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Abstract Multiobjective optimization problems typically have conflicting objec-
tives, and a gain in one objective very often is an expense in another. Using the
concept of Pareto optimality, we investigate a multiobjective bilevel optimization
problem (say, P). Our approach consists of proving that P is locally equivalent to
a single level optimization problem, where the nonsmooth Mangasarian–Fromovitz
constraint qualification may hold at any feasible solution. With the help of a special
scalarization function introduced in optimization by Hiriart–Urruty, we convert our
single level optimization problem into another problem and give necessary optimality
conditions for the initial multiobjective bilevel optimization problem P.

Keywords Multiobjective optimization · Local weak efficient solution · Optimality
conditions · Optimal value function · Bilevel programming

1 Introduction

Bilevel optimization is an important research area, and many researchers have made
contributions [1–15]. It is a sequence of two optimization problems in which the
feasible region of the upper-level problem is determined implicitly by the solution
set of the lower-level problem. The origin of the bilevel optimization problem can be
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traced back to von Stackelberg [10], who used it to model the market economy in
1934.

Bard [2] studied the linear bilevel optimization problem and developed first-order
necessary optimality conditions. Under semi-Lipschitz property, Zhang [14] extended
the classic approach to study nonsmooth problem data and derived existence and opti-
mality conditions for the problems in terms of the graph of the solution multifunction
to the lower level problem. Dempe [4] and Outrata [8] derived necessary conditions
for the case, where the solution set of the lower level problem is a singleton. Using
the optimal value function in the lower-level problem, Ye and Zhu [12, 13] reformu-
lated the bilevel problem as a single level nonconvex optimization problem, where
the nonsmooth Mangasarian–Fromovitz constraint qualification does not hold at any
feasible solution; under the partial calmness condition, they derived optimality condi-
tions for the general bilevel optimization problems, without convexity assumption on
the lower level problem and without the assumption that the solution set of the lower
level problem be a singleton. Later, Bao, Gupta and Mordukhovich [17], and Zhang,
Truong and Zhang [15] used the variational approach and got necessary conditions
directly by using advanced tools of variational analysis such as the extremal principle
and the separation theorems for convex sets. For more details on bilevel optimization,
see Bard [3], Dempe [5, 6], Vicente and Calamai [11], and Shimizu et al. [9].

Multiobjective optimization problems typically have conflicting objectives, and a
gain in one objective very often is an expense in another. We investigate a multiob-
jective bilevel optimization problem using the optimistic approach. This means we
assume that the leader presupposes cooperation of the follower in the sense that the
latter will choose in each time that solution in the solution set of his/her paramet-
ric optimization problem which is best suited with respect to the leader’s objective
function. Using the concept of Pareto optimality, together with a special scalarization
function introduced in optimization by Hiriart–Urruty [20, 21], we give necessary
optimality conditions. Several intermediate optimization problems are introduced to
help us in our investigation.

The outline of the paper is as follows: preliminary results are described in Sect. 2;
necessary optimality conditions are established in Sect. 3; conclusions are given in
Sect. 4.

2 Preliminaries

Let C ⊂ R
n be a pointed (C ∩ −C = {0}), closed, and convex cone with nonempty

interior introducing a partial order in R
n, and let A be a nonempty subset of R

n. z ∈ A

is said to be a Pareto (respectively, a weak Pareto) minimal vector of A with respect
to C iff

A ⊂ z + (
R

n\ − C
)∪ {0}

(respectively, A ⊂ z + R
n\ − intC), where int denotes the topological interior. For a

subset S of R
n, we consider the function

ΔS(y) :=
{

d(y,S), if y ∈ R
n\S,

−d
(
y,R

n\S), if y ∈ S,
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where d(y,S) := inf{‖u − y‖ : u ∈ S}. This function is introduced in Hiriart–Urruty
[20, 21], and used by Ciligot–Travain [19], and Amahroq and Taa [16].

Let us recall the following result of [20].

Proposition 2.1 [20] Let S ⊂ R
n be a closed and convex cone with nonempty inte-

rior and S �= R
n. The function ΔS is convex, positively homogeneous, 1-Lipschitzian,

decreasing on R
n with respect to the order introduced by S.

Of course, (Rn\S) = {y ∈ R
n : ΔS(y) > 0}, intS = {y ∈ R

n : ΔS(y) < 0} and the
boundary of S is the set bdS = {y ∈ R

n : ΔS(y) = 0}.

As a direct consequence of Proposition 2.1, one has the following result.

Proposition 2.2 [19] Let S ⊂ R
n be a nonempty, closed, and convex cone with

nonempty interior. Then for all y ∈ R
n,

0 /∈ ∂caΔS(y).

Here, the set ∂caf (x) designs the subdifferential of convex analysis of f at x.
For all the rest, for a locally Lipschitz mapping f : R

n → R, the set ∂f (x) denotes
the Clarke generalized Jacobian of f at x; i.e.,

∂f (x) :=
{
x∗ ∈ R

n : lim sup
u→x
t↘0

f (u + tv) − f (u)

t
≥ 〈

x∗, v
〉
, ∀v ∈ R

n

}
.

Recall the following interesting results, which are due to Clarke [18]. For more
details, we refer the interested reader to [18].

Proposition 2.3 [18] Suppose that {fi}i∈{1,...,n} be a finite collection of functions
each of which is Lipschitz near x. The function h defined by

h(x) = max
{
fi(x) : i = 1,2, . . . , n

}

is easily seen to be Lipschitz near x as well. Moreover,

∂h(x) ⊂ conv
{
∂fi(x) : i ∈ I (x)

}
,

where I (x) := {i : fi(x) = h(x)} and conv denotes the convex hull.

Proposition 2.4 [18] Suppose that T be separable, and {ft }t∈T be a collection of
locally Lipschitz functions ft at x. Set

h(x) := sup
t∈T

{
ft (x)

}
and J (x) := {

t ∈ T : ft (x) = h(x)
}
.

Then h is Lipschitz near x and

∂h(x) ⊂ conv
{
∂ft (x) : t ∈ J (x)

}
.
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3 Necessary Optimality Conditions

Consider the following multiobjective bilevel optimization problem:

(P)

⎧
⎪⎨

⎪⎩

R
n+ − Minimize

x,y
F (x, y) := (

F1(x, y), . . . ,Fn(x, y)
)

subject to Gj(x, y) ≤ 0, ∀j ∈ J,

y ∈ S(x),

where, for each x ∈ R
n1 , S(x) is the solution set of the following parametric opti-

mization problem (the lower level problem)

(Px)

{
Minimize

y
f (x, y)

subject to gs(x, y) ≤ 0, ∀s ∈ S,

where f : R
n1 × R

n2 −→ R, gs : R
n1 × R

n2 −→ R, s ∈ S := {1, . . . , q}, Gj : R
n1 ×

R
n2 → R, j ∈ J := {1, . . . , p}, and Fi : R

n1 × R
n2 → R, i ∈ I := {1, . . . , n}, are

given locally Lipschitz functions; n1 ≥ 1 and n2 ≥ 1 are integers.
A pair (x, y) is said to be a local efficient (respectively, weak local efficient) so-

lution of (P) iff there exists a neighborhood V of (x, y) such that F(x, y) is a local
Pareto (respectively, weak local Pareto) minimal vector of F(S ∩ V ) where

S := {
(x, y) ∈ R

n1 × R
n2 : Gj(x, y) ≤ 0, ∀j ∈ J, and y ∈ S(x)

}
.

In order to derive optimality conditions, we consider a new single level problem
which is locally equivalent to the bilevel multiobjective problem (P) at the optimal
solution.

Denote by

Y(x) := {
y ∈ R

n2 : gs(x, y) ≤ 0 ∀s ∈ S
}

the feasible region of the lower level problem (Px).
Let (x, y) be a local weak efficient solution of (P). Then there exist neighborhoods

U0 of x and V0 of y such that

F(x, y) − F(x, y) /∈ −intRn+ ∀(x, y) ∈ (U0 × V0) ∩ S.

Throughout this paper, we assume that the set-valued map Y is uniformly bounded
around x; there exists a bounded neighborhood U(x,y) of (x, y) such that

⋃
x∈UY (x)

is bounded. Here,

U := {
x ∈ R

n1 : ∃y ∈ R
n2 such that (x, y) ∈ U(x,y)

}
.

Taking Ux := U0 ∩ U , the set
⋃

x∈Ux
Y (x) is also bounded. Thus, cl

⋃
x∈Ux

Y (x) is
compact. Then

Θ :=
(

cl
⋃

x∈Ux

Y (x)
)

+ BRn2
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is a nonempty compact set that contains an open neighborhood of cl
⋃

x∈Ux
Y (x).

Here, cl and BRn2 denote respectively the closure and the closed unit ball of Rn2 .
The following lemmas are crucial for our investigations; we prove that a local weak
efficient solution of (P) is also a local weak efficient solution of

(
P∗)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R
n+ − Minimize

x,y
F (x, y) = (

F1(x, y), . . . ,Fn(x, y)
)

subject to Gj(x, y) ≤ 0, ∀j ∈ J = {1, . . . , p},
gs(x, y) ≤ 0, ∀s ∈ S = {1, . . . , q},
Ψ (x, y) ≤ 0,

where

Ψ (x, y) := max
z∈Θ

ψ(x, y, z), (1)

and

ψ(x, y, z) := min
{
f (x, y) − f (x, z),−Δ(−R

q
+)

(
g1(x, z), . . . , gq(x, z)

)}
. (2)

Taking x ∈ R
n1 , we consider the optimal value function of the lower level problem

(Px) defined by

V (x) := inf
y

{
f (x, y) : gs(x, y) ≤ 0 ∀s ∈ S

}
.

Lemma 3.1
⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

f (x, y) − V (x) < 0.

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

Ψ (x, y) < 0.

⎫
⎪⎬

⎪⎭
= ∅.

Proof Let x ∈ Ux and y ∈ Y(x). Since Θ is compact,

Ψ (x, y) < 0

⇐⇒ ψ(x, y, z) < 0 ∀z ∈ Θ,

⇐⇒
[ ∀z ∈ Θ,

Δ(−R
q
+)

(
g(x, z)

)≤ 0 =⇒ f (x, y) < f (x, z).

]

⇐⇒
[

∀z ∈ Θ,
[
gs(x, z) ≤ 0 ∀s ∈ S

]=⇒ f (x, y) < f (x, z).

]

⇐⇒
[

∀z ∈ Θ,

y ∈ Y(x) =⇒ f (x, y) < f (x, z).

]

Since x ∈ Ux , one has Y(x) ⊆ Θ and

Y(x) = Y(x) ∩ Θ.
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Consequently,
⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

f (x, y) − V (x) < 0.

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

Ψ (x, y) < 0.

⎫
⎪⎬

⎪⎭
.

By definition of the optimal value function V (x), one has

V (x) ≤ f (x, y) ∀y ∈ Y(x).

Then

{
(x, y) ∈ R

n1 × R
n2 : x ∈ Ux,y ∈ Y(x), f (x, y) − V (x) < 0

}= ∅.

�

Lemma 3.2
⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

f (x, y) − V (x) = 0.

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

Ψ (x, y) = 0.

⎫
⎪⎬

⎪⎭
.

Proof

• Let us prove that
⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

f (x, y) − V (x) = 0.

⎫
⎪⎬

⎪⎭
⊆

⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

Ψ (x, y) = 0.

⎫
⎪⎬

⎪⎭
.

Let x ∈ Ux and y ∈ Y(x) be such that

f (x, y) − V (x) = 0.

Consequently, y is a global minimizer of (Px) for fixed x. Since

{
(x, y) ∈ R

n1 × R
n2 : x ∈ Ux,y ∈ Y(x),Ψ (x, y) < 0

}= ∅,

one deduces that

Ψ (x, y) ≥ 0.

Suppose that Ψ (x, y) > 0. Then there exists z ∈ Θ such that

ψ(x, y, z) > 0.

That is,

f (x, y) − f (x, z) > 0 and − Δ(−R
q
+)

(
g1(x, z), . . . , gq(x, z)

)
> 0.
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Thus,

f (x, y) − f (x, z) > 0 and gs(x, z) ≤ 0 ∀s ∈ S.

Then z ∈ Y(x) such that

f (x, y) > f (x, z).

A contradiction, since y is a global minimizer of (Px) for fixed x. One concludes that

Ψ (x, y) = 0.

• Let us prove that
⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

f (x, y) − V (x) = 0.

⎫
⎪⎬

⎪⎭
⊇

⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

Ψ (x, y) = 0.

⎫
⎪⎬

⎪⎭
.

Let x ∈ Ux and y ∈ Y(x) be such that

Ψ (x, y) = 0.

Then

ψ(x, y, z) ≤ 0 ∀z ∈ Θ.

Since Y(x) ⊆ Θ , one gets also

ψ(x, y, z) ≤ 0 ∀z ∈ Y(x).

That is, for every z ∈ Y(x), one has

min
{
f (x, y) − f (x, z),−Δ(−R

q
+)

(
g1(x, z), . . . , gq(x, z)

)}≤ 0.

Since

z ∈ Y(x) ⇐⇒ gs(x, z) ≤ 0 ∀s ∈ S

one has

Δ(−R
q
+)

(
g1(x, z), . . . , gq(x, z)

)≤ 0.

Consequently,

f (x, y) − f (x, z) ≤ 0 ∀z ∈ Y(x).

Thus,

f (x, y) − V (x) ≤ 0.

Since
⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

f (x, y) − V (x) < 0.

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

(x, y) ∈ R
n1 × R

n2 :
x ∈ Ux,y ∈ Y(x),

Ψ (x, y) < 0.

⎫
⎪⎬

⎪⎭
,

one deduces that f (x, y) − V (x) = 0. �
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Lemma 3.3 If (x, y) is a local weak efficient solution of (P), then the solution set of
the problem maxz∈Θ ψ(x, y, z) is given by S(x).

Proof Since (x, y) is a local weak efficient solution of (P), one has

y ∈ S(x).

For any z ∈ S(x), one gets

f (x, y) − f (x, z) = 0

and

Δ(−R
q
+)

(
g1(x, z), . . . , gq(x, z)

)≤ 0.

Consequently,

ψ(x,y, z) = 0.

To get the result, since S(x) ⊂ Θ , it suffices to prove that

ψ(x,y, z) ≤ 0 ∀z ∈ Θ.

By contrary, suppose that there exists z ∈ Θ such that

ψ(x,y, z) > 0.

Then

f (x, y) − f (x, z) > 0 and − Δ(−R
q
+)

(
g1(x, z), . . . , gq(x, z)

)
> 0.

Thus,

f (x, y) > f (x, z) and gs(x, z) ≤ 0 ∀s ∈ S.

A contradiction with y ∈ S(x) �

Remark 3.1 Under the following hypotheses (H1), (H2), (H3), (H4) and (H5), the
optimization problem (P) has at least one optimal solution.

(H1): Fi(., .) is lower semicontinuous (l.s.c.) on R
n1 × R

n2 for all i ∈ I ;
(H2): Gj(., .) is lower semicontinuous (l.s.c.) on R

n1 × R
n2 for all j ∈ J ;

(H3): gs(., .) is lower semicontinuous (l.s.c.) on R
n1 × R

n2 for all s ∈ S;
(H4): Ψ (., .) is lower semicontinuous (l.s.c.) on R

n1 × R
n2 ;

(H5): The problem (P∗) has at least one feasible solution and its feasible set is
bounded.

Especially, under these conditions, S is a nonempty compact set and Fi(., .) is
lower semicontinuous on R

n1 × R
n2 for all i ∈ I .
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Remark 3.2 The function Ψ (., .) is locally Lipschitz near (x, y).
Let

E :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x, y) ∈ R
n1 × R

n2 :
Gj(x, y) ≤ 0,∀j ∈ J = {1, . . . , p},
gs(x, y) ≤ 0 ∀s ∈ S = {1, . . . , q},
Ψ (x, y) ≤ 0.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Let m0 := p + q + 1,m := n + m0,Π0 := {1, . . . ,m0} and Π := {1, . . . ,m}. We
denote by G, g, π , and

←→
ψ the mappings defined as follows:

G(x,y) := (
G1(x, y), . . . ,Gp(x, y)

)
,

g(x, y) := (
g1(x, y), . . . , gq(x, y)

)
,

π(x, y) := (
G(x,y), g(x, y),Ψ (x, y)

)

and
←→
ψ (x, y) := (

F(x, y),G(x, y), g(x, y),Ψ (x, y)
)
.

Here,

π(x, y) := (
π1(x, y), . . . , πm0(x, y)

)
,

←→
ψ (x, y) := (←→

ψ 1(x, y), . . . ,
←→
ψ m(x, y)

)
,

←→
ψ m(x, y) = πm0(x, y) := Ψ (x, y),

πi(x, y) :=
{

Gi(x, y) ∀i ∈ {1, . . . , p}
gi−p(x, y) ∀i ∈ {p + 1, . . . , p + q}

and

←→
ψ i(x, y) :=

⎧
⎪⎨

⎪⎩

Fi(x, y) ∀i ∈ {1, . . . , n},
Gi−n(x, y) ∀i ∈ {n + 1, . . . , n + p}
gi−n−p(x, y) ∀i ∈ {n + p + 1, . . . , n + p + q}.

For t∗ = (μ∗, υ∗, γ ∗) ∈ R
p
+ × R

q
+ × R+, we consider the set

Ct∗ :=
{

u := (x, y) ∈ E such that 0 =
m0∑

i=1

t∗i πi(x, y)

}

.

Let u := (x, y) ∈ E. In the following theorem, we will need

Δ(u) =
{

t∗ ∈ R
p
+ × R

q
+ × R+ such that

∥∥t∗
∥∥≤ 1 and 0 =

m0∑

i=1

t∗i πi(x, y)

}

,

Ĵ (x) := {
y ∈ Rn2 : πi(x, y) ≤ 0 ∀i ∈ Π0

}
,
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and

T Lin(u) :=
{

d ∈ R
n1 × R

n2 : ∀t∗ ∈ Δ(u) ∀p∗
i ∈ ∂πi(u) we have

〈
m0∑

i=1

t∗i p∗
i , d

〉

≤ 0

}

Definition 3.1 We say that the nonsmooth Abadie constraint qualification holds at
(x, y) ∈ E iff

T Lin(u) ⊆ K(E,u).

Here, K(E,u) denotes the contingent cone to E at u.

Remark 3.3 In general,

K(E,u) ⊆ T Lin(u).

The following theorem gives necessary optimality conditions.

Theorem 3.1 Let u = (x, y) ∈ E be a local weak efficient solution of (P ). Suppose
that the nonsmooth Abadie constraint qualification holds at u. Then there exist y∗ ∈
(−R

n+)◦ \ {0} such that

0 ∈ ∂
(
y∗ ◦ F

)
(u) + cl cone

{
m0⋃

i=1

t∗i ∂πi(u) such that t∗ = (
t∗1 , . . . , t∗m0

) ∈ Δ(u)

}

.

Proof Since u = (x, y) ∈ E is a local weak efficient solution of (P), it is also a local
weak efficient solution of (P∗) with respect to R

n+. Setting

←→
F (u) := F(u) − F(u),

one deduces that u minimizes Δ−int Rn+ ◦←→
F over the feasible set E. Since Δ−int Rn+ ◦

←→
F is a locally Lipschitz function, denote by k0 > 0 the Lipschitz constant of
Δ−int Rn+ ◦ ←→

F . Then

∃u∗ ∈ ∂(Δ−int Rn+ ◦ ←→
F )(u), ∀d ∈ K(E,u) such that

〈
u∗, d

〉≥ 0.

Since the nonsmooth Abadie constraint qualification holds at u,

∃u∗ ∈ ∂(Δ−int Rn+ ◦ ←→
F )(u), ∀d ∈ T Lin(u) such that

〈
u∗, d

〉≥ 0.

Thus,
〈
u∗, d

〉≥ 0 whenever max
a∗∈C(u)

〈
a∗, d

〉≤ 0,

where

C(u) :=
{
a∗ = θ

∑
t∗p∗ such that θ ∈ R, t∗ ∈ Δ(u) and p∗ ∈ ∂π(u)

}
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denotes the convex cone generated by Δ(u) × ∂π(u).
Thus, there exists u∗ ∈ ∂(Δ−int Rn+ ◦ ←→

F )(u) such that the function d �→ 〈u∗, d〉 +
δC0(u)(d) attains its minimum at 0, where C0(u) is the polar cone of C(u) and δC0(u)

is the indicator function of C0(u).
Applying the chain rule [18], there exist v∗ ∈ ∂caΔ−int Rn+(0) such that

0 ∈ ∂
(
v∗ ◦ F

)
(u) + cl cone

{
m0⋃

i=1

t∗i ∂πi(u) such that t∗ = (
t∗1 , . . . , t∗m0

) ∈ Δ(u)

}

.

Since Δ−int Rn+(.) is a convex function and Δ−int Rn+(0) = 0 we have for all v ∈ R
n

Δ−int Rn+(v) ≥ 〈
v∗, v

〉

and hence for all v ∈ −(Rn+)

〈
v∗, v

〉≤ Δ−int Rn+(v) = −d
(
v,R

n\ − int Rn+
)≤ 0.

That is v∗ ∈ (−(Rn+))◦. We conclude from Proposition 2.2 that v∗ �= 0. �

In the following lemma, we prove that any local weak efficient solution of (P∗) is
also a local weak efficient solution of the unconstrained optimization problem

(
P∗

1

)
{

Minimize
←→
ψ (x, y)

subject to (x, y) ∈ R
n1 × R

n2 .

Lemma 3.4 Let (x, y) ∈ E be a local weak efficient solution of (P∗). Then (x, y) is
a local weak efficient solution of (P∗

1) with respect to R
m+.

Proof Suppose the contrary. One can find sequences (xn, yn) → (x, y) such that

←→
ψ (x,y) − ←→

ψ (xn, yn) ∈ int Rm+.

Thus,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(x, y) − F(xn, yn) ∈ int Rn+,

G(x, y) − G(xn, yn) ∈ int Rp
+,

g(x, y) − g(xn, yn) ∈ int Rq
+,

Ψ (x, y) − Ψ (xn, yn) ∈ int R+.

Since (x, y) ∈ E, one has

G(x,y) ∈ −R
p
+, g(x, y) ∈ −R

q
+ and Ψ (x, y) ≤ 0.

Consequently,
⎧
⎪⎨

⎪⎩

G(xn, yn) ∈ G(x,y) − intRp
+ ⊆ (−R

p
+) + (−int Rp

+) ⊆ (−R
p
+),

g(xn, yn) ∈ g(x, y) − int Rq
+ ⊆ (−R

q
+) + (−int Rq

+) ⊆ (−R
q
+),

Ψ (xn, yn) ∈ Ψ (x, y) − intR+ ⊆ (−R+) + (−int R+) ⊆ (−R+).
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Then
{

F(x, y) − F(xn, yn) ∈ int Rn+
G(xn, yn) ∈ (−R

p
+), g(xn, yn) ∈ (−R

q
+),Ψ (xn, yn) ≤ 0.

A contradiction with the fact that (x, y) ∈ E be a local weak efficient solution of
(P∗). �

The theorem below uses Lemma 3.4 to get necessary optimality conditions.

Theorem 3.2 Let (x, y) ∈ E be a local weak efficient solution of (P). Then there exist
y∗ ∈ (−R

m+)◦ \ {0} such that

0 ∈
n∑

i=1

y∗
i ∂Fi(x, y) +

n+p∑

i=n+1

y∗
i−n∂Gi−n(x, y)

+
n+p+q∑

i=n+p+1

y∗
i−n−p∂gi−n−p(x, y) + y∗

m∂Ψ (x, y).

Proof Since (x, y) ∈ E is a local weak efficient solution of (P), it is also a local weak
efficient solution of (P∗

1) with respect to R
m+.

The proof of this theorem consists of several steps.

• Let us prove that (x, y) solves locally the following scalar convex minimization
problem:

{
Minimize Δ−int Rm+

(←→
ψ 1(x, y) − ←→

ψ 1(x, y), . . . ,
←→
ψ m(x, y) − ←→

ψ m(x, y)
)

subject to (x, y) ∈ R
n1 × R

n2 .

By assumption, (x, y) ∈ E is a local weak efficient solution of (P∗
1) with respect to

R
m+; there exists a neighborhood V of (x, y) such that

←→
ψ (x, y) − ←→

ψ (x,y) /∈ −intRm+ for all (x, y) ∈ V.

Hence by Proposition 2.1,

Δ−int Rm+
(←→

ψ (x, y) − ←→
ψ (x,y)

)≥ 0.

Since Δ−int Rm+(0) = 0, it follows that (x, y) solves locally the problem

Minimize Δ−int Rm+
(←→

ψ (x, y) − ←→
ψ (x,y)

)
subject to (x, y) ∈ R

n1 × R
n2 .

• Set
←→
ψ u(x, y) := ←→

ψ (u) − ←→
ψ (u).
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As Δ−int R
m+ and

←→
ψ are locally Lipschitz, then there exists α ≥ 1 such that

Δ−int R
m+ ◦ ←→

ψ is locally Lipschitz with a Lipschitz constant α. Consequently,

Δ−int R
m+ ◦ ←→

ψ u is Lipschitzian. Then

0 ∈ ∂(Δ−int Rm+ ◦ ←→
ψ u)(u).

Applying the chain rule [18], there exist y∗ ∈ ∂Δ−int Rm+(0) such that

0 ∈ ∂
(
y∗ ◦ ←→

ψ u

)
(u).

Since Δ−int Rm+(.) is a convex function and Δ−int Rn+(0) = 0 we have for all v ∈ R
m

Δ−int Rm+(v) ≥ 〈
v∗, v

〉

and hence for all v ∈ −(Rm+)

〈
v∗, v

〉≤ Δ−int Rm+(v) = −d
(
v,R

m\ − int Rm+
)≤ 0.

That is v∗ ∈ (−R
m+)◦. From Proposition 2.2, we have that v∗ �= 0.

Thus, there exist v∗ ∈ (−R
m+)◦ \ {0} such that

0 ∈ ∂

(
m∑

i=1

y∗
i

←→
ψ i

)

(u).

Applying the sum rule [18], we obtain

0 ∈
m∑

i=1

y∗
i ∂

←→
ψ i(x, y).

Finally, there exist y∗ ∈ (−R
m+)◦ \ {0} such that

0 ∈
n∑

i=1

y∗
i ∂Fi(x, y) +

n+p∑

i=n+1

y∗
i−n∂Gi−n(x, y)

+
n+p+q∑

i=n+p+1

y∗
i−n−p∂gi−n−p(x, y) + y∗

m∂Ψ (x, y).

�

Remark 3.4 Using Propositions 2.3 and 2.4, one gets

∂Ψ (x, y) ⊂ co
{
∂ψ(x, y, z) : z ∈ J (x)

}

and

J (x) := {
z ∈ Θ : ψ(x,y, z) = Ψ (x, y)

}
.
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Moreover, setting

ψ1(x, y, z) = f (x, y) − f (x, z),ψ2(x, y, z) = −Δ(−R
q
+)

(
g1(x, z), . . . , gq(x, z)

)

and

I (x) := {
i : ψi(x, y, z)(x) = ψ(x,y, z)

}
,

one obtains

∂ψ(x, y, z) := conv
{
∂ψi(x, y, z) : i ∈ I (x)

}
.

4 Conclusions

As a hierarchical optimization problem, the multiobjective bilevel problem (P) com-
bines decisions of the so-called leader and the so-called follower. While the leader
has the first choice and the follower reacts optimally on the leaders selection, the
leaders aim consists in finding such a selection which, together with the followers
response, minimizes the mapping F with respect to a given cone. With the help of the
concept of Pareto optimality, together with a special scalarization function introduced
by Hiriart–Urruty, we give necessary optimality conditions. Our approach consists of
proving that (P) is locally equivalent to a single level optimization problem, where the
nonsmooth Mangasarian–Fromovitz constraint qualification may hold at any feasible
solution.
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