1
F ∗k

∥∥ > ε,
(6)

where

βPRP
k := (gk

F ∗k )
T yk−1

F ∗k

‖gk−1
F ∗k ‖2

, ηk := (gk
F ∗k )

T dk−1
F ∗k

‖gk−1
F ∗k ‖2

, yk−1
F ∗k := gk

F ∗k − gk−1
F ∗k

and ε > 0 is given a constant. From the above discussion, we can see that dk is a
feasible direction of f at xk . Moreover, it is not difficult to see from (5) and (6) that
dk
Fk satisfies

(
gk

Fk

)T
dk
Fk = −∥∥gk

Fk

∥∥2
. (7)

The following two theorems show that dk is a descent direction f at xk , if xk is
not a stationary point of (1).

Theorem 2.2 If {xk} ∈ Ω , then dk = 0 if and only if xk is a stationary point of (1).

Proof Let dk = 0. For i ∈ Lk , by (3) and (4) we have

0 = dk
i = li − xk

i ≥ −ai

(
xk

)
gi

(
xk

)
.
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Since xk
i = li , ai(x

k) > 0, it holds that gi(x
k) ≥ 0. For each i ∈ Uk we have

0 = dk
i = ui − xk

i ≤ −bi

(
xk

)
gi

(
xk

)
,

This implies that gi(x
k) ≤ 0. From the above discussion, we have A2(x

k) ∪
A4(x

k) = ∅. Thus, F ∗k = Fk . For i ∈ Fk , by the use of Cauchy–Schwarz inequality
to (7), we have

∥∥gk
Fk

∥∥ ≤ ∥∥dk
Fk

∥∥.

Hence, gi(x
k) = 0 for each i ∈ Fk . The above argument has shown that xk is a sta-

tionary point of f on Ω .
Suppose that xk be a stationary point of f on Ω . Then we have A2(x

k)∪A4(x
k) =

∅ and F ∗k = Fk . It follows from (2) that

Lk = {i : xk
i = li}, F k = {i : li < xk

i < ui}, Uk = {i : xk
i = ui}.

By the definition of dk , we immediately have dk = 0. The proof is complete. �

Theorem 2.3 Suppose that xk be not a stationary point of (1). Then the direction dk

determined by (3)–(6) is a descent direction of f at xk .

Proof Following a similar proof as the proof of Theorem 3.2 in [7], it is not difficult
to show that for each i ∈ Lk ∪ Uk , there exists a positive scalar γi such that

gk
i d

k
i ≤ −γi

(
dk
i

)2
, (8)

This together with (7) implies that
(
gk

)T
dk ≤ −∥∥gk

Fk

∥∥2 +
∑

i∈Lk∪Uk

−γi

(
dk
i

)2
. (9)

Since xk is not a stationary point of (1), by Theorem (2.2), there must exist an index
i such that at least one of the two possibilities holds:

(1) dk
i �= 0, i ∈ Lk ∪ Uk or

(2) gk
i �= 0, i ∈ Fk.

Therefore, the right-hand side of (9) must be negative. In other words, dk is a descent
direction of f at xk . The proof is complete. �

Based on the above discussion, we propose an active set PRP-type method (APRP)
for (1) as follows.

Algorithm 2.1 (APRP)

Step 0. Given initial point x0 ∈ Ω and positive constants ρ, β , ε1 and δ ∈]0,1[. Set
k := 0.

Step 1. If ‖PΩ(xk − gk) − xk‖ ≤ ε1, then stop.
Step 2. Compute dk by (3)–(6).
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Step 3. Determine αk := max{βρj , j = 0,1, . . .} satisfying

f
(
PΩ

(
xk + αkdk

)) ≤ f
(
xk

) − δ
(
αk

∥
∥dk

∥
∥)2

. (10)

Step 4. Let the next iterate be xk+1 := xk + αkdk .
Step 5. Let k := k + 1 and go to Step 1.

Remark 2.1 Since the direction dk is a feasible descent direction of f at xk , there
exists a positive constant βk such that xk + αdk ∈ Ω when 0 < α < βk . This implies

f
(
PΩ

(
xk + αkdk

)) = f
(
xk + αkdk

)
for 0 < αk < βk.

Clearly, Theorem 2.3 implies that the condition (10) necessarily holds after a finite
number of reduction of β . Consequently, Algorithm 2.1 is well defined. In addition,
it follows from (10) that the function value sequence {f (xk)} is decreasing. We also
have from (10) that

∞∑

k=0

(
αk

)2∥∥dk
∥∥2

< ∞,

if f is bounded from below. In particular, we have

lim
k→∞αk

∥∥dk
∥∥ = 0. (11)

3 Convergence Analysis

In this section, we analyze the convergence of Algorithm 2.1. To this end, we make
the following assumptions.

Assumption 3.1

(i) The level set D := {x ∈ Ω : f (x) ≤ f (x0)} is bounded.
(ii) In some neighborhood N of D, f is continuously differentiable and its gradient

is Lipschitz continuous, namely, there exists a constant L > 0 such that
∥∥g(x) − g(y)

∥∥ ≤ L‖x − y‖, ∀x, y ∈ N. (12)

Since {f (xk)} is decreasing, it is clearly that the sequence {xk} generated by Al-
gorithm 2.1 is contained in D. In addition, from Assumption 3.1, we get that there is
a constant γ > 0 such that

∥∥g(x)
∥∥ ≤ γ, ∀x ∈ D. (13)

The following lemma shows that the sequence {dk} generated by Algorithm 2.1 is
bounded, also.

Lemma 3.1 Let the sequence {xk} be generated by Algorithm 2.1. Then there exists
a constant M > 0 such that

∥∥dk
∥∥ ≤ M, ∀k. (14)
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Proof First, by (8), there exists a constant γ̄ > γ such that
∥∥dk

Lk∪Uk

∥∥ ≤ γ̄ .

This together with the definition of dk , (12) and (13) implies that
∥∥dk

∥∥ ≤ ∥∥dk
Lk∪Uk

∥∥ + ∥∥dk
Fk

∥∥

≤ γ̄ + ∥∥gk
Fk

∥∥ + 2
‖gk

Fk‖‖dk−1
Fk ‖‖yk−1

Fk ‖
‖gk−1

Fk ‖2

≤ 2γ̄ + 2
‖gk‖‖dk−1‖‖yk−1‖

ε2

≤ 2γ̄ + 2
γ̄ Lαkk − 1

∥∥dk−1
∥∥

ε2

∥∥dk−1
∥∥.

By (11), there exists a constant r ∈]0,1[ and an integer k0 such that the following
inequality holds for all k ≥ k0,

2Lγ̄

ε2
αk−1

∥∥dk−1
∥∥ ≤ r.

Hence, we have for all k ≥ k0

∥∥dk
∥∥ ≤ 2γ̄ + r

∥∥dk−1
∥∥

≤ 2γ̄
(
1 + r + r2 + · · · + rk−k0+1) + rk−k0

∥∥dk0
∥∥

≤ 2
γ̄

1 − r
+ ∥∥dk0

∥∥.

Letting M := max{‖d1‖,‖d2‖, . . . ,‖dk0‖,2 γ̄
1−r

+ ‖dk0‖}, we get (14). �

Lemma 3.2 Let the sequence {xk} and {dk} be generated by Algorithm 2.1. If there
are subsequences {xk}k∈K → x̂ and {dk}k∈K → 0, then x̂ is a stationary point of (1).

Proof Since the number of distinct sets Lk , Uk and Fk is finite, without loss of
generality, we can assume that the following relations hold for all k ∈ K

Lk = L, F k = F, Uk = U.

Since dk
L → 0 and dk

U → 0, we obviously have

x̂L = lL, gL(̂x) ≥ 0, and x̂U = uU , gU (̂x) ≤ 0.

On the other hand, by (7), we have
∥∥gk

F

∥∥ ≤ ∥∥dk
F

∥∥.

Consequently, we obtain ‖gk
F (̂x)‖ = 0. The proof is complete. �

The following theorem shows that there exists an accumulation point of {xk} that
is a stationary point of (1).
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Theorem 3.1 Let {xk} be generated by Algorithm 2.1. Then we have

lim
k→∞ inf

∥∥dk
∥∥ = 0. (15)

Proof For the sake of contradiction, we suppose that (15) is not true. Then there
exists a constant ε > 0 such that

∥∥dk
∥∥ ≥ ε, ∀k.

This together with (11) implies that limk→∞ αk = 0. By the line search rule, ρ−1αk ≤
βk does not satisfy (10) when k is sufficiently large. This means

f
(
xk + ρ−1αkdk

) − f
(
xk

)
> −δρ−2(αk

)2∥∥dk
∥∥2

. (16)

By the mean-value theorem and (12), there exists a constant 0 < θk < 1 such that

f
(
xk + ρ−1αkdk

) − f
(
xk

)

= ρ−1αkg
(
xk + θkρ−1αkdk

)T
dk

= ρ−1αk
(
gk

)T
dk + ρ−1αk

(
g
(
xk + θkρ−1αkdk

) − gk
)T

dk

≤ ρ−1αk
(
gk

)T
dk + Lρ−2(αk

)2∥∥dk
∥∥2

.

where L is the Lipschitz constant of g. Substituting the last inequality into (16), we
get for all k sufficiently large

0 ≤ −(
gk

)T
dk ≤ (L + δ)ρ−1αk

∥∥dk
∥∥2

.

Since {dk} is bounded and limk→∞ αk‖dk‖ = 0, the last inequality implies

lim
k→∞−(

gk
)T

dk = 0.

This together with (9) implies that

lim
k→∞

∥∥gk
Fk

∥∥2 = 0 and lim
k→∞

∑

i∈Lk∪Uk

γi

(
dk
i

)2 = 0. (17)

Since {xk} is bounded, there exists an infinite index set K1 such that limk∈K1 xk = x∗.
Hence, (17) together with (3)–(4) implies that x∗ is a stationary point of (1). By
Theorem 2.2, we have limk∈K1‖dk‖ = 0. This yields a contradiction. �

4 Numerical Experiments

In this section, we do some numerical experiments to test the performance of
the APRP method and compare it with the SPG2 method [13, 17] and the
ASA method [3]. The SPG2 code was obtained from Birgin’s web page at:
http://www.ime.usp.br/~egbirgin/tango/. The ASA code was obtained from Hager’s
web page at: http://www.math.ufl.edu/~hager/. The SPG2 code and the APRP code
were written in Fortran 77 and the ASA code was written in C. All codes were run on
a PC with Pentium IV 3.0 GHz CPU processor and 512 M RAM memory and with a
Linux operating system.

http://www.ime.usp.br/~egbirgin/tango/
http://www.math.ufl.edu/~hager/
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The ASA code and the SPG2 code were implemented with default parameters. We
implemented the APRP code with the following parameters: δ = 10−4, ρ = 0.5, ε =
10−6 and

β :=
⎧
⎨

⎩
min

{
1.0,1.01

gT
k−1dk−1

gT
k dk

}
, iff k > 0

1
‖g(x0)‖∞ , iff k = 0.

Moreover, we also test the APRP method with different parameters ai(x) and bi(x)

to see that ai(x) = bi(x) = 10−6 is the best choice.
The test problems consists of 52 box constrained problems in the CUTEr library

[16] with dimensions between 500 and 15625. For each test problem and all tested
methods, the termination condition is

∥∥PΩ

(
xk − g

(
xk

)) − xk
∥∥∞ ≤ 10−6.

A limit of 5000 iterations is also imposed. In running the numerical experiments,
we checked whether different codes converged to different local minimizers; when
comparing the codes, we restricted ourselves to test problems in which all codes
converged to the same local minimizer. The detailed numerical results concerned
with the CPU time in seconds and the number of iterations, function evaluations, and
gradient evaluations for each of the tested method are posted at the following Web
site: http://bgchengwy.blog.163.com/.

First, we note that the SPG2 method fails to satisfy the termination in the problems
LINVERSE (999), QRTQUAD (1200–5000), and JNLBRNGB (9375–15625), while
the APRP method and the ASA method fails to satisfy the termination in the same
problems QRTQUAD (1200–5000). More insight into the numerical results, we con-
sider the statistics “iter,” “fun,” “grad,” “time” and list the number of problems where
any method achieves the best value on the number of iteration, function evaluations,
gradient evaluations and CPU time in Table 1.

From the above table, we observe that the APRP method works efficiently, which
require fewer iterations, fewer function evaluations, fewer gradient evaluations, and
less time consuming. Further to show the efficiency of the APRP method, we adopt
the performance profiles introduced by Dolan and Moré [18] to evaluate CPU time
in Fig. 1. It is not difficult to see from Fig. 1 that the APRP method performs best
among all the methods on CPU time. In particular, both the APRP method and the
ASA method can solve about 96 % of the test problems, whereas the SPG2 method
can solve about 90 % of the test problems. In summary, the results from Table 1 and
Fig. 1 show that the APRP method provides an efficient method for solving large-
scale nonlinear box constrained problems.

Table 1 Statical data for 52
problems Method Iter Fun Grad Time

SPG2 0 7 0 3

ASA 15 11 10 10

APRP 38 32 40 42

http://bgchengwy.blog.163.com/
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Fig. 1 Performance profiles based on number of CPU time

5 Conclusions

In this paper, we have introduced an active set modified PRP method for large-scale
optimization with simple bounds on the variables. Under appropriate conditions, we
show that the proposed method is globally convergent. The implementation of the
algorithm uses an active set identification technique to estimate the active variables
at each iteration, and determine the search direction of free variables by the modified
PRP conjugate gradient method. The active set identification strategy allows rapid
changes in the active set from one iteration to the next, and the cost of computing the
search direction of active variables is reduced. We think that our algorithm is practical
and effective for the test problems.
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