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Abstract Utilizing compact representations for continuous piecewise linear func-
tions, this paper discusses some theoretical properties for nonseparable continuous
piecewise linear programming. The existence of exact penalty for continuous piece-
wise linear programming is proved, which allows us to concentrate on unconstrained
problems. For unconstrained problems, we give a sufficient and necessary local opti-
mality condition, which is based on a model with universal representation capability
and hence applicable to arbitrary continuous piecewise linear programming. From
the gained optimality condition, an algorithm is proposed and evaluated by numeri-
cal experiments, where the theoretical properties are illustrated as well.

Keywords Piecewise linear · Nonlinear programming · Exact penalty ·
Local optimality condition

1 Introduction

Continuous piecewise linear (CPWL) programming stands for optimization problems
with CPWL objective functions and CPWL constraints. Intuitively, CPWL program-
ming technique is useful for continuous optimization. On the one hand, a CPWL
programming can be transformed into a series of linear problems, for which there
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are some very efficient algorithms. On the other hand, any continuous function can
be approached by a CPWL function to arbitrary precision, so that any continuous
nonlinear programming can be solved approximately by CPWL programming.

In the 1960s, Beale has applied CPWL approximation and CPWL programming
to minimize a separable nonlinear function; see [1, 2] for details. Since then, CPWL
programming has attracted the attention of researchers. For example, problems with-
out explicit formulation have been discussed in [3] and a local optimality condition
has been given, which is applicable to a special class of CPWL functions. In or-
der to analyze complicated CPWL problems, it is necessary to represent a CPWL
function explicitly. For example, via expressing one-dimensional CPWL functions
by the breakpoints, a generalized simplex algorithm for minimizing separable CPWL
functions has been proposed in [4–6]. Similarly, a series of formulations for CPWL
functions have been given in [7–10], and so on. These models have been summarized
and insightfully compared in [11]. Another kind of methods for modeling CPWL
function, called compact representation, is motivated by circuit analysis. This kind
of models can be found in [12–17]. Compact representation methods have been used
in identification, control, and other applications, but researches on CPWL program-
ming in compact representation are rare. In this paper, we first give the comparison
between the above two classes of models and then study CPWL programming in
compact representation.

In the sequel, we first review some properties of CPWL functions and introduce
representation methods in Sect. 2, where the comparison among these representations
is discussed. Section 3 proves the existence of exact penalty. This property allows
us to concentrate on unconstrained CPWL programming. For the unconstrained case,
a local optimality condition is proved and an algorithm is established in Sect. 4. Then,
we use numerical experiments to illustrate the gained theoretical results and evaluate
the proposed algorithm in Sect. 5. Finally a brief conclusion is given in Sect. 6.

2 Continuous Piecewise Linear Functions and Representations

Generally, a CPWL programming problem takes the following form:

minf0(x) s.t. fj (x) ≤ 0, 1 ≤ j ≤ J, (1)

where fj (x),0 ≤ j ≤ J , are continuous piecewise linear functions, and the domain
of the problem is denoted by Ω .

Basically, a CPWL function is a continuous function, which equals to one of the fi-
nite distinct affine functions at any point in its domain. Let f (x) be a CPWL function
on a convex set Ω . We have

f (x) ∈ {
l1(x), l2(x), . . . , lN (x)

}
, ∀x ∈ Ω, (2)

where li (x),1 ≤ i ≤ N , are finite distinct affine functions. From (2), the subregions
can be defined as Ωi = {x : f (x) = li (x), x ∈ Ω} and the domain is partitioned into
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N subregions, i.e.,

Ω =
N⋃

i=1

Ωi and
◦
Ωi ∩ ◦

Ωj= ∅, ∀i �= j,

where
◦
Ωi denotes the interior of Ωi . And the continuity of f (x) requires li (x) =

lj (x),∀x ∈ Ωi ∩ Ωj,∀i, j . Furthermore, it has been proved in [18] that if Ω is a
polyhedron, then each subregion Ωi is either a polyhedron or a union of polyhedra.
Thus, without any loss of generality, we assume that Ω and Ωi,∀i, are polyhedra and
we refer to Ωi as linear subregion. Then, one can represent a CPWL function as

f (x) = li (x), ∀x ∈ Ωi.

In the above expression, f (x) is defined by affine functions in subregions. Hence we
name it as piecewise representation. If (1) is given in piecewise representation, then
the optimum can be obtained via solving problems in the linear subregions one by
one. However, it is not easy to construct CPWL functions in piecewise representa-
tion to describe complicated systems, since it is very hard to satisfy the continuity
condition when adjusting the parameters. Therefore, it is more interesting to con-
sider CPWL programming expressed by some explicit formulations given in Sects.
2.1 and 2.2.

2.1 Vertex Representation

It is popular to use the vertices of Ωi and some binary variables or special ordered
sets to represent a CPWL function. A typical method is called a convex combination
model, which has been discussed insightfully in [7, 9, 19, 20]. This formulation can
represent any separable CPWL function f (x) = ∑n

j=1 f j (x(j)), where f j (x(j)) is

one-dimensional piecewise linear function, which is affine on the segment [dk
j , dk+1

j ]
for any k = 0,1, . . . ,K − 1. If the breakpoints (the vertices in one dimension) dk

j and
their function values are all known, then we can write

x(j) =
K∑

k=0

dk
j λk

j , ∀j and f (x) =
n∑

j=1

K∑

k=0

f j
(
dk
j

)
λk

j , (3)

where
∑K

k=0 λk
j = 1, λk

j ≥ 0, and each {λk
j } must be a special ordered set of type 2

(SOS2), which has been discussed in [2] and defined in [21]. For a given j , set {λk
j }

being a SOS2 means that: (i) all the variables are nonnegative; (ii) at most two vari-
ables can be positive; (iii) if there are two positives, then their subscripts k must be
adjacent. SOS2 is actually a kind of logistic constraint. Hence, when the functions in
CPWL programming (1) are represented by a convex combination model, (1) can be
formulated as a mixed-integer programming (MILP).

For a comparison, another formulation, named incremental model, has been pro-
posed in [9]. This model uses another special constraint called SOSX. The original
forms of convex combination model and incremental model are restricted to separable



J Optim Theory Appl

CPWL functions. When extending them to high dimensional space, the breakpoints
become the vertices of the linear subregions. If all the vertices of Ωi are known, then
nonseparable CPWL functions can be represented by some models and most of these
models are locally ideal. For details, one can see [11], where the computational com-
plexity and the sizes of the variables are compared. Since the formulations in [11] are
built from vertices, we call them vertex representations of CPWL functions.

In some particular problems, such as merge-in-transit, transportation problem and
network flow problem, the objective functions can be represented by one of the ver-
tex representations; see [8, 20] for details. Then, the corresponding problem can be
posed as a MILP and solved. Also, we want approximately to solve nonlinear prob-
lems via CPWL programming. Thus, there have been some works on nonlinear inter-
polation or fitting using vertex representations. Recently, a method has been proposed
by [22] to interpolate nonlinear function in 2 or 3 dimensions. This method partitions
the domain into simplices and uses the convex combination of the vertices to get a
CPWL function. Similarly, a method has been discussed in [23] for approximating
two-dimensional nonlinear functions by CPWL functions constructed from simpli-
cial partition, whose structure can be optimized.

2.2 Compact Representation

In order to describe piecewise linear resistors, the first compact representation for
CPWL functions has been proposed in [12]. The main property of compact represen-
tation models is that CPWL functions are represented in some closed-form formu-
lations and the continuity on the boundaries of the linear subregions holds naturally.
Basically, these representations can be written as linear combinations of basis func-
tions. Take the model proposed by [13] and called hinging hyperplanes (HH) as an
example. The HH has the following form:

f (x) = l0(x) +
M∑

m=1

βmHm(x) = l0(x) +
M∑

m=1

βm max
{
0, lm(x)

}
, (4)

where Hm(x) are the basis functions, the number of which is M , and lm(x) are affine
functions. Since the composition of continuous functions is still continuous, the con-
tinuity of (4) holds naturally and no additional constraints, such as SOS2, are needed.
The HH can be used to approximate nonlinear systems and its parameters can be
identified from observed data by algorithms in [24, 25]. These algorithms are effec-
tive and the HH has been applied widely; see e.g. [26–29].

Another popular compact representation is named high level canonical piecewise
linear representation (HL-CPWL), which has been given by [14] and discussed in
[30]. The HL-CPWL can approximate high dimensional functions and has been ap-
plied in [31–33], and so on. The HL-CPWL is based on simplicial partition: the basis
functions are constructed by the boundaries of the simplices and the linear coeffi-
cients of the basis functions are calculated through the least-squares method. Adjust-
ing the coefficients is actually configuring the values for the vertices of the simplices.
This is quite different from the methods used in [22, 23] where the function values at
the vertices are unchanged and should be given.
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Although the HH and HL-CPWL perform well in approximating some nonlinear
functions, they cannot represent all the CPWL functions in 2 or higher dimensions.
The lack of universal representation capability essentially affects the identification
performance, which has been analyzed and explained in [18]. Without this capability,
we may need a lot of basis functions to achieve satisfactory approximation preci-
sion. Moreover, only when a model has such a capability, the corresponding theo-
retical results are applicable to all CPWL functions. Therefore, researchers pursue
CPWL models with universal representation capability. From (4), it is not hard to see
that the boundaries of the subregions of the HH must be lines throughout the whole
space. Hence, the structure of the HH is not flexible enough. This is the reason why
the HH cannot represent all the CPWL functions. Naturally, the capability of repre-
sentation can be extended via adding affine functions to generalize the basis func-
tion, i.e., letting the basis function be Bm(x) = max{lm1 (x), lm2 (x), lm3 (x), . . .}. The
model using such basis function is called generalized hinging hyperplanes (GHH).
It has been proved in [15] that in n-dimensional space, using at most n + 1 affine
functions in Bm(x), arbitrary CPWL function can be represented. That is to say, for
arbitrary CPWL function f (x) : R

n → R, there are M basis functions Bm(x) and
coefficients βm such that

f (x) =
M∑

m=1

βmBm(x) =
M∑

m=1

βm max
{
lm1 (x), lm2 (x), . . . , lmn+1(x)

}
, (5)

where βm = ±1, Bm(x) are basis functions and lmi (x),1 ≤ i ≤ n + 1, are affine func-
tions. The identification algorithm for the GHH has been given by [34] and since the
GHH has universal representation capability, we can analyze CPWL programming
by using GHH to represent CPWL functions.

2.3 Comparison of Vertex and Compact Representation

Vertex representation and compact representation provide two ways to express CPWL
functions. Although in theory both the methods can represent all CPWL functions,
the transformation between them is not a tractable problem except for special cases,
e.g., the separable functions. Vertex representation (3) can be expressed by the HH as
follows:

f (x) =
n∑

j=1

f j
(
x(j)

) =
n∑

j=1

K∑

k=1

ak
j max

{
0, x(j) − dk−1

j

}
,

where

ak
j =

⎧
⎪⎪⎨

⎪⎪⎩

f j (d1
j )−f j (d0

j )

d1
j −d0

j

, k = 1,

f j (dk
j )−f j (dk−1

j )

dk
j −dk−1

j

− ∑k−1
l=1 al

j , k = 2,3, . . . ,K.

Meanwhile, when the HH (4) is separable, i.e., the basis functions take the form
of Hm(x) = βm max{0, amx(j) − bm}, we can calculate all the breakpoints, such as
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dk
j = bm

am
, and sort them to obtain the corresponding convex combination model. How-

ever, for nonseparable functions, the transformation is not easy. On the one hand,
when a CPWL function is given in compact representation, to obtain the equivalent
vertex representation we should know all the vertices and the topological relations,
but the number of the vertices may be huge. Consider (4) as an example. Each basis
function max{0, lm(x)} defines a boundary of linear subregions, i.e. lm(x) = 0, and
in n-dimensional space, a point is determined by n lines. Thus, the function repre-
sented by (4) has

(
M
n

)
vertices and the translation to any vertex representation is very

time-consuming when M and n are large. On the other hand, transforming a CPWL
function in vertex representation to any compact representation is very hard as well
and no practical method has been established. Therefore, CPWL programming in
both vertex and compact representations is worthy of study. In practice, one should
choose suitable technique according to the specifical formulation of (1).

Using a CPWL function to approach the nonlinear objective function and then
minimizing the obtained surrogate model is the major motivation of the research on
CPWL programming. Especially, when the concerned relationship is unclear or too
complicated to be optimized directly, we need to do approximation before applying
optimization technique. For this purpose, some methods for approximation using ver-
tex representations have been proposed in [22, 23]. However, for high dimensional
problems, it may be better to consider compact representation models.

The significant advantage of vertex representation is that the corresponding CPWL
programming is a MILP and can be solved by mature techniques. From the equiv-
alence of vertex representation and compact representation, one can expect that
a CPWL programming represented by compact representation can be written as a
MILP as well. Consider the following linearly constrained problem, whose objective
function takes an HH formulation:

min f (x) = l0(x) +
M∑

m=1

βm max
{
0, lm(x)

}
s.t. Ax ≤ b. (6)

By introducing M binary variables y1, y2, . . . , yM , the above problem can be equiv-
alently transformed into the following MILP:

min f (x) = l0(x) +
M∑

m=1

βmzm

s.t. Ax ≤ b

− (1 − ym)U ≤ lm(x) ≤ ymU, m = 1,2, . . . ,M

0 ≤ zm ≤ ymU,

lm(x) − U(1 − ym) ≤ zm ≤ lm(x) + U(1 − ym), m = 1,2, . . . ,M

ym ∈ {0,1}, m = 1,2, . . . ,M,

(7)

where U is positive and large enough. Notice that although (7) provides an easy and
convenient way to obtain the equivalent MILP for (6), it is not a good formulation,
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since a MILP with large positive U may have bad LP relaxation. Meanwhile, trans-
forming (6) into one-vertex representation and then getting the equivalent MILP is not
good either, because the translation is difficult. A better formulation can be gained via
further study. In this paper, we simply use (7) to calculate the optima in numerical
examples.

A CPWL programming can be transformed into a MILP, but the equivalent MILP
has been proved to be NP-hard in [20] and we cannot expect to get the global optimum
for large scale problems in acceptable time. In some applications, there is a strict re-
quirement on computing time. For example, in [31, 35, 36], compact representations
have been used to identify some chemical processes and model predictive control
method has been established, which involves finite horizon open-loop optimization
problems with CPWL (or continuous piecewise quadratic, due to different norm) ob-
jective functions. It is required that the corresponding programming be solved within
a short time (about 30 seconds) in order to obtain the control signal in time. In another
application, the power consumption of a chiller plant is described as a CPWL func-
tion and the operation point is optimized online via CPWL programming; see [37] for
details. For such problems, it is not practical to pursue the global optimum and we
should consider local optimality condition. For this, a closely related work has been
given in [3], which is applicable only to a special class of CPWL functions. In this
paper, a local optimality condition, which is applicable to any CPWL programming,
will be given by utilizing the GHH, which has the capability of representing all the
CPWL functions.

3 Exact Penalty

First, we discuss the optimization problem with CPWL objective function and CPWL
constraints. According to the properties of CPWL functions, the functions in (1) equal
to one of the following vector functions at any point in Ω , that is:

⎡

⎢⎢⎢
⎣

f0(x)

f1(x)
...

fJ (x)

⎤

⎥⎥⎥
⎦

∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢
⎣

p10(x)

p11(x)
...

p1J x

⎤

⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎣

p20(x)

p21(x)
...

p2J (x)

⎤

⎥⎥⎥
⎦

, . . . ,

⎡

⎢⎢⎢
⎣

pT 0(x)

pT 1(x)
...

pT J (x)

⎤

⎥⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, ∀x ∈ Ω, (8)

where pij (x),∀i, j , are affine functions. And the domain Ω is partitioned into the
following T subregions:

Ωi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x :

⎡

⎢⎢
⎢
⎣

f0(x)

f1(x))

...

fJ (x)

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

pi0(x)

pi1(x)

...

piJ (x)

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎢
⎣

aT
i0x + bi0

aT
i1x + bi1

...

aT
iJ x + biJ

⎤

⎥⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, 1 ≤ i ≤ T . (9)
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Applying a l1-norm penalty function, we can approach problem (1) by minimizing
the following unconstrained function:

Fλ(x) = f0(x) + λ

J∑

j=1

max
{
fj (x),0

}
, (10)

for a succession of increasing positive values of the penalty parameter λ. Fλ(x) is
obviously a CPWL function, and it can be expressed by the following piecewise
representation:

Fλ(x) = pi0(x) + λ

J∑

j=1

max
{
pij (x),0

} = aT
i0x + bi0 + λ

J∑

j=1

max
{
aT
ij x + bij ,0

}
,

∀x ∈ Ωi.

Then, each Ωi is divided into at most 2J linear subregions Ωil by hyperplanes aT
ij x +

bij = 0, j = 1,2, . . . , J . In general, the number of the linear subregions is much less
than 2J , since lots of hyperplanes aT

ij x + bij = 0 may not intersect with Ωi . In every
subregion Ωil , Fλ(x) is an affine function, i.e.,

Fλ(x) = aT
i0x + bi0 + λ

J∑

j=1

(
cT
ilj x + dilj

)
, ∀x ∈ Ωil,

where

if ∀x ∈ ◦
Ωil, aT

ij x + bij > 0, cilj = aij and dilj = bij ,

if ∀x ∈ ◦
Ωil, aT

ij x + bij < 0, cilj = 0 and dilj = 0.

As assumed, Ωi are polyhedra, thus Ωil are polyhedra as well and can be determined
by some linear inequalities. Hence, Ωil can be written as Ωil = {x : Pilx ≤ qil}. Let
x ∈ Ω be a given point and Ψ (x) = {Ωil : x ∈ Ωil} stand for the subregions which
contain x. Then, Ψ (x) is not empty and the number of its elements is finite.

A CPWL function is continuous in its domain but not differentiable at some points.
Therefore, the concept of the directional derivative is needed in CPWL analysis. The
directional derivative of an arbitrary continuous function f at x ∈ R

n in the direc-
tion d can be defined as

∇df (x) = lim
t �→0+

f (x + td) − f (x)

t
.

Using directional derivative, we can prove the following theorem which can derive
the existence of exact penalty for (1).

Theorem 3.1 For CPWL function (10), there exists a λ̄ which ensures that for all
λ > λ̄, Fλ(x) have the same local minima.
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Proof x̂ is a local minimum of Fλ(x) if and only if ∇dFλ(x̂) ≥ 0,∀d ∈ R
n. We use

Dil(x̂) to represent the set of directions along which the ray from x̂ still stays in Ωil ,
i.e., Dil(x̂) = {d : ∃t̄ > 0,∀0 ≤ t ≤ t̄ , x̂ + td ∈ Ωil}. Then, there is

∇dFλ(x̂) =
(

aT
i0 + λ

J∑

j=1

cT
ilj

)

d, ∀d ∈ Dil(x̂).

For a given direction d , there is at least one Ωil ∈ Ψ (x̂) such that d ∈ Dil(x̂).
Contrarily, in a given subregion Ωil ∈ Ψ (x̂), there is an x̃ which is different from x̂

and belongs to Ωil ; hence we can get a direction d = x̃ − x̂ ∈ Dil(x̂). Therefore, the
condition ∇dFλ(x̂) ≥ 0,∀d ∈ R

n equals

(

aT
i0 + λ

J∑

j=1

cT
ilj

)

d ≥ 0, ∀d ∈ Dil(x̂), Ωil ∈ Ψ (x̂). (11)

Ωil is determined by Ωil = {x : Pilx ≤ qil}. We denote the kth row of Pil by Pil(k)

and the kth component of qil by qil(k). Then, Γil(x̂) = {k : Pil(k)x̂ = qil(k)} stands
for the set of the indices of the active constraints at x̂. It is easy to see that Dil(x̂) =
{d : Pil(k)d ≤ 0,∀k ∈ Γil(x̂)} and it is convex. According to the Minkowski–Weyl
theorem, Dil(x̂) can be expressed as Dil(x̂) = {d : d = ∑

m θmνm,∀θm ≥ 0}, where
the number of νm is finite and (11) is equal to

(

aT
i0 + λ

J∑

j=1

cT
ilj

)
∑

m

θmνm ≥ 0, ∀θm ≥ 0, ∀Ωil ∈ Ψ (x̂).

Therefore, x̂ is locally minimal if and only if for any Ωil ∈ Ψ (x̂) ,

(

aT
i0 + λ

J∑

j=1

cT
ilj

)

νm ≥ 0, ∀νm. (12)

If
∑J

j=1 cT
ilj νm = 0,∀m, then whether (12) holds or not is independent of λ. Other-

wise, we set

λ∗
il(x̂) = max

m:∑J
j=1 cT

ilj νm �=0

{
− aT

i0νm
∑J

j=1 cT
ilj νm

}
.

Then, λ has no effect on the validity of inequality (12) as long as λ > λ∗
il(x̂), because

all λ > λ∗
il(x̂) can ensure that

(

aT
i0 + λ

J∑

j=1

cT
ilj

)

νm > 0 ⇔
J∑

j=1

cT
ilj νm > 0

for any m satisfying
∑J

j=1 cT
ilj νm �= 0. This property means that x̂ is a local optimum

of Fλ(x) for all λ > maxΩil∈Ψ (x̂){λ∗
il(x̂)} or it is not a local optimum for any λ >

maxΩil∈Ψ (x̂){λ∗
il(x̂)}.
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From the above we can see that if the value of supx̂ maxΩil∈Ψ (x̂){λ∗
il(x̂)} is finite,

then there exists λ̄ ensuring that for all λ > λ̄, Fλ(x) have the same local minima.
One can verify that

sup
x̂

max
Ωil∈Ψ (x̂)

{
λ∗

il(x̂)
} = max

Ωil

sup
x̂∈Ωil

{
λ∗

il(x̂)
}
.

When Ωil is given, νm is directly related with Dil(x̂), which is determined by Γil(x̂).
The number of different values of Γil(x̂) is finite, so is the number of different groups
of νm. Moreover, there are finite Ωil , thus the number of different values of λ∗

il(x̂) is
finite and the maximal value can be achieved, i.e.,

λ̄ = max
Ωil

max
x̂∈Ωil

{
λ∗

il(x̂)
}
.

Therefore, all the Fλ(x) have the same local minima as long as λ > λ̄. �

If the original problem is unbounded, then (10) is also unbounded. Otherwise, we
denote a global optimum for (1) by x∗. If the minimal value of Fλ(x) is unbounded
for all λ > 0, then we can sum the following additional constraints for (1),

LB ≤ x ≤ UB, (13)

where the vector LB (UB) is the lower (upper) bound for x. With these constraints,
x∗ is still the optimum as long as LB ≤ x∗ ≤ UB. Obviously, for the problem with
constraints (13), the penalty function Fλ(x) has a lower bound with sufficiently large
but finite λ. Moreover, we can design LB and UB satisfying LB ≤ x∗ ≤ UB easily,
even when x∗ is not exactly known. Thus, without any loss of generality, we can as-
sume that if an optimum of (1) exists, then there is a λ0 such that a global optimum of
Fλ(x),∀λ > λ0, is achievable. Under this assumption, the existence of exact penalty
is guaranteed by the following theorem.

Theorem 3.2 If x∗ is globally optimal for (1), then there exists a λ̃ such that for any
λ > λ̃, x∗ is a global minimum of Fλ(x).

Proof Define Lλ to be the set of the local minima of Fλ(x), i.e., Lλ = {x :
x is a local minimum of Fλ(x)}. From Theorem 3.1 it can be concluded that Lλ keeps
unchanged as long as λ > λ̄, and we denote L = Lλ,∀λ > λ̄. As assumed, for any
λ > λ0, the minimal value of Fλ(x) is bounded and achievable. Therefore, its global
minimum must be locally minimal. Then, for any λ > max{λ̄, λ0}, x∗ is a global
minimum of Fλ(x) if and only if Fλ(x

∗) ≤ Fλ(x),∀x ∈ L.
For any x ∈ L, if fj (x) ≤ 0,∀j = 1,2, . . . , J , then there is Fλ(x

∗) ≤ Fλ(x) obvi-
ously. Otherwise, we can set

λx = f0(x
∗) − f0(x)

∑J
j=1 max{0, fj (x)} .

And one can verify that Fλ(x
∗) ≤ Fλ(x),∀λ ≥ λx . Hence, for any x ∈ L, there is

Fλ(x
∗) ≤ Fλ(x),∀λ ≥ supx∈L λx .
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For any x ∈ L, there exists an Ωil such that x ∈ Ωil . Since Fλ(x) is affine in
Ωil and x is a local optimum of Fλ(x), x must be an optimum of the corresponding
linear programming in Ωil . The number of Ωil is finite, so is the number of different
values of Fλ(x),∀x ∈ L. That means when x ∈ L, the number of different values of
f0(x) and that of

∑J
j=1 max{0, fj (x)} are both finite. Therefore, supx∈L λx can be

achieved and one can expect to get an optimum of (1) using a finite exact penalty
factor by choosing λ > λ̃, where λ̃ = max{λ̄, λ0,maxx∈L λx}. �

4 Local Optimality Condition

In Sect. 3, the existence of exact penalty is proved. This property allows us to concen-
trate on the unconstrained continuous piecewise linear programming as the following:

min f (x) = f0(x) + λ

J∑

j=1

max
{
0, fj (x)

}
,

where fj (x),∀j , are CPWL functions. Since the composition of CPWL functions
is still continuous and piecewise linear, f (x) is a CPWL function and there exists a
GHH formulation to represent it. Hence, the above problem can be represented in the
following closed form:

minf (x) =
M∑

m=1

βmBm(x) =
M∑

m=1

βm max
{
lm1 (x), lm2 (x), . . . , lmn+1(x)

}
, (14)

where βm = ±1, Bm(x) are the basis functions and lmi (x) = aT
mix + bmi are affine

functions.
When x̂ is given, Bm(x̂) is determined and we can define Am(x̂) = {i : lmi (x̂) =

Bm(x̂)}. Since only the functions lmi (x), i ∈ Am(x̂) can affect the value of Bm(x) in
the neighborhood of x̂, we call Am(x̂) the active index set of Bm(x) at x̂. Then, the
sufficient and necessary condition for x̂ being a local minimum of (14) is given by
the following theorem.

Theorem 4.1 x̂ is a local minimum for (14) if and only if for any I = [I (1), I (2), . . . ,

I (M)]T , I (m) ∈ Am(x̂),∀m, there exist scalars θmi ≥ 0 which make the following
equality hold:

M∑

m=1

βmamI (m) =
M∑

m=1

∑

i∈Am(x̂)

θmi(amI (m) − ami). (15)

Proof According to the definition of Am(x̂), one can find a neighborhood of x̂, de-
noted by Bm(x̂), satisfying

Bm(x) = max
i∈Am(x̂)

{
lmi (x)

}
, ∀x ∈ Bm(x̂).
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Define B(x̂) = ⋂M
m=1 Bm(x̂). The radius of B(x̂), denoted by r , is positive and in

B(x̂), (14) is equal to the following function:

f (x) =
M∑

m=1

βm max
i∈Am(x̂)

{
lmi (x)

} =
M∑

m=1

βm max
i∈Am(x̂)

{
aT
mix + bmi

}
, ∀x ∈ B(x̂). (16)

Using vector I , we define function fI (x) as

fI (x) =
M∑

m=1

βm

(
aT
mI (m)x + bmI (m)

)
,

and the corresponding polyhedron as

ΦI = {
x : aT

mI (m)x + bmI (m) ≥ aT
mix + bmi,∀i ∈ Am(x̂),∀m

}
.

It is easy to see that f (x) = fI (x),∀x ∈ B(x̂) ∩ ΦI . Next we show that x̂ is a
local minimum of f (x) if and only if

fI (x̂) ≤ fI (x), ∀x ∈ ΦI , ∀I, (17)

where I = [I (1), I (2), . . . , I (M)]T , I (m) ∈ Am(x̂),∀m.
We first prove the necessity by supposing ∃I0,∃x̃ ∈ ΦI0 and fI0(x̂) > fI0(x̃).

Since ΦI0 is a polyhedron and fI0(x) is affine, we know that for any t ∈ (0,1],
xt = x̂ + t (x̃ − x̂) satisfies xt ∈ ΦI0 and fI0(x̂) > fI0(xt ). For any δ ∈ (0, r], we can
find 0 < t0 ≤ min{1, δ/‖x̃ − x̂‖}, then, ‖xt0 − x̂‖ ≤ δ ≤ r and fI0(x̂) > fI0(xt0). That
means both x̂ and xt0 belong to B(x̂) ∩ ΦI0 . Therefore, f (x̂) = fI0(x̂) > fI0(xt0) =
f (xt0), i.e., x̂ is not locally minimal.

On the other hand, for any x ∈ B(x̂), one can find an Ix satisfying x ∈ B(x̂)∩ΦIx

and f (x) = fIx (x). It is noted that x̂ ∈ ⋂
ΦI and f (x̂) = fIx (x̂). According to (17),

f (x̂) ≤ f (x), i.e., x̂ is locally minimal. Hence, (17) is sufficient for x̂ being locally
minimal.

From the above discussion, we know that (17) is the sufficient and necessary con-
dition for x̂ being locally minimal. Consider a given I satisfying I (m) ∈ Am(x̂),∀m.
(17) means

M∑

m=1

βm

(
aT
mI (m)x̂ + bmI (m)

) ≤
M∑

m=1

βm

(
aT
mI (m)x + bmI (m)

)
(18)

is valid for all x ∈ ΦI , where ΦI is determined by

aT
mI (m)x + bmI (m) ≥ aT

mix + bmi, ∀i ∈ Am(x̂),∀m. (19)

Since the following relationship holds:

aT
mI (m)x̂ + bmI (m) = aT

mi x̂ + bmi, ∀i ∈ Am(x̂),∀m,
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(19) is equal to

(
aT
mI (m) − aT

mi

)
(x − x̂) ≥ 0, ∀i ∈ Am(x̂),∀m.

Meanwhile, (18) can be written as

M∑

m=1

βmaT
mI (m)(x − x̂) ≥ 0.

Therefore, (17) holds if and only if for any I there is no feasible point for the follow-
ing inequalities:

M∑

m=1

βmaT
mI (m)(x − x̂) < 0,

(aT
mI (m) − aT

mi)(x − x̂) ≥ 0, ∀i ∈ Am(x̂),∀m.

(20)

According to Farkas’ lemma, (20) has no feasible point if and only if there are
nonnegative scalars θmi ≥ 0 ensuring

M∑

m=1

βmamI (m) =
M∑

m=1

∑

i∈Am(x̂)

θmi(amI (m) − ami). (21)

From the above discussion, we know that x̂ is a local minimum if and only if (21)
is valid for arbitrary I . The sufficient and necessary condition for x̂ being locally
optimal is proved. �

An important advantage of CPWL programming is that it can be transformed into
a series of linear problems in subregions, called sub-LP in this paper. If x̂ is not
locally minimal, then the objective value can be strictly decreased through sub-LP.
According to Theorem 4.1, when x̂ is not a local minimum of (14), there is at least an
I0 for which (15) does not hold for any θmi ≥ 0. Then, we can construct the following
sub-LP:

min
M∑

m=1

βmlmI0(m)(x)

s.t. lmI0(m)(x) ≥ lmi (x), ∀i = 1,2, . . . , n + 1,∀m = 1,2, . . . ,M.

(22)

From the proof of Theorem 4.1, one can easily verify that the objective value can be
strictly decreased from f0(x̂) by solving the above sub-LP. Following this idea, we
give an algorithm for (14). This algorithm uses sub-LP to decrease the objective func-
tion from an initial point and hence is named Descent Algorithm using LP Technique
(DALPT), as shown in Algorithm 1.

The number of the distinct linear subregions is finite, DALPT hence can converge
to a local optimum naturally. Obviously, in DALPT, to verify the local optimality
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Algorithm 1: Descent Algorithm using LP Technique (DALPT)
Initialize

• Randomly select an initial solution x̂

while do
• Identify Am(x̂) and let I be the set of all possible I , i.e.,

I = {I : I ∈ ZM,I (m) ∈ Am(x̂)}
while I �= ∅ do

• Randomly select I0 from I
if (15) can be satisfied by some nonnegative scales then

let I = I \ {I0}
else

break
end

end
if I �= ∅ then

Solve sub-LP (22) for I0 and use its optimum to update x̂

else
break

end
end
Result: x̂ is the obtained locally optimal solution

of x̂, at most
∏M

m=1 ‖Am(x̂)‖ linear equations should be solved, where ‖Am(x̂)‖
denotes the number of elements in Am(x̂). According to the definition of the ac-
tive index set Am(x̂), one can see that x̂ must satisfy

∑M
m=1 ‖Am(x̂)‖ − 1 linear

equations. Therefore, when these linear equations are linearly independent, we have∑M
m=1 ‖Am(x̂)‖ ≤ n + M and ‖Am(x̂)‖ ≥ 1,∀m. Although

∏M
m=1 ‖Am(x̂)‖ may be

very large, it is acceptable in regular cases. To show the effectiveness of DALPT, we
report the computing time in numerical experiments. The basic thought of DALPT,
i.e., solving LP in one subregion and choose another to test, is the same as the idea of
the algorithm in [37] and the generalized simplex algorithm in [4–6]. The algorithm
in [37] deals with a minimization problem of adaptive hinging hyperplanes (AHH),
which is a nesting CPWL representation proposed in [17], by solving sub-LPs repeat-
edly in allowed time. In that algorithm, the local optimality of the result cannot be
guaranteed, since the local optimality condition for the AHH has not been derived.
To make algorithm more effective, local optimality condition is considered in both
DALPT and the generalized simplex algorithm, the latter of which is established for
minimizing a separable CPWL function in vertex representation. As mentioned in
Sect. 2.3, transforming a nonseparable compact expression to vertex representation is
not easy, we cannot simply extend the generalized simplex algorithm to solving (14).

According to Theorem 4.1, if the objective function can be represented by the HH,
i.e.,

f (x) = aT
0 x + b0 +

M∑

m=1

βm max
{
0, aT

mx + bm

}
, (23)
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Fig. 1 Decomposable and non-decomposable functions

then the optimality condition is given by the following corollary. Using this corollary,
the local optimality of (23) can be verified by solving one linear equation.

Corollary 4.1 For function (23), if {am}m:aT
mx̂+bm=0 are linearly independent, then

the sufficient and necessary condition for x̂ being locally minimal is: for any m sat-
isfying aT

mx̂ + bm = 0, (i) βm = 1; (ii) there are scalars ηm such that

−1 ≤ ηm ≤ 0,

a0 +
∑

m:aT
mx̂+bm>0

βmam =
∑

m:aT
mx̂+bm=0

ηmam.

Conn and Mongeau have given a local optimality condition for CPWL program-
ming (see Theorem 2 in [3]) and that condition is equivalent to Corollary 4.1. Inspired
by this equivalence, one can see that Conn’s condition is discussing the CPWL objec-
tive function which can be represented by the HH model in the neighborhood of the
concerned point. As HH cannot represent all CPWL functions, there are lots of func-
tions that Conn’s condition cannot handle. To show this fact, we compare two simple
functions both taken from [3]. The two functions are shown below and illustrated by
Fig. 1:

f1
(
x(1), x(2)

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−x(1) − x(2), if x(1) ≥ 0 and x(2) ≥ 0,

x(1) − x(2), if x(1) < 0 and x(2) ≥ 0,

−x(1) + x(2), if x(1) ≥ 0 and x(2) < 0,

x(1) + x(2), otherwise.

(24)

f2
(
x(1), x(2)

) =

⎧
⎪⎨

⎪⎩

−x(2), if x(2) < 0 and x(2) > x(1),

−x(1), if x(1) < 0 and x(2) ≤ x(1),

0, otherwise.
(25)

Conn’s condition is proved via decomposing a CPWL function by ridge. In [3],
a ridge of piecewise linear function f is a specified hyperplane “containing a rel-
ative neighborhood where the derivative of f is not defined.” One can verify that
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the ridges of f1 are the two lines x(1) = 0 and x(2) = 0, and the ridges of f2 are
x(1) = 0, x(2) = 0 and x(1) = x(2). Using the optimality condition in [3], one can
analyze the local optimality for a CPWL function with known ridges by decompos-
ing the function into a smooth part and a non-smooth part. However, f2 is non-
decomposable at [0,0]T and the reason is rigorously explained in [3]. Compactly
represent the two functions, i.e.,

f1
(
x(1), x(2)

) = x(1) + x(2) − 2 max
{
0, x(1)

} − 2 max
{
0, x(2)

}
,

f2
(
x(1), x(2)

) = max
{
0, x(1), x(2)

} − max
{
x(1), x(2)

}
.

One can see the main difference between f1 and f2 is that f1 can be represented
by the HH model but f2 cannot be. We call the part of ridges that actually has rel-
ative neighborhood where the derivative is not defined as the active part of ridge.
The active parts of ridges form the boundaries of the linear subregions. Consider the
function f2: the active parts of its ridges are

{
x : x(1) = 0, x(2) ≤ 0

}
,

{
x : x(2) = 0, x(1) ≤ 0

}
,

{
x : x(1) − x(2) = 0, x(1) ≥ 0, x(2) ≥ 0

}
,

which are rays. This is the reason why f2 is non-decomposable. In fact, when a
CPWL function can be represented by the HH, it is decomposable at any point in
its domain. From another point of view, if there are some boundaries of the linear
subregions which are not lines but segments or rays, then the CPWL function is
non-decomposable at the terminals of such segments or rays. In this case, Conn’s
condition does not work but Theorem 4.1 is applicable to any CPWL programming.

5 Numerical Examples

Some properties of CPWL programming are discussed above and an algorithm is
proposed. Two examples are considered below. The first example is a problem with
nonseparable CPWL objective function and CPWL constraints. This example is used
to illustrate some theoretical results. In the second example, we use DALPT to mini-
mize a CPWL function under linear constraints. Then, the results are compared with
the global optimum calculated by CPLEX.

Example 5.1 Consider the following CPWL programming:

min 2 max
{
x(1) + x(2), x(1) − x(2) + 1,−x(1) + x(2) − 1

}

− max
{
x(1) − 1,2x(2) + 3,−2x(1) + x(2)

}

+ 2 max
{−3x(1) + x(2),3x(1) + x(2)

}

s.t. − 5 ≤ x(1) ≤ 5, −5 ≤ x(2) ≤ 5, x(2) ≤ max
{
x(1),−x(1)

}
.
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Fig. 2 Features of Example 5.1

The plots of the objective function and the feasible domain are shown in Fig. 2(a)
and (b). It is noted that max{0, x(2)− max{x(1),−x(1)}} = max{max{x(1),−x(1)},
x(2)}−max{x(1), −x(1)}. We can transform Example 5.1 into a unconstrained prob-
lem using penalty parameter λ as follows:

min Fλ(x) =
9∑

m=1

βmBm(x),

where β2 = −1, β9 = −1, βm = 1,m = 1,3,4, . . . ,8, and

B1(x) = 2 max
{
x(1) + x(2), x(1) − x(2) + 1,−x(1) + x(2) − 1

}
,

B2(x) = max
{
x(1) − 1,2x(2) + 3,−2x(1) + x(2)

}
,

B3(x) = 2 max
{−3x(1) + x(2),3x(1) + x(2)

}
,

B4(x) = λmax
{
0,−x(1) − 5

}
,

B5(x) = λmax
{
0, x(1) − 5

}
,
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B6(x) = λmax
{
0,−x(2) − 5

}
,

B7(x) = λmax
{
0, x(2) − 5

}
,

B8(x) = λmax
{
x(1),−x(1), x(2)

}
,

B9(x) = λmax
{
x(1),−x(1)

}
.

To show the local optimality condition, we let x̂ = [0,0]T , for which A1(x̂) =
{2},A2(x̂) = {2},A3(x̂) = {1,2},A4(x̂) = A5(x̂) = A6(x̂) = A7(x̂) = {1},A8(x̂) =
{1,2,3},A9(x̂) = {1,2}. Considering I = [2,2,1,1,1,1,1,3,1]T , Eq. (15) becomes

2

[
1

−1

]
−

[
0

2

]
+ 2

[−3

1

]
+ λ

[
0

1

]
− λ

[
1

0

]

= 2θ1

[−6

0

]
+ θ2

[−λ

λ

]
+ θ3

[
λ

λ

]
+ θ4

[
2λ

0

]
.

Obviously, the above equation can be satisfied by nonnegative θm when λ ≥ 2. Fol-
lowing similar analysis, we know that Theorem 4.1 can be met, i.e., [0,0]T is locally
optimal for Fλ(x), when λ ≥ 2. For the special case of λ = 5, the penalized func-
tion is illustrated in Fig. 2(c) and 2(d). According to Theorem 3.1, one can see that
x̂ = [0,0]T is also a local optimum of Example 5.1.

Example 5.2 Consider the HH minimization problem below:

min f (x) = l0(x) +
M∑

m=1

βm max
{
0, lm(x)

}
s.t. 0 ≤ x(i) ≤ 1, ∀i = 1,2, . . . , n.

The objective function takes HH form and lm(x) = aT
mx + bm. We consider the

cases [n,M] = [3,30], [3,100], [5,30], [5,100], separately. Parameters am are se-
lected from [−1,1]n following the uniform distribution. Then, we randomly generate
bm and guarantee each hyperplane lm(x) = 0,m = 1,2, . . . ,M , to intersect with the
hypercube [0,1]n (otherwise, the basis function max{0, lm(x)} reduces to an affine
function in the feasible domain). βm takes value from {−1,1} with equal possibility.

DALPT is established for unconstrained problem. Meanwhile, it can be directly
used in linearly constrained problem. We apply DALPT to handle Example 5.2. Since
the result of DALPT may differ from different initial points, we run DALPT 10 times
from random initial points and choose the best one as the optimized result. Mean-
while, we can transform this problem into a MILP like (7) and solve it by CPLEX,
whose result is globally optimal and can be used to evaluate the performance of
DALPT. For a pair of M and n, 10 instances are generated and Table 1 shows the ex-
perimental results, including the average and standard derivation of computing time
of DALPT, the average computing time of CPLEX and the percentage of global op-
timum are achieved within repeating DALPT 10 times.
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Table 1 Performance of DALPT in Example 5.2

n M Avg. time (s) Std. of time (s) Percentage of gaining optimum Avg. time of CPLEX (s)

3 30 0.0797 0.0514 90% 0.005

3 100 1.7925 0.9855 100% 8.494

5 30 0.1306 0.0690 100% 0.107

5 100 1.8650 0.7904 100% 406.5

DALPT is run by Matlab 2007a in Pentium 4.3 GHz, 1 GB RAM and CPLEX is 11.1 solver run in Xeon
2.33 GHz, 11.9 GB RAM

6 Conclusions

Continuous piecewise linear functions represented by compact models have been
widely applied in circuit analysis and nonlinear system identification. Therefore, con-
tinuous piecewise linear programming in a compact model is an important problem
worthy of study. In this paper, we prove the existence of exact penalty and give a lo-
cal optimality condition for nonseparable CPWL programming. Based on the gained
optimality condition, a decreasing algorithm is established. Then, we illustrate the
theoretical results and evaluate the proposed algorithm by a numerical study. This pa-
per gives some preliminary discussions on CPWL programming in compact model.
Further study on efficient algorithm will make CPWL programming in compact rep-
resentation a promising tool in nonlinear analysis and optimization.
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