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Abstract The paper is concerned with the control of the shape of rigid and elastic
inclusions and crack paths in elastic bodies. We provide the corresponding problem
formulations and analyze the shape sensitivity of such inclusions and cracks with
respect to different perturbations. Inequality type boundary conditions are imposed at
the crack faces to provide a mutual nonpenetration between crack faces. Inclusion and
crack shapes are considered as control functions and control objectives, respectively.
The cost functional, which is based on the Griffith rupture criterion, characterizes the
energy release rate and provides the shape sensitivity with respect to a change of the
geometry. We prove an existence of optimal solutions.

Keywords Rigid inclusion · Inclusion shape · Crack · Nonpenetration condition ·
Variational inequality · Control problem

1 Introduction

Crashworthiness and resistance against damage and failure is the driving motivation
in recent research on influencing the energy release rate in brittle composite mate-
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rials. In particular, in material sciences, one intends to improve such properties us-
ing elastic or rigid fibers or inclusions. The influence of the shapes and the material
properties of inclusions or applied boundary forces on crack-tip sensitivities is a chal-
lenging mathematical problem that can be denoted as a crack-control problem. Some
attempts have been made in the literature. See [1] which initialized this field of re-
search in studying a distributed control problem for the Laplacian with a linear crack,
that is, a crack where no nonpenetration condition is assumed to hold. The goal of
that paper was to stop the crack propagation under the action of the control. In [2, 3],
the problem of crack control has been treated with a nonpenetration condition along
the crack and boundary controls. The authors of the very recent paper [4] consider
the shape of inclusions with different material properties as controls, but take a linear
crack model for a problem in conductivity. See also [5] for examples in mechani-
cal engineering, where sensitivities are typically based on FEM-models. All articles
mentioned are concerned with the reduction of the energy release rate. To the best
knowledge of the authors, there is no published paper available, which is concerned
with shape variations of rigid inclusions in order to influence the energy release rate
associated with nonpenetrating cracks. This leads to a problem of shape-optimization
in the context of variational inequalities; see [6] for an approach involving obstacles.
The maximization of the energy release rate, rather its reduction, is important in some
cases, where one wants to release as much energy as possible such that the material
does not undergo a global crack. A first attempt toward optimization of the shape
of inclusion with respect to maximizing the energy release rate have been reported
in [7–11]. However, a rigorous mathematical treatment on the infinite dimensional
level is still in its infancy. The corresponding analysis strongly depends on the math-
ematical modeling of cracks. It is known that classical crack problems in elasticity
are characterized by linear boundary conditions imposed at the crack faces. Such a
linear approach allows the opposite crack faces to penetrate each other which leads
to inconsistency from the practical standpoint. In recent years, a crack modeling with
nonpenetration conditions has been under active study. The corresponding theory is
characterized by inequality type boundary conditions at the crack faces, and it leads to
free boundary value problems. The book [12] contains results for crack models with
the nonpenetration conditions for a wide class of constitutive laws. Existence theo-
rems and qualitative properties of solutions in equilibrium problems for elastic bodies
with rigid inclusions can be found in [13–18]. Elastic behavior of bodies with cracks
is analyzed in the book [19]. As for a differentiability of energy functionals with re-
spect to the crack length in elasticity, we can also mention the papers [20–22]. The
problem of crack sensitivities with respect to length changes has been approached in
the general setting of the speed method originally designed for shape-optimization
problems. We refer the reader to publications [20–24]. In order to describe compos-
ite materials, it is necessary to analyze mathematical models of elastic bodies with
rigid inclusions and cracks. In such a case, new types of boundary value problems
and boundary conditions appear. Problems of the optimal choice of crack shapes and
optimal choice of boundaries in elastic bodies with cracks are considered in [7, 8,
23–25].

The paper is organized as follows. In Sect. 2, we provide some basic notations and
discuss the underlying equilibrium problem with crack γ . In Sect. 3, we introduce
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shape variations with respect to the rigid inclusion via the speed-method. We prove
continuous dependence of the solution with respect to such shape variations. For a
given shape of the rigid inclusion with support disjoint from the crack, we consider
the shape derivative of the potential energy with respect to the crack length—for a
straight crack in Sect. 4 and for curvilinear cracks in Sect. 5. This provides a formula
for the energy release rate. We prove that the optimal control problem which consists
in maximizing the energy release rate has a solution. Optimality conditions remain
open. Finally, in Sect. 6, we relax the rigidity of the inclusion and discuss elastic
inclusions which, as a stiffness parameter tends to zero, recovers the rigid situation.
A numerical treatment of this approach is under way.

2 Formulation of the Equilibrium Problem

Let Ω ⊂ R
2,ω ⊂ R

2 be bounded domains with smooth boundaries Γ,∂ω, respec-
tively, and let ∂ω ∩ Γ = ∅,ω ⊂ Ω . We assume that γ, ⊂ Ω be a smooth curve with-
out self-intersections such that γ̄, ⊂ Ω,γ, ∩ ω̄ = ∅. Denote by n(x) = (n1(x), n2(x))

the exterior unit normal vector to ∂ω, x ∈ ∂ω, by ν = (ν1, ν2) a smooth normal field
to γ,, and set Ωγ = Ω \ γ̄,; see Fig. 1.

In the sequel, the domain Ωγ represents a region filled with elastic material, con-
taining the rigid inclusion ω and the crack γ,. The latter is composed of the two crack
faces γ +

, and γ −
, . On Ωγ, , we consider an elasticity problem for the displacement

fields u on Ωγ, with nonlinear boundary conditions on the crack faces γ ±
, , which

prevent the mutual penetration between γ ±
, . For the precise formulation, we keep in

mind that the notion of a rigid inclusion ω allows only displacement fields ρ =: u|ω
in the set R(ω) of infinitesimal rigid displacements on ω, where

R(ω) = {
ρ(x) := d(x2,−x1) + (c1, c2) | c1, c2, d ∈ R, x ∈ ω

}
.

In what follows, displacements of the elastic body found at the crack faces γ +
, , γ −

,

are different in general. Hence, we denote by [v] := v+ − v− the jump of a function
v on γ,, where v± is the trace (the boundary value) of the function v on the crack face
γ ±, respectively.

Now the problem formulation for the body with elastic and rigid parts Ωγ \ ω̄

and ω, respectively, and the crack γ, reads as follows. For given external forces f ∈

Fig. 1 Elastic body with rigid
inclusion ω and crack γ,
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C1(Ω)2 acting on the body Ω , we want to find a displacement field u = (u1, u2)

defined on Ωγ , together with an infinitesimal rigid motion ρ0 ∈ R(ω) such that

−divσ = f in Ωγ, \ ω̄, (1)

σ − Aε(u) = 0 in Ωγ, \ ω̄, (2)

u = ρ0 in ω, (3)

u = 0 on Γ, (4)

−
∫

∂ω

σn · ρ =
∫

ω

f · ρ ∀ρ ∈ R(ω), (5)

[u]ν ≥ 0, [σν] = 0, σν · [u]ν = 0, σν ≤ 0, στ = 0 on γ,. (6)

Here, u = (u1, u2) is the displacement field in Ωγ , σ = {σij } is the stress ten-
sor; ε(u) = {εij (u)} is the strain tensor: εij (u) = 1

2 (ui,j + uj,i), i, j = 1,2; and
A = {aijkl}, i, j, k, l = 1,2, is a given elasticity tensor with the usual properties of
symmetry and positive definiteness,

aijkl = ajikl = aklij , i, j, k, l = 1,2, aijkl = const,

aijklξij ξkl ≥ c0|ξ |2 ∀ξji = ξij , c0 = const > 0.

Summation convention over repeated indices is used; all functions with two lower
indices are assumed to be symmetric in those indices.

Relation (1) is the equilibrium equation, and (2) represents the Hooke’s law;
σ = σ(u) is defined from (2); σn = (σ1j nj , σ2j nj ), σν = σij νj νi , στ = σν − σνν;
f · v = fivi .

The boundary conditions (6) imposed at the crack faces were analyzed in many
works; see, for example, [12, 19]. In particular, the first condition of (6) provides a
mutual non-penetration between the crack faces. As for the boundary condition (5),
see [14, 25].

In order to provide a variational formulation describing an equilibrium state for
the described structure with the rigid inclusion ω and the crack γ, we introduce the
Sobolev space

H 1
Γ (Ωγ,) = {

v ∈ H 1(Ωγ,) | v = 0 on Γ
}

and the set K of admissible displacements,

K := {
v ∈ H 1

Γ (Ωγ )2 | [v]ν ≥ 0 on γ,;v|ω ∈ R(ω)
}
.

Let

Π(v) := 1

2

∫

Ωγ \ω̄
σ (v) : ε(v) −

∫

Ωγ

f · v
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be the energy functional. Here, σ(v) : ε(v) := σij (v)εij (v). Consider the minimiza-
tion problem:

Find u ∈ K s.t. Π(u) = inf
v∈K

Π(v). (7)

This problem has a unique solution satisfying the following variational inequality,
i.e., there exists a unique

u ∈ K, (8)
∫

Ωγ \ω̄
σ (u) : ε(v − u) −

∫

Ωγ

f · (v − u) ≥ 0 ∀v ∈ K. (9)

Note that in the first integral of (9) we can, in fact, integrate over Ωγ, formally
assuming that the Hooke’s law (2) holds in ω. We should also remark that the solution
of (8)–(9) exists also for f = (f1, f2) ∈ L2(Ω). The additional regularity of f will
be used in the further analysis.

Problem formulations (1)–(6) and (8)–(9) are equivalent, which means that we can
derive (8)–(9) from (1)–(6), and conversely, (1)–(6) follows from (8)–(9), provided
that the solutions are smooth enough.

3 Shape Perturbation for the Rigid Inclusion

In this section, we are going to prove the continuous dependence of the solution to
the problem (1)–(6) on the shape of the rigid inclusion ω. To this end and for the
sake of simplicity, consider a function ξ ∈ H 2

0 (0,1), and assume that a part of the
boundary ∂ω be described as a graph of the function x2 = λξ(x1), x1 ∈]0,1[, with
a small parameter λ. The domain ω corresponding to the parameter λ is denoted by
ωλ, with corresponding boundary ∂ωλ. Furthermore, we require that γ ∩ ω̄λ = ∅ for
|λ| ≤ λ0. We aim at proving the continuity of the mapping λ → uλ, where uλ is
the displacement field for the problem (1)–(6), with ω replaced with ωλ, for a given
parameter λ. First, we formulate the equilibrium problem for a given parameter λ.
We have to find functions uλ = (uλ

1, uλ
2), ρλ

0 ∈ R(ωλ), σλ = {σλ
ij }, i, j = 1,2, defined,

respectively, in Ωγ,ω
λ,Ωγ \ ω̄λ such that

−divσλ = f in Ωγ, \ ω̄λ, (10)

σλ − Aε
(
uλ

) = 0 in Ωγ, \ ω̄λ, (11)

uλ = ρλ
0 in ω; uλ = 0 on Γ, (12)

−
∫

∂ωλ

σ λnλ · ρ =
∫

ωλ

f · ρ ∀ρ ∈ R
(
ωλ

)
, (13)

[
uλ

]
ν ≥ 0,

[
σλ

ν

] = 0, σ λ
ν ≤ 0, σ λ

τ = 0, σ λ
ν · [uλ

]
ν = 0 on γ,, (14)
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where nλ is the exterior unit normal vector to ∂ωλ. The problem (10)–(14), for a
given λ, can be written in variational form again. The set of admissible displacements
is now

Kλ = {
v ∈ H 1

Γ (Ωγ )2 | [v]ν ≥ 0 on γ,;v|ωλ ∈ R
(
ωλ

)}
,

and we consider the minimization problem

Find u ∈ Kλ s.t.

{
1

2

∫

Ωγ \ω̄λ

σ (v) : ε(v) −
∫

Ωγ

f · v
}

→ min . (15)

As mentioned above, we have
∫

Ωγ \ω̄λ

σ (v) : ε(v) =
∫

Ωγ

σ (v) : ε(v) for v ∈ Kλ,

the minimization problem (15) differs from (7) just by the set of admissible functions.
Problem (15) again has a unique solution uλ satisfying the variational inequality

uλ ∈ Kλ, (16)
∫

Ωγ \ω̄λ

σ
(
uλ

) : ε(v − uλ
) −

∫

Ωγ

f · (v − uλ
) ≥ 0 ∀v ∈ Kλ. (17)

Note that the inequality (17) implies

∫

Ωγ

σ
(
uλ

) : ε(uλ
) =

∫

Ωγ

f · uλ, (18)

and consequently, we have the following estimate which holds uniformly in λ:

∥∥uλ
∥∥

H 1
Γ (Ωγ )2 ≤ c. (19)

Hence, if λn → 0 for some sequence (λn), we obtain u0 ∈ H 1
Γ (Ωγ ) such that

uλn → u0 weakly in H 1
Γ (Ωγ )2 (20)

for a suitable subsequence again denoted by uλn . It will turn out later (see Theo-
rem 3.1) that u0 is the unique solution to the variational inequality (8), hence (9) is
independent of the approximating sequence λn.

Now we consider a transformation of the independent variables in Ωγ :

y = x + λV (x), x, y ∈ Ωγ,

V = (
V 1,V 2), V 1(x) = 0, V 2(x) = ξ(x1)θ(x),

(21)

where θ(x) is a smooth function with a compact support in Ωγ , disjoint from
a neighborhood of the crack, equal to 1 in a small neighborhood of the graph
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x2 = λξ(x1), |λ| ≤ λ0. In this case, we assume ξ(x1) = 0 outside of [0,1]. The trans-
formation (21) can be written in the form

y = Φ(λ,x), x, y ∈ Ωγ ; Φ = (
Φ1,Φ2). (22)

Clearly, for a small λ, the transformation (22) is one-to-one. The inverse to (22) map-
ping is denoted by

x = Ψ (λ,y), x, y ∈ Ωγ ; Ψ = (
Ψ 1,Ψ 2). (23)

It is convenient to introduce notations for the transformed stress and strain tensors.
For a given w ∈ H 1

Γ (Ωγ )2 we put

Σij (Ψ ;w) := aijklEkl(Ψ ;w),

Eij (Ψ ;w) := 1

2

(
wi,kΨ

k
,j + wj,kΨ

k
,i

)
, i, j = 1,2.

By J (λ), we denote the Jacobian of the mapping x → Φ(λ,x),

J (λ) =
∣∣∣∣
∂Φ(λ, x)

∂x

∣∣∣∣.

From (21), (23), it follows

Ψ (λ,y) = y − λV (y) + r(λ),
∥∥r(λ)

∥∥
W 1,∞(Ωγ )2 = o(λ). (24)

Also, by (21), the following expansions hold:

J (λ) = 1 + λdiv(V ), (25)

fi

(
Φ(λ)

) = fi + λfi,jV
j + ri

1(λ),

∥∥ri
1(λ)

∥∥
L2(Ωγ, )

= o(λ), i = 1,2.
(26)

Denote uλ(x) = uλ(Φ(λ, x)), x ∈ Ωγ, and change the independent variables in (16),
(17). This yields

uλ ∈ Kλ, (27)
∫

Ωγ \ω̄0
J (λ)Σij

(
Ψ (λ);uλ

)
Eij

(
Ψ (λ); v̄λ − uλ

)

≥
∫

Ωγ

J (λ)fi

(
Φ(λ)

)
(v̄λi − uλi) ∀v̄λ ∈ Kλ. (28)
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Here, Kλ is the image of Kλ under the transformation v → v ◦ Φ(λ). Notice that
K0 = K0. Due to (24), for a given w ∈ H 1

Γ (Ωγ )2, we have

Eij

(
Ψ (λ);w) = εij (w) − λEij (V ;w) + r

ij

2 (λ,w),

∥∥r
ij

2 (λ,w)
∥∥

L2(Ωγ )
≤ h

ij

1 (λ)‖w‖H 1
Γ (Ωγ )2 ,

0 ≤ h
ij

1 (λ) = o(λ), i, j = 1,2.

(29)

Moreover, by (25), (29), for given w, w̄ ∈ H 1
Γ (Ωγ )2 the following expansion holds:

∫

Ωγ \ω̄0
J (λ)Σij

(
Ψ (λ);w)

Eij

(
Ψ (λ); w̄)

=
∫

Ωγ \ω̄0

{
σij (w)εij (w̄) + λS(V ;w, w̄) + r3(λ,w, w̄)

}
, (30)

∥∥r3(λ,w, w̄)
∥∥

L1(Ωγ )
≤ h2(λ)‖w‖H 1

Γ (Ωγ )2‖w̄‖H 1
Γ (Ωγ )2, 0 ≤ h2(λ) = o(λ),

with

S(V ;w, w̄) = divV · σij (w)εij (w̄) − σij (w)Eij (V ; w̄) − σij (w̄)Eij (V ;w).

By the estimate (19), we have uniformly in λ

‖uλ‖H 1
Γ (Ωγ )2 ≤ c.

Choosing the same sequence of parameters λn as in (20) we obtain1

uλn → u0 weakly in H 1
Γ (Ωγ )2. (31)

We use the expansion (30) in (28) and take into account Lemma 3.1 proved below.
According to this lemma, the test functions in (28) can be taken as

v̄λ = v̄ + wλ,wλ → 0 strongly in H 1
Γ (Ωγ )2,

for any given v̄ ∈ K0. This allows us to pass to the limit in (28), as λn → 0, by using
(31) which implies

u0 ∈ K0, (32)
∫

Ωγ \ω̄0
σ(u0) : ε(v̄ − u0) −

∫

Ωγ

f · (v̄ − u0) ≥ 0 ∀v̄ ∈ K0. (33)

1Taking the same sequence of parameters λn as in (20), one can easily see that the weak limits in (20) and
(31) coincide.
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Thus, u0 solves the original problem. In order to see the inclusion (32) we note that
uλ|ωλ ∈ R(ωλ) and by (31), uλn → u0 a.e. in Ωγ . Thus uλ → ρ0 a.e. in ω0 with
ρ0 ∈ R(ω0), which implies u0 ∈ K0. Hence, u0 = u is the unique solution of the
minimization problem (8), (9), and we may as well assume

uλ → u0, uλ → u0 weakly in H 1
Γ (Ωγ,)

2, as λ → 0.

In fact, we can prove strong convergence of uλ to u0. Indeed, inequality (33) yields

∫

Ωγ

σ (u0) : ε(u0) =
∫

Ωγ

f · u0. (34)

Consequently, by (18), (20), (34), we have

∫

Ωγ

σ
(
uλ

) : ε(uλ
) →

∫

Ωγ

σ (u0) : ε(u0)

which implies
∥∥uλ

∥∥
H 1

Γ (Ωγ )2 → ‖u0‖H 1
Γ (Ωγ )2 .

Thus, the strong convergence of uλ to u0 in the space H 1
Γ (Ωγ )2 follows. Therefore,

we have proved the following result.

Theorem 3.1 Let uλ, u0 be the solutions of the minimization problems (16), (17),
and (8), (9), respectively. Then uλ converges to u0 strongly in H 1

Γ (Ωγ,)
2 as λ → 0.

Now we should establish the statement used in the proof of Theorem 3.1

Lemma 3.1 For any fixed v̄ ∈ K0 there exists a sequence v̄λ ∈ Kλ such that, as
λ → 0,

v̄λ → v̄ strongly in H 1
Γ (Ωγ )2.

Proof We take any fixed v̄ ∈ K0, thus v̄ = ρ on ω0;ρ ∈ R(ω0). Consider domains ωλ,
|λ| ≤ λ0. Next, we choose w0 ∈ H 1

Γ (Ωγ )2 such that w0 = ρ in ωλ, |λ| ≤ λ0, [w0]ν ≥
0 on γ,. Hence,

v̄ − w0 = 0 in ω0.

Clearly, there exists a sequence w̄λ ∈ H 1
Γ (Ωγ )2 such that w̄λ = 0 in ωλ, |λ| ≤ λ0,

[w̄λ]ν ≥ 0 on γ,, and

w̄λ → v̄ − w0 strongly in H 1
Γ (Ωγ )2.

We set v̄λ = w̄λ + w0; then we have

v̄λ → v̄ strongly in H 1
Γ (Ωγ )2,



J Optim Theory Appl

and moreover v̄λ = ρ on ωλ, as |λ| ≤ λ0. Then for the functions v̄λ(x) = v̄λ(Φ(λ, x)),
we obtain as λ → 0

v̄λ → v̄ strongly in H 1
Γ (Ωγ )2,

and the proof is complete since v̄λ ∈ Kλ by the definition. �

Remark 3.1 We remark that the choice of the perturbation of the set ω is taken for
the sake of simplicity. The more general case of changing the entire boundary of ω

can be handled similarly.

4 Optimal Control of the Rigid Inclusion Shape

For the sake of simplicity, in this section, we assume that the crack γ, be rectilinear,
i.e., γ, =]1,2[×{2}. Instead of rectilinear crack γ, we can consider a smooth curvi-
linear crack γ, assuming that γ, is located outside of ω. In this case, we consider a
crack extension of γ, along the curvilinear path. A formula for the derivative of the
energy functional would contain an additional term, linear with respect to the solu-
tion u; see [21, 22]. which allows us to provide all the arguments of this section.
Hence, a statement like Theorem 4.1 would be valid again.

Let Ξ ⊂ H 2
0 (0,1) be a bounded and weakly closed set. For any ξ ∈ Ξ , a part of

the boundary of the rigid inclusion is described as the graph of the function x2 =
ξ(x1), x1 ∈]0,1[. For this particular function ξ , the domain ω is denoted by ωξ , and
its boundary is denoted by ∂ωξ . Due to our assumptions,

γ, ∩ {
(x1, x2) | x2 = ξ(x1), ξ ∈ Ξ

} = ∅.

First, we provide a formulation of the equilibrium problem. For any ξ ∈ Ξ , it
is necessary to find functions u = u(ξ), ρ0 = ρ0(ξ) ∈ R(ωξ ), σ = σ(ξ), defined in
Ωγ,ω

ξ ,Ωγ \ ω̄ξ , respectively, such that

−divσ = f in Ωγ, \ ω̄ξ , (35)

σ − Aε(u) = 0 in Ωγ, \ ω̄ξ , (36)

u = ρ0 in ωξ ; u = 0 on Γ, (37)

−
∫

∂ωξ

σnξ · ρ =
∫

ωξ

f · ρ ∀ρ ∈ R
(
ωξ

)
, (38)

[u]ν ≥ 0, [σν] = 0, σν · [u]ν = 0, σν ≤ 0, στ = 0 on γ,, (39)

where nξ is the unit external normal vector to ∂ωξ . A solution of the problem (35)–
(39) exists. Namely, denote

Kξ = {
v ∈ H 1

Γ (Ωγ )2 | [v]ν ≥ 0 on γ,;v|ωξ ∈ R
(
ωξ

)}
.
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Then the solution of the problem (35)–(39) satisfies the variational inequality

u ∈ Kξ , (40)
∫

Ωγ \ω̄ξ

σ (u) : ε(v − u) −
∫

Ωγ

f · (v − u) ≥ 0 ∀v ∈ Kξ . (41)

In order to define a cost functional, we consider the problem perturbed with respect
to (35)–(39) and introduce the perturbed crack γ δ

, =]1,2 + δ[×{2} with a small pa-
rameter δ. Then the formulation of the perturbed problem for a given ξ is as follows.
We have to find functions uδ = uδ(ξ), ρδ

0 = ρδ
0(ξ) ∈ R(ωξ ), σ δ = σ δ(ξ), defined in

Ωγ δ
,
,ωξ ,Ωγ δ

,
\ ω̄ξ , respectively, such that

−divσ δ = f in Ωγ δ
,

\ ω̄ξ , (42)

σ − Aε(u) = 0 in Ωγ δ
,

\ ω̄ξ , (43)

uδ = ρδ
0 in ωξ ; uδ = 0 on Γ, (44)

−
∫

∂ωξ

σ δnξ · ρ =
∫

ωξ

f · ρ ∀ρ ∈ R
(
ωξ

)
, (45)

[
uδ

]
ν ≥ 0,

[
σ δ

ν

] = 0, σ δ
ν · [uδ

]
ν = 0, σ δ

ν ≤ 0, σ δ
τ = 0 on γ δ

, . (46)

Here, Ωγ δ
,

= Ω \ γ̄ δ
, . A solution of the problem (42)–(46) exists and is unique. Thus,

for any small δ, we can consider the energy functional

Π
(
uδ; ξ) = 1

2

∫

Ω
γδ
,
\ω̄ξ

σ
(
uδ

) : ε(uδ
) −

∫

Ω
γδ
,

f · uδ.

Using the technique developed in [12, 19, 20], a derivative of the energy functional
Π(uδ; ξ) with respect to δ can be found, i.e.,

G(ξ) = d

dδ
Π

(
uδ; ξ)|δ=0,

and moreover the following formula holds true:

G(ξ) =
∫

Ωγ,

{
1

2
σij (u)εij (u)η,1 − σij (u)ui,1η,j

}
−

∫

Ωγ,

(ηfi),1ui, (47)

where η is an arbitrary smooth function such that η = 1 in a neighborhood of the
point (2,2), and η = 0 outside of a neighborhood of the point (2,2). Note that there
is no dependence of the derivative (47) on the choice of η with the prescribed prop-
erties, and moreover, G(ξ) ≤ 0 for all ξ ∈ Ξ . Indeed, increasing the crack length, we
decrease the energy, and conversely, decreasing the crack length means increasing the
energy, thus G(ξ) ≤ 0; see details in [12, 19]. The formula (47) provides the energy
release rate.
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By choosing different functions ξ ∈ Ξ and changing, therefore, the shape of the
rigid inclusion ωξ , we can consider G(ξ) as a cost functional being responsible for
the crack propagation from the standpoint of the Griffith criterion. Recall that the
Griffith criterion characterizes the stable and unstable behavior of cracks in terms
of derivatives of energy functionals with respect to the crack length. Namely, if the
derivative reaches a critical value (a given material parameter) then the crack prop-
agates. Otherwise the crack is stable. In this section, we analyze an optimal control
problem with rigid inclusion shapes ξ being control functions. For any given func-
tion ξ , we find the derivative (47) of the energy functional with respect to the crack
length, and aim at maximizing this derivative over the set Ξ . Thus, we consider the
optimal control problem:

Find ξ0 ∈ Ξ s.t. G(ξ0) = sup
ξ∈Ξ

G(ξ). (48)

Theorem 4.1 There exists a solution of the optimal control problem (48).

Proof Let ξn ∈ Ξ be a maximizing sequence. Due to the boundedness of Ξ and
classical imbedding theorems, we can assume that as n → ∞

ξn → ξ weakly in H 2
0 (0,1), ξ ∈ Ξ, as n → ∞,

ξn → ξ strongly in C1[0,1], ∣∣ξn
x1

− ξx1

∣∣ <
1

n
on ]0,1[.

For any n, we can find a solution u(ξn) of the problem (35)–(39) satisfying the vari-
ational inequality. Put un = u(ξn). Then

un ∈ Kξn

, (49)
∫

Ωγ \ω̄ξn
σ
(
un

) : ε(v − un
) −

∫

Ωγ

f · (v − un
) ≥ 0 ∀v ∈ Kξn

(50)

with the set of admissible displacements

Kξn = {
v ∈ H 1

Γ (Ωγ )2 | [v]ν ≥ 0 on γ,;v|ωξn ∈ R
(
ωξn)}

.

From (50), it follows
∫

Ωγ

σ
(
un

) : ε(un
) =

∫

Ωγ

f · un, (51)

thus, uniformly in n,
∥∥un

∥∥
H 1

Γ (Ωγ )2 ≤ c.

We can assume that as n → ∞
un → u weakly in H 1

Γ (Ωγ )2. (52)
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Like in the previous section, the transformation of the independent variables of the
following form:

{
y1 = x1,

y2 = x2 + θ(x)(ξn(x1) − ξ(x1)),
(53)

can be performed in (49), (50), where x = (x1, x2) ∈ Ωγ,y = (y1, y2) ∈ Ωγ .
A smooth function θ with compact support in Ωγ is chosen in such a way that
θ = 1 in a neighborhood of the union ∪{(x1, x2), x2 = ξn(x1), x1 ∈]0,1[}, where all
functions ξ, ξn are extended by zero outside of [0,1].

Revisiting the arguments of Sect. 3, it turns out that it is sufficient to have
(ξn − ξ) → 0 in C1[0,1] instead of the particular dependence on the small parameter
λ which was used there. Namely, we have

y = x + 1

n
Vn(x), x, y ∈ Ωγ,

Vn = (
V 1

n ,V 2
n

)
, V 1

n = 0,V 2
n = nθ

(
ξn − ξ

)
,

∥∥V n
∥∥

C1(Ωγ )2 ≤ c for all n.

The arguments of Sect. 3 then show that

un → u(ξ) strongly in H 1
Γ (Ωγ ), (54)

where u(ξ) is the unique solution to the problem (40), (41).
Recalling (47), the formula for the derivative of the energy functional with respect

to the crack length for the solutions to the problem (49), (50) can be written as

G
(
ξn

) =
∫

Ωγ,

{
1

2
σij

(
un

)
εij

(
un

)
η,1 − σij

(
un

)
un

i,1η,j

}
−

∫

Ωγ,

(ηfi),1u
n
i ,

while for the solution to (40), (41), we have

G(ξ) =
∫

Ωγ,

{
1

2
σij (u)εij (u)η,1 − σij (u)ui,1η,j

}
−

∫

Ωγ,

(ηfi),1ui.

Using the convergence (54), we obtain

G
(
ξn

) → G(ξ),

hence the limiting function ξ is the solution of the optimal control problem (48).
Theorem 4.1 is proved. �

5 Optimal Control of the Crack Shape

It follows from the previous section that for a given crack, we can choose an optimal
shape of the rigid inclusion. The cost functional characterizes the derivative of the
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energy functional with respect to the crack length. In our considerations, we assumed
that the crack be rectilinear. Similar arguments allow us to prove the same results
provided that the crack is not rectilinear. For example, assume that the curve

x2 = 2 + ϕ(x1), x1 ∈]1,2[, (55)

describes the crack shape with a function ϕ such that ϕ ∈ H 2
0 (1,2). Moreover, we

assume that ϕ = 0 on the interval ]2 − μ,2[,μ = const > 0. On the other hand,
a perturbation of the crack shape can be analyzed from different points of view. In
particular, it is interesting to know the influence of perturbation on the parameters of
the Griffith rupture criterion. This section provides the analysis of these questions.

The formulation of the equilibrium problem corresponding to the rigid inclusion ω

and the crack (55) is as follows. Denote γ, = {(x1, x2) | x2 = 2 + ϕ(x1), x1 ∈]1,2[)},
Ωγ, = Ω \ γ̄,. Assuming that γ, ∩ ω̄ = ∅ we have to find functions u = (u1, u2),
ρ0 ∈ R(ω), σ = {σij }, i, j = 1,2, defined in Ωγ,ω,Ωγ \ ω̄, respectively, such
that

−divσ = f in Ωγ, \ ω̄, (56)

σ − Aε(u) = 0 in Ωγ, \ ω̄, (57)

u = ρ0 in ω, (58)

u = 0 on Γ, (59)

−
∫

∂ω

σn · ρ =
∫

ω

f · ρ ∀ρ ∈ R(ω), (60)

[u]ν ≥ 0, [σν] = 0, σν · [u]ν = 0, σν ≤ 0, στ = 0 on γ,. (61)

The solution of this problem exists, and it can be found from a suitable variational
inequality.

We can consider the problem perturbed with respect to (56)–(61) and correspond-
ing to the crack x2 = 2 + ϕδ(x1), x1 ∈]1,2 + δ[, with

ϕδ(x1) =
{

ϕ(x1), x1 ∈]1,2[,
0, x1 ∈]2,2 + δ[,

where δ is a small parameter. At this step, it makes sense to assume that δ ≥ 0, but
our analysis covers the case δ ≤ 0. A formulation of the crack problem perturbed with
respect to (56)–(61) is as follows. We have to find functions uδ = (uδ

1, u
δ
2), ρ

δ
0 ∈ R(ω),

σ δ = {σ δ
ij }, i, j = 1,2, defined in Ωγ δ

,
,ω,Ωγ δ

,
\ ω̄, respectively, such that

−divσ δ = f in Ωγ δ
,

\ ω̄, (62)

σ δ − Aε
(
uδ

) = 0 in Ωγ δ
,

\ ω̄, (63)

uδ = ρδ
0 in ω, (64)
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uδ = 0 on Γ, (65)

−
∫

∂ω

σ δn · ρ =
∫

ω

f · ρ ∀ρ ∈ R(ω), (66)

[
uδ

]
ν ≥ 0,

[
σ δ

ν

] = 0, σ δ
ν · [uδ

]
ν = 0, σ δ

ν ≤ 0, σ δ
τ = 0 on γ,. (67)

Here, γ δ
, = {(x1, x2) | x2 = 2+ϕδ(x1), x1 ∈]1,2+δ[}, Ωγ δ

,
= Ω \ γ̄ δ

, . The case δ = 0

corresponds to the unperturbed problem, i.e., ϕ0 = ϕ,γ 0
, = γ,.

We can prove the existence of the solution to problem (62)–(67). This solution can
be found from the corresponding variational inequality. Namely, denote

Kδ = {
v ∈ H 1

Γ (Ωγ δ
,
)2 | [v]ν ≥ 0 on γ δ

, ;v|ω ∈ R(ω)
}
.

In this case, the functional

{
1

2

∫

Ω
γδ
,
\ω̄

σ (v) : ε(v) −
∫

Ω
γδ
,

f · v
}

has a unique minimizer uδ ∈ Kδ , i.e.,

uδ ∈ Kδ, (68)
∫

Ω
γδ
,
\ω̄

σ
(
uδ

) : ε(v − uδ
) −

∫

Ω
γδ
,

f · (v − uδ
) ≥ 0 ∀v ∈ Kδ. (69)

Since we can establish a one-to-one mapping between the sets Kδ and K , the deriva-

tive G(ϕ) = Π(Ω
γδ
,
;uδ)

dδ
|δ=0 of the energy functional

Π
(
Ωγ δ

,
;uδ

) = 1

2

∫

Ω
γδ
,
\ω̄

σ
(
uδ

) : ε(uδ
) −

∫

Ω
γδ
,

f · uδ

with respect to δ, as δ = 0, exists, and the following formula holds:

G(ϕ) =
∫

Ωγ,\ω̄

{
1

2
σij (u)εij (u)η,1 − σij (u)ui,1η,j

}
−

∫

Ωγ,

(ηfi),1ui, (70)

where η is a smooth function equal to 1 near the crack tip (2,2) and equal to zero
outside of a neighborhood of the point (2,2). As before, the derivative (70) does not
depend on η.

Now we assume that Θ ⊂ H 2
0 (1,2) be a bounded and weakly closed set, and for

any ϕ ∈ Θ we have ϕ = 0 on the interval ]2 − μ, [),μ > 0. For any ϕ ∈ Θ , it is
possible to prove the existence of the solutions to the equilibrium problem (62)–(67)
and, therefore, to find the derivative (70). Clearly, G(ϕ) ≤ 0. Consider the optimal
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control problem: Find ϕ ∈ Θ such that ϕ solves

sup
ϕ∈Θ

G(ϕ). (71)

To prove the existence of a solution to the problem (71), we provide additional argu-
ments. First of all, we analyze the behavior of the solution of the problem (56)–(61),
as λ → 0, provided that the family of cracks x2 = 2 + λϕ(x1), x1 ∈]1,2[, be consid-
ered for a fixed ϕ ∈ Θ , and λ be a small parameter converging to zero.

Let Ωλ be the domain corresponding to the crack x2 = 2 + λϕ(x1), i.e. γ,λ =
{(x1, x2) | x2 = 2 + λϕ(x1), x1 ∈]1,2[}, Ωλ = Ω \ ¯γ,λ. Denote by

νλ = (−λϕ′,1)
√

1 + (λϕ′)2

a unit normal vector to γ,λ and consider the set of admissible displacements

Kλ = {
v ∈ H 1

Γ

(
Ωλ

)2 | [v]νλ ≥ 0 on γ,λ;v|ω ∈ R(ω)
}
.

We introduce the solution of the problem corresponding to the crack γ,λ and the rigid
inclusion ω, i.e.,

uλ ∈ Kλ,

∫

Ωλ\ω̄
σ
(
uλ

) : ε(v − uλ
) −

∫

Ωλ

f · (v − uλ
) ≥ 0 ∀v ∈ Kλ. (72)

Analogously, as λ = 0, we can consider the solution of the problem corresponding to
a rectilinear crack, i.e.,

u ∈ K0,

∫

Ω0\ω̄
σ (u) : ε(v − u) −

∫

Ω0
f · (v − u) ≥ 0 ∀v ∈ K0 (73)

with a convex and closed set

K0 = {
v ∈ H 1

Γ

(
Ω0)2 | [v]ν0 ≥ 0 on γ,0;v|ω ∈ R(ω)

}
.

It is easy to set up a one-to-one correspondence between the domains Ωλ and Ω0.
Indeed, we introduce a transformation of the independent variables x = Ψ (λ,y),

x1 = y1, x2 = y2 − λξ(y)ϕ(y1), x ∈ Ω0, y ∈ Ωλ, (74)

with ξ ∈ C∞
0 (Ω), ξ = 1 in a neighborhood of the curve γ,0. In order to make the

transformation (74) correct, we extend the function ϕ by zero outside of interval
]1,2[. For a small λ, the transformation (74) is one-to-one, thus y = Φ(λ,x).

Denote uλ(x) = uλ(y), y ∈ Ωλ,x ∈ Ω0. Notice that uλ|ω ∈ R(ω) due to the in-
clusion uλ|ω ∈ R(ω). We can prove the following statement concerning a behavior of
the solution uλ.

Lemma 5.1 Let u be a solution of the problem (73). Then as λ → 0,

uλ → u strongly in H 1
Γ

(
Ω0)2

.
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Proof The main difficulty in the proof consists in the absence of the one-to-one corre-
spondence between Kλ and K0. Note that νλ(y) = νλ(y1) = νλ(x1) = νλ(x). Denote

K0λ = {
v ∈ H 1

Γ

(
Ω0)2 | [v(x)

]
νλ(x) ≥ 0 on γ,0;v|ω ∈ R(ω)

}
.

In such a case, the transformation (74) maps Kλ on K0λ. To simplify the formulae,
for v,w ∈ H 1

Γ (Ω0)2, we introduce the bilinear form

Bλ(v,w) =
∫

Ω0
σ(v) : ε(w)J (λ), (75)

where J (λ) = | ∂Ψ (λ,y)
∂y

|−1 is the Jacobian of the transformation inverse to (74). Ob-
serve that we should integrate over Ω \ ω̄ in (75) provided that v|ω ∈ R(ω) or
w|ω ∈ R(ω). Clearly, J (λ) = (1 − λϕξy2)

−1 > 0 for a small λ. By changing the in-
dependent variables in (72), we arrive at the relation

uλ ∈ K0λ : Bλ(uλ, ūλ − uλ) +
∫

Ω0
F

(
λ,u2

λx, ūλxuλx, λ(ϕξ)y
)
J (λ)

≥
∫

Ω0
fλ(ūλ − uλ)J (λ) ∀ūλ ∈ K0λ, (76)

where fλ(x) = f (Φ(λ, x)), and the following formulae for the first derivatives

uλ
y1

= uλx1 − λuλx2(ξϕ)y1 , uλ
y2

= uλx2(1 − λξy2ϕ)

are used, uλ(y) = uλ(x), y ∈ Ωλ, x ∈ Ω0. The function F depends linearly on u2
λx ,

ūλxuλx . In particular, as λ → 0,
∫

Ω0
F

(
λ,u2

λx, ūλxuλx, λ(ϕξ)y
)
J (λ) → 0 (77)

provided that uλ, ūλ are bounded in H 1
Γ (Ω0)2 uniformly in λ. Choosing ūλ ≡ 0 in

the inequality (76), it follows

‖uλ‖H 1
Γ (Ω0)2 ≤ c2,

uniformly in λ. Hence, we can assume that, as λ → 0,

uλ → u0 weakly in H 1
Γ

(
Ω0)2

, u0|ω ∈ R(ω). (78)

Note that if we have any given function w = (w1,w2) ∈ K0, then the function
wλ = w + hλ can be constructed with hλ = (0, λξϕx1w1) such that wλ ∈ K0λ and
wλ|ω = w|ω ∈ R(ω). Moreover,

wλ → w strongly in H 1
Γ

(
Ω0)2

. (79)

Hence, for the function u0 ∈ K0 from (78), we can find a sequence ūλ ∈ K0λ such
that

ūλ = u0 + vλ, vλ → 0 strongly in H 1
Γ

(
Ω0)2 (80)
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with the property vλ|ω = 0. Taking into account the inequality (76), we have

Bλ(uλ − u0, uλ − u0) ≤ Bλ(u0, u0 − uλ) + Bλ(u0, vλ)

+ Bλ(uλ − u0, vλ) +
∫

Ω0
fλ(uλ − u0 − vλ)J (λ)

+
∫

Ω0
F

(
λ,u2

λx, uλx(u0x + vλx), λ(ϕξ)y
)
J (λ).

Thus, by (77), (78), (80), we derive

‖uλ − u0‖H 1
Γ (Ω0)2 → 0, λ → 0. (81)

Moreover, the convergence (81) and the convergence (79) allow us to pass to the limit
as in (76) which implies

u0 ∈ K0,B0(u0, ū − u0) ≥
∫

Ω0
f · (ū − u0) ∀ū ∈ K0.

Consequently, u0 = u is the solution of the variational inequality (73). Lemma 5.1 is
proved. �

For any fixed λ in accordance with (70), it is possible to find the derivative of
the energy functional with respect to the crack length. To this end, we consider the
problem perturbed with respect to (72), like (62)–(67). It gives the following formula
for the derivative:

G(λϕ) =
∫

Ωγ,λ
\ω̄

{
1

2
σij

(
uλ

)
εij

(
uλ

)
η,1 − σij

(
uλ

)
uλ

i,1η,j

}
−

∫

Ωγ,λ

(ηfi),1u
λ
i , (82)

where γ,λ = {(x1, x2) | x2 = 2 + λϕ(x1), x1 ∈]1,2[}, Ωγ λ
,

= Ω \ ¯γ,λ. The function η

is smooth, finite, and is equal to 1 near the crack tip (2,2). Also, we have a formula
for the derivative of the energy functional with respect to the crack length for the case
λ = 0, i.e.,

G(0) =
∫

Ωγ,0\ω̄

{
1

2
σij (u)εij (u)η,1 − σij (u)ui,1η,j

}
−

∫

Ωγ,0

(ηfi),1ui. (83)

We can change the independent variables in (82) in accordance with (74). By
Lemma 5.1, we derive

G(λϕ) → G(0), λ → 0. (84)

Thus, the continuity of the derivative of the energy functional with respect to the
crack shape (i.e. as λ → 0) is established.

Now we are ready to prove a solution existence of the problem (71).

Theorem 5.1 There exists a solution of the optimal control problem (71).
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Proof Let ϕn ∈ Θ be a maximizing sequence for the problem (71). Since Θ is
bounded in the space H 2

0 (1,2), we can assume that, as n → 0,

ϕn → ϕ weakly in H 2
0 (1,2),

(
ϕn

)′ → ϕ′ in C[1,2]. (85)

For any fixed n, we can find the solution of the problem (56)–(61) satisfying the
variational inequality

un ∈ Kϕn,

∫

Ωγn
,

\ω̄
σ
(
un

) : ε(v − un
) −

∫

Ωγn
,

f · (v − un
) ≥ 0 ∀v ∈ Kϕn (86)

with the set of admissible displacements

Kϕn = {
v ∈ H 1

Γ (Ωγ n
,
)2 | [v]νn ≥ 0 on γ n

, ;v|ω ∈ R(ω)
}

and γ n
, = {(x1, x2) | x2 = 2 + ϕn(x1), x1 ∈]1,2[}, Ωγ n

,
= Ω \ γ̄ n

, .
Consider the transformation of the independent variables

x1 = y1, x2 = y2 + ξ(y)
(
ϕ(y1) − ϕn(y1)

)
, (87)

where y ∈ Ωγ n
,
, x ∈ Ωγ, , and the crack γ, corresponds to the limit curve ϕ from (85).

All functions ϕn and ϕ in (87) are extended by zero outside of (1,2).
Now we can find the derivative of the energy functional with respect to the crack

length for a given n in the problem (86). Again, for any n, we consider a problem
perturbed with respect to (86), which is similar to (62)–(67), and find the derivative
of the energy functional with respect to δ as δ = 0. We have

G
(
ϕn

) =
∫

Ωγn
,

\ω̄

{
1

2
σij

(
un

)
εij

(
un

)
η,1 − σij

(
un

)
un

i,1η,j

}
−

∫

Ωγn
,

(ηfi),1u
n
i . (88)

In addition to this, for the limit function ϕ we also have the formula for the derivative
of the energy functional

G(ϕ) =
∫

Ωγ,\ω̄

{
1

2
σij (u)εij (u)η,1 − σij (u)ui,1η,j

}
−

∫

Ωγ,

(ηfi),1ui, (89)

where u is the solution of the problem

u ∈ Kϕ,

∫

Ω
γ 0
,
\ω̄

σ (u) : ε(v − u) −
∫

Ω
γ 0
,

f · (v − u) ≥ 0 ∀v ∈ Kϕ. (90)

Similarly to Lemma 5.1, it is possible to prove that

un → u strongly in H 1
Γ (Ωγ,)

2, (91)

where un(x) = un(y), y ∈ Ωγ n
,
, x ∈ Ωγ 0

,
. We can change the independent variables

in (88) in accordance with (87). Like in (84) the convergences (85), (91) allow us to
pass to the limit in (88). It provides

G
(
ϕn

) → G(ϕ).
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Since ϕ ∈ Θ,u = u(ϕ), the limit function ϕ solves the optimal control problem (71).
Theorem 5.1 is proved. �

6 Optimal Control of Elastic Inclusion Shape

In this section, we analyze an optimal control problem for the elastic inclusion shapes
in order to maximize the derivative of the energy functional with respect to the crack
length. The geometry of the problem coincides with that of Sect. 2; see Fig. 1. We
keep the main notations used. The crack shape is given by γ, =]1,2[×{2}. Assume
that a part of the boundary ∂ω be described by a function x2 = ξ(x1), x1 ∈]0,1[, ξ ∈
H 1

0 (0,1), and denote by ωξ the domain ω corresponding to the function ξ . Unlike
in the previous section, the part ωξ is assumed to be elastic, hence the equilibrium
equations and Hooke’s law are fulfilled in Ωγ . In what follows, we consider the
elasticity tensor:

Aξ (x) =
{

A1(x), x ∈ Ωγ \ ω̄ξ ,

A2(x), x ∈ ωξ ,

where A1 = {a1
ijkl},A2 = {a2

ijkl} are elasticity tensors with the usual properties of the

symmetry and positive definiteness, A1,A2 ∈ C1(Ω̄).
Let Ξ be bounded and weakly closed set in H 1

0 (0,1). For any ξ ∈ Ξ , we can
formulate the equilibrium problem for the elastic body Ωγ with different (generally
speaking) elasticity tensors A2 and A1 in ωξ and Ωγ \ ω̄ξ , respectively. We have to
find functions u = u(ξ), σ = σ(ξ), defined in Ωγ, such that

−divσ = f in Ωγ,, (92)

σ − Aξε(u) = 0 in Ωγ,, (93)

u = 0 on Γ, (94)

[u]ν ≥ 0, [σν] = 0, σν · [u]ν = 0, σν ≤ 0, στ = 0 on γ,. (95)

For the variational formulation, we introduce the set of admissible displacements

M = {
v ∈ H 1

Γ (Ωγ )2 | [v]ν ≥ 0 on γ,

}
.

Then there exists a unique solution u = u(ξ) of the variational inequality

u ∈ M, (96)
∫

Ωγ

σ (u) : ε(v − u) −
∫

Ωγ

f · (v − u) ≥ 0 ∀v ∈ M. (97)

Problem formulations (92)–(95) and (96)–(97) are equivalent. We can consider the
problem perturbed with respect to (92)–(95). Let γ δ

, =]1,2 + δ[×{2} be a perturbed
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crack with a small parameter δ, Ωγ δ
,

= Ω \ γ̄,
δ . For any small δ, we can find a solution

of the problem similar to (92)–(95), i.e., we have to find functions uδ = uδ(ξ), σ δ =
σ δ(ξ), defined in Ωγ δ

,
, such that

−divσ δ = f in Ωγ δ
,
, (98)

σ − Aξε(u) = 0 in Ωγ δ
,
, (99)

uδ = 0 on Γ, (100)
[
uδ

]
ν ≥ 0,

[
σ δ

ν

] = 0, σ δ
ν · [uδ

]
ν = 0, σ δ

ν ≤ 0, σ δ
τ = 0 on γ δ

, . (101)

This problem is solvable, and its solution uδ satisfies the variational inequality

uδ ∈ Mδ, (102)
∫

Ω
γδ
,

σ
(
uδ

) : ε(v − uδ
) −

∫

Ω
γδ
,

f · (v − uδ
) ≥ 0 ∀v ∈ Mδ, (103)

where the set Mδ of admissible displacements is defined as follows:

Mδ = {
v ∈ H 1

Γ (Ωγ ) | [v]ν ≥ 0 on γ δ
,

}
.

The energy functional in the problem (102)–(103) can be written as

π
(
uδ; ξ) = 1

2

∫

Ω
γδ
,

σ
(
uδ

) : ε(uδ
) −

∫

Ω
γδ
,

f · uδ,

and its derivative E(ξ) with respect to the parameter δ can be found by the formula

E(ξ) = dπ(uδ; ξ)

dδ
|δ=0

=
∫

Ωγ,

{
1

2
εkl(u)εij (u)

(
a1
ijklη

)
,1 − σij (u)ui,1η,j

}
−

∫

Ωγ,

(ηfi),1ui. (104)

Here, the smooth function η is equal to 1 in a neighborhood of the point (2,2), and
η = 0 outside of a neighborhood of the point (2,2). Like in the formula (47), there
is no dependence of E(ξ) on the choice of η with the prescribed properties, and
E(ξ) ≤ 0 ∀ξ ∈ Ξ . Since we have to integrate in (104) over the neighborhood of the
point (2,2), in (104) the tensor A1 is considered. Thus, we arrive at the following
optimal control problem:

sup
ξ∈Ξ

E(ξ). (105)

Theorem 6.1 There exists a solution of the optimal control problem (105).
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Proof Let ξn ∈ Ξ be a maximizing sequence. Since Ξ is bounded, it can be assumed
that as n → ∞

ξn → ξ weakly in H 1
0 (0,1), ξ ∈ Ξ,

∣
∣ξn − ξ

∣
∣ <

1

n
on (0,1).

(106)

For any n, we can find a solution of the problem (96), (97). Namely, there exists a
unique solution un = u(ξn) of the variational inequality

un ∈ M, (107)
∫

Ωγ

σn
(
un

) : ε(v − un
) −

∫

Ωγ

f · (v − un
) ≥ 0 ∀v ∈ M. (108)

Here,

σn
ij

(
un

) = a
ξn

ijklεkl

(
un

)
, i, j = 1,2,

and a
ξn

ijkl corresponds to the inclusion shape ωξn
, i.e.,

Aξn

(x) =
{

A1(x), x ∈ Ωγ \ ω̄ξn
,

A2(x), x ∈ ωξn
.

From (108), it follows
∫

Ωγ

σn
(
un

) : ε(un
) =

∫

Ωγ

f · un;

thus. we have the uniform in n estimate
∥∥un

∥∥
H 1

Γ (Ωγ )2 ≤ c.

Assume that as n → ∞
un → u0 weakly in H 1

Γ (Ωγ )2. (109)

Now we consider the variational inequality corresponding to the limiting function ξ

from (106), i.e., we define a solution u0 = u0(ξ), σ (u0) = Aξε(u0) to the variational
inequality

u0 ∈ M, (110)
∫

Ωγ

σ
(
u0) : ε(v − u0) −

∫

Ωγ

f · (v − u0) ≥ 0 ∀v ∈ M. (111)

We aim at proving that un converges to u0 strongly in H 1
Γ (Ωγ )2. We take v = u0 in

(108), and take v = un in (111) as test functions. This implies
∫

Ωγ

a
ξn

ijklεkl

(
un

)
εij

(
u0 − un

) −
∫

Ωγ

fi

(
u0

i − un
i

) ≥ 0, (112)
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∫

Ωγ

a
ξ
ijklεkl

(
u0)εij

(
un − u0) −

∫

Ωγ

fi

(
un

i − u0
i

) ≥ 0. (113)

Here, the tensors a
ξn

ijkl, a
ξ
ijkl correspond to the elastic inclusion shapes ωξn

,ωξ , re-
spectively. Summing the inequalities (112), (113), we find

∫

Ωγ

a
ξn

ijklεkl

(
un

)
εij

(
u0 − un

) +
∫

Ωγ

a
ξ
ijklεkl

(
u0)εij

(
un − u0)

±
∫

Ωγ

a
ξn

ijklεkl

(
u0)εij

(
u0 − un

) ≥ 0.

Hence, we obtain
∫

Ωγ

a
ξn

ijklεkl

(
un − u0)εij

(
un − u0)

≤
∫

Ωγ

(
a

ξ
ijkl − a

ξn

ijkl

)
εkl

(
u0)εij

(
un − u0). (114)

Since, by (106), as n → ∞
meas

{
x ∈ Ωγ : ∣∣Aξ(x) − Aξn

(x)
∣∣ > 0

} → 0,

from (114) it follows
∥∥un − u0

∥∥2
H 1

Γ (Ωγ )2 ≤ ∥∥un − u0
∥∥

H 1
Γ (Ωγ )2 · g(n)

with g(n) → 0 as n → ∞ and, therefore,

un → u0 strongly in H 1
Γ (Ωγ )2. (115)

By (115), we can pass to the limit in (107), (108) as n → ∞. The limiting variational
inequality coincides with (110)–(111). Accounting (109), we see u0 = u0, i.e., u0 =
u(ξ).

Due to (104), for any n the formula for the derivative of the energy functional with
respect to the crack length in the problem (107)–(108) has the form

E
(
ξn

) =
∫

Ωγ,

{
1

2
εij

(
un

)
εkl

(
un

)(
a1
ijklη

)
,1 − σij (u)un

i,1η,j

}
−

∫

Ωγ,

(ηfi),1u
n
i .

By (115), we have

E
(
ξn

) → E(ξ),

where

E(ξ) =
∫

Ωγ,

{
1

2
εij

(
u0)εkl

(
u0)(a1

ijklη
)
,1 − σij

(
u0)u0

i,1η,j

}
−

∫

Ωγ,

(ηfi),1u
0
i ,

and, consequently, the limiting function ξ ∈ Ξ solves the optimal control problem
(105). Theorem 6.1 is proved. �
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7 Conclusions and Further Remarks

We have shown in this paper that the energy release rate associated to an incipient
crack depends continuously on the shape and the material properties of inclusions
embedded into the domain, as long as the crack-tip stays away from these inclusions.
We have emphasized that the nonpenetration of mutual crack surfaces is essential
from a mechanical point of view. We have used the speed-method in order to formu-
late the domain variations of the respective inclusions and have shown the existence
of solutions to crack-optimization problem. However, we have not been able to derive
optimality conditions so far. It is to be expected that conical derivatives are to be con-
sidered in this context. We will consider, in a forthcoming publication, second-order
derivatives of the energy functional, in order to study stability properties of cracks
with respect to shape-variations of material inclusions. Finally, the shape-regularity
properties of the energy-release-rate will be subject to further research. As for nu-
merical methods and examples, we have also to refer to a forthcoming publication.
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