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Abstract In this paper, we generalize a primal–dual path-following interior-point al-
gorithm for linear optimization to symmetric optimization by using Euclidean Jordan
algebras. The proposed algorithm is based on a new technique for finding the search
directions and the strategy of the central path. At each iteration, we use only full
Nesterov–Todd steps. Moreover, we derive the currently best known iteration bound
for the small-update method. This unifies the analysis for linear, second-order cone,
and semidefinite optimizations.

Keywords Symmetric optimization · Interior-point methods · Euclidean Jordan
algebras · Small-update method

1 Introduction

Symmetric optimization (SO) problem is a convex optimization problem that mini-
mizes a linear function over the intersection of an affine subspace and a symmetric
cone. This class of optimization problem includes linear optimization (LO), second-
order cone optimization (SOCO), and semidefinite optimization (SDO) as special
cases. In the past two decades, the SDO problems have been one of the most active re-
search areas in mathematical programming. Nesterov and Todd [1, 2] provided a theo-
retical foundation for efficient primal–dual interior-point methods (IPMs) for convex
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programming problems, which includes LO, SOCO, and SDO. Potra and Sheng [3]
and Kojima, Shida and Shindoh [4] independently investigated the superlinear con-
vergence of primal–dual infeasible-interior-point algorithms for SDO. Ji, Potra, and
Sheng [5] studied the local behavior of the predictor–corrector algorithm considered
by Monteiro [6] for SDO using the Monteiro–Zhang family of search directions. Potra
and Sheng [7] first analyzed the homogeneous embedding idea for SDO. Luo, Sturm,
and Zhang [8] proposed a self-dual embedding model for conically constrained con-
vex optimization, including SDO. For an overview of these related results, we refer
to the subject monographs [9, 10] and references within.

In the research field of Lie algebras, it is well-known that a symmetric cone has a
deep connection with the Euclidean Jordan algebras. The first work connecting Jor-
dan algebras and optimization is due to Güler [11]. He observed that the family of the
self-scaled cones is identical to the set of symmetric cones for which there exists a
complete classification theory. Faybusovich [12] first extended primal–dual IPMs for
SDO to SO by using Euclidean Jordan algebras. Muramatsu [13] presented a com-
mutative class of search directions for LO over symmetric cones, and analyzed the
complexities of primal–dual IPMs for SO. Rangarajan [14] proved the polynomial-
time convergence of infeasible IPMs for conic programming over symmetric cones
using a wide neighborhood of the central path for a commutative family of search
directions. Schmieta and Alizadeh [15] presented a way to transfer the Jordan al-
gebra associated with the second-order cone into the so-called Clifford algebra in
the cone of matrices and then carried out a unified method of the analysis for many
IPMs in symmetric cones. Vieira [16] proposed primal–dual IPMs for SO based on
the so-called eligible kernel functions and obtained the currently best known iteration
bounds for the large- and small-update methods.

Recently, Darvay [17] proposed a full-Newton step primal–dual path-following
interior-point algorithm for LO. The search direction of his algorithm is introduced by
using an algebraic equivalent transformation (form) of the nonlinear equations which
define the central path and then applying Newton’s method for the new system of
equations. Later on, Achache [18] and Wang et al. [19, 20] respectively extended Dar-
vay’s algorithm for LO to convex quadratic optimization (CQO), SOCO, and SDO.
By constructing strictly feasible iterates for a sequence of the perturbed problems
of the given problem and its dual problem, Roos [21] presented a full-Newton step
primal–dual infeasible interior-point algorithm for LO based on the classical search
direction. Using Euclidean Jordan algebras, Gu et al. [22] extended Roos’s algorithm
for LO to SO. The order of the iteration bound coincides with the bound derived for
LO which is the currently best known iteration bound for SO.

The purpose of the paper is to generalize Darvay’s full-Newton step primal–dual
path-following interior-point algorithm for LO to SO by using Euclidean Jordan al-
gebras. We develop some new analytic tools and adopt the basic analysis used in
Darvay [17] and Wang et al. [19, 20] to the SO case. At each iteration, we use only
full Nesterov–Todd steps which have the advantage that no line searches are needed.
The currently best known iteration bound for the small-update method is derived.
Moreover, our analysis is relatively simple and straightforward to the LO analogue in
Darvay [17].

The paper is organized as follows. In Sect. 2, we provide the theory of the Eu-
clidean Jordan algebras and their associated symmetric cones, and develop some new
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results that are needed in the analysis of the algorithm. In Sect. 3, after briefly re-
viewing the concept of the central path for SO, we extend Darvay’s technique for LO
to SO and obtain the new search directions for SO. The generic primal–dual interior-
point algorithm for SO is also presented. In Sect. 4, we analyze the algorithm and
derive the currently best known iteration bound for the small-update method. Finally,
some conclusions and remarks follow in Sect. 5.

2 Euclidean Jordan Algebras and Their Associated Symmetric Cones

In this section, we provide the theory of the Euclidean Jordan algebras and their as-
sociated symmetric cones. This will serve as the basic analytic tool for the analysis of
our algorithm presented in Fig. 1. For a comprehensive treatment of Jordan algebras,
the reader is referred to the monograph by Faraut and Koranyi [23].

Definition 2.1 Let V be an n-dimensional vector space over R along with the bilinear
map ◦ : (x, y) �→ x ◦ y ∈ V . Then (V ,◦) is a Jordan algebra iff for all x, y ∈ V

(i) x ◦ y = y ◦ x;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x.

We define xn := x ◦ xn−1, n ≥ 2. Jordan algebras are not necessarily associative,
but they are power associative, xm ◦ xn := xm+n, i.e., the algebra generated by a
single element x ∈ V is associative (see, e.g., [15]).

An element e ∈ V is said to be an identity element iff e ◦ x = x ◦ e = x for all
x ∈ V . Note that the identity element e is unique, i.e., if e1 and e2 are identity ele-
ments of V , then e1 = e1 ◦ e2 = e2 ◦ e1 = e2.

Definition 2.2 A Jordan algebra (V ,◦) over R with an identity element e is said to
be a Euclidean Jordan algebra iff there exists a symmetric, positive definite quadratic
form Q on V which is also associative, that is,

Q(x ◦ y, z) = Q(x,y ◦ z).

Remark 2.1 In the sequel, we always assume that (V ,◦) is a Euclidean Jordan alge-
bra, and simply denoted as V .

Since “◦” is bilinear for every x ∈ V , there exists a matrix L(x) such that for
every y, x ◦ y := L(x)y. In particular, L(x)e = x and L(x)x = x2. Furthermore, the
part (ii) of Definition 2.1 implies that the operators L(x) and L(x2) commute, i.e.,
L(x2)L(x)y = x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) = L(x)L(x2)y.

For each x ∈ V , we define

P(x) := 2L(x)2 − L
(
x2), (1)

where L(x)2 := L(x)L(x). The map P(x) is called the quadratic representation of
V , which is an essential concept in the theory of Jordan algebras.

An element x ∈ V is called invertible iff there exists a y = ∑k
i=0 αix

i for some
finite k < ∞ and real numbers αi such that x ◦ y = y ◦ x = e, and denoted as x−1.
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It is well-known that the cone K is said to be a symmetric cone iff it is self-dual
and homogeneous. A symmetric cone is also precisely the class of self-scaled cone
introduced by Nesterov and Todd [1, 2]. For any Euclidean Jordan algebra V , the
corresponding cone of squares

K(V ) := {
x2 : x ∈ V

}
(2)

is indeed a symmetric cone.
The following theorem gives some major properties of the cone of squares in a

Euclidean Jordan algebra.

Theorem 2.1 (Theorem III.2.1, Proposition III.2.2 in [23]) Let V be a Euclidean
Jordan algebra. Then K(V ) is a symmetric cone, and is the set of elements x in V

for which L(x) is positive semidefinite. Furthermore, if x is invertible, then

P(x) intK = intK,

where intK is the interior of K .

A symmetric cone K in a Euclidean space V is said to be irreducible iff there do
not exist non-trivial subspaces V1, V2 and symmetric cones K1 ⊂ V1, K2 ⊂ V2 such
that V is the direct sum of V1 and V2, and K the direct sum of K1 and K2.

Lemma 2.1 (Proposition II.4.5 in [23]) Any symmetric cone K is, in a unique way,
the direct sum of irreducible symmetric cones.

A Euclidean Jordan algebra is said to be simple iff it cannot be represented as
the orthogonal direct sum of two Euclidean Jordan algebras. Simple Jordan algebras
have been classified into five kinds of irreducible symmetric cones. The details can
be found in [23].

Since a Jordan algebra V is power associative, we can define the concepts of rank,
the minimum and the characteristic polynomials, eigenvalues, trace, and determinant
for it in the following way (see, e.g., [15]).

For any x ∈ V , let r be the smallest integer such that the set {e, x, . . . , xr} is
linearly dependent. Then r is the degree of x which we denote as deg(x). The rank
of V , rank(V ), is the largest deg(x) of any number x ∈ V . An element x ∈ V is called
regular iff its degree equals the rank of V .

Remark 2.2 In the sequel, unless stated otherwise, we always assume that V is a
Euclidean Jordan algebra with rank(V ) = r .

For a regular element x ∈ V , since {e, x, . . . , xr} is linearly dependent, there are
real numbers a1(x), . . . , ar (x) such that the minimal polynomial of every regular
element x is given by

f (λ;x) = λr − a1(x)λr−1 + · · · + (−1)rar (x) (3)

which is the characteristic polynomial of the regular element x. The coefficient a1(x)

is called the trace of x, denoted as tr(x). The coefficient ar(x) is called the determi-
nant of x, denoted as det(x).
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An element c ∈ V is said to be idempotent iff c 	= 0 and c2 = c. Two idempotents
c1 and c2 are said to be orthogonal if c1 ◦ c2 = 0. We say that {c1, . . . , cr} is a com-
plete system of orthogonal primitive idempotents, or a Jordan frame, iff each ci is a
primitive idempotent, ci ◦ cj = 0, i 	= j , and

∑n
i=1 ci = e. Note that Jordan frames

always contain r primitive idempotents, where r is the rank of V .

Theorem 2.2 (Spectral decomposition, Theorem III.1.2 in [23]) Let x ∈ V . Then
there exists a Jordan frame {c1, . . . , cr} and real numbers λ1(x), . . . , λr (x) such that

x =
n∑

i=1

λi(x)ci . (4)

The numbers λi(x) (with their multiplicities) are the eigenvalues of x. Furthermore,

tr(x) =
r∑

i=1

λi(x) and det(x) =
r∏

i=1

λi(x). (5)

In fact, the above λ1(x), . . . , λr (x) are exactly the roots of the characteristic poly-
nomial f (λ;x). Note that, since e = c1 + · · · + cr has eigenvalue 1, with multiplic-
ity r , it follows that tr(e) = r and det(e) = 1. For any x ∈ V , one can easily verify
that

x ∈ K ⇐⇒ λi(x) ≥ 0, i = 1, . . . , r, (6)

and

x ∈ intK ⇐⇒ λi(x) > 0, i = 1, . . . , r. (7)

The importance of the spectral decomposition (4) is that it enables us to extend
the definition of any real-valued, continuous univariate function ψ(t) to elements of
a Euclidean Jordan algebra using eigenvalues.

Throughout the paper, we assume that ψ(t) is a real valued univariate function on
[0,+∞[ and differentiable on ]0,+∞[ such that ψ ′(t) > 0 for all t > 0. Now we are
ready to show how a vector-valued function can be obtained from the function ψ(t).

Definition 2.3 Let x ∈ V with the spectral decomposition defined by (4). The vector-
valued function ψ(x) is defined by

ψ(x) := ψ
(
λ1(x)

)
c1 + · · · + ψ

(
λr(x)

)
cr . (8)

Furthermore, replacing ψ(λi(x)) in (8) by ψ ′(λi(x)) with i = 1, . . . , r , respec-
tively, we can define the vector-valued function as follows

ψ ′(x) := ψ ′(λ1(x)
)
c1 + · · · + ψ ′(λr(x)

)
cr . (9)

It should be pointed out that x ◦ s = s ◦ x, but, in general, L(x)L(s) 	= L(s)L(x).
We say that two elements x and y of V operator commute iff L(x)L(y) = L(y)L(x).
In other words, x and y operator commute iff for all z ∈ V , x ◦ (y ◦ z) = y ◦ (x ◦ z)

(see, e.g., [15]).
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Lemma 2.2 (Theorem 27 in [15]) Let x and s be two elements of a Euclidean Jordan
algebra V . Then x and s operator commute if and only if there is a Jordan frame
{c1, . . . , cr} such that

x = λ1(x)c1 + · · · + λr(x)cr and s = λ1(s)c1 + · · · + λr(s)cr .

Corollary 2.1 Let x, s ∈ V , and suppose they share a Jordan frame {c1, . . . , cr}.
Then

x ◦ s = λ1(x)λ1(s)c1 + · · · + λr(x)λr(s)cr .

Proof The desired result follows directly from the fact that {c1, . . . , cr} is a complete
system of orthogonal primitive idempotents. �

Corollary 2.2 Let x, s ∈ V and x + s = e. Then x and s operator commute.

Proof Theorem 2.2 implies that there exists a Jordan frame {c1, . . . , cr} such that

x = λ1(x)c1 + · · · + λr(x)cr and e = c1 + · · · + cr .

Thus, we get

s = e − x = (
1 − λ1(x)

)
c1 + · · · + (

1 − λr(x)
)
cr .

This implies the desired result. �

Definition 2.4 Let x, s ∈ V . The elements x and s are approximately equivalent, and
briefly denoted as x ≈ s, iff x and s operator commute, and the absolute value of the
difference of their respective corresponding eigenvalues is small enough.

Theorem 2.3 Let x, s ∈ V , and suppose x and s operator commute. Then

λi(x + s) = λi(x) + λi(s), i = 1, . . . , r.

Furthermore, if each |λi(s)| with i = 1, . . . , r is small enough, one has

ψ(x + s) ≈ ψ(x) + ψ ′(x) ◦ s.

Proof Since x, s ∈ V , Theorem 2.2 implies that there exists a Jordan frame
{c1, . . . , cr} such that

x = λ1(x)c1 + · · · + λr(x)cr and s = λ1(s)c1 + · · · + λr(s)cr .

Hence, we have

x + s = (
λ1(x) + λ1(s)

)
c1 + · · · + (

λr(x) + λr(s)
)
cr .

This implies that

λi(x + s) = λi(x) + λi(s), i = 1, . . . , r.

On the other hand, since ψ(t) is a differentiable, we know that, if each |λi(s)| with
i = 1, . . . , r is small enough, then

ψ
(
λi(x) + λi(s)

) ≈ ψ
(
λi(x)

) + ψ ′(λi(x)
)
λi(s), i = 1, . . . , r.
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Hence, we have

ψ(x + s)

= ψ
(
λ1(x + s)

)
c1 + · · · + ψ

(
λr(x + s)

)
cr

= ψ
(
λ1(x) + λ1(s)

)
c1 + · · · + ψ

(
λr(x) + λr(s)

)
cr

≈ (
ψ

(
λ1(x)

) + ψ ′(λ1(x)
)
λ1(s)

)
c1 + · · · + (

ψ
(
λr(x)

) + ψ ′(λr(x)
)
λr(s)

)
cr

= ψ
(
λ1(x)

)
c1 + · · · + ψ

(
λr(x)

)
cr + ψ ′(λ1(x)

)
λ1(s)c1 + · · · + ψ ′(λr(x)

)
λr(s)cr

= ψ(x) + ψ ′(x) ◦ s.

The last equality holds due to Corollary 2.1. This completes the proof. �

Corollary 2.3 Let x, s ∈ V and x+s = e. If |λi(s)| with i = 1, . . . , r is small enough,
one has

ψ(x + s) ≈ ψ(x) + ψ ′(x) ◦ s.

Proof The corollary follows immediately from Corollary 2.2 and Theorem 2.3. �

For any x, s ∈ V , we define

〈x, s〉 := tr(x ◦ s). (10)

and refer to it as the trace inner product. The Frobenius norm induced by this trace
inner product, namely ‖ · ‖F , is defined by

‖x‖F := √〈x, x〉. (11)

Then

‖x‖F =
√

tr
(
x2

) =
√√√√

r∑

i=1

λ2
i (x). (12)

Furthermore, we have
∣∣λmax(x)

∣∣ ≤ ‖x‖F and
∣∣λmin(x)

∣∣ ≤ ‖x‖F , (13)

where λmax(x) and λmin(x) denote the largest and the smallest eigenvalue of x, re-
spectively.

Lemma 2.3 Let x ∈ V . Then

λmax(x)e − x ∈ K and x − λmin(x)e ∈ K.

Proof Theorem 2.2 implies that there exists a Jordan frame {c1, . . . , cr} such that

x =
r∑

i=1

λi(x)ci and e =
r∑

i=1

ci .

Hence, we have

λmax(x)e − x = λmax(x)

r∑

i=1

ci −
r∑

i=1

λi(x)ci =
r∑

i=1

(
λmax(x) − λi(x)

)
ci .
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It follows from (6) that

λmax(x)e − x ∈ K.

The proof of the second part of the lemma follows in a similar way. �

Corollary 2.4 Let x ∈ V and ‖x‖F ≤ 1. Then

e − x ∈ K.

Proof Since λmax(x) ≤ ‖x‖F , the corollary follows immediately from Lemma 2.3. �

Lemma 2.4 Let x ∈ V and e − x ◦ x ∈ K . Then

0 ≤ ‖e − x ◦ x‖2
F ≤ r.

Proof Theorem 2.1 implies that λi(x ◦ x) ≥ 0 for i = 1, . . . , r . Thus, we have

0 ≤ ‖e − x ◦ x‖2
F =

r∑

i=1

λ2
i (e − x ◦ x) =

r∑

i=1

(
1 − λi(x ◦ x)

)2 ≤ r.

The last inequality holds due to the fact that 0 ≤ 1 − λi(x ◦ x) ≤ 1. This completes
the proof. �

The following well-known inequalities are needed in the analysis of the interior-
point algorithm presented in Fig. 1.

Lemma 2.5 (Lemma 2.12 in [22]) Let x ∈ V . Then
∥∥x2

∥∥
F

≤ ‖x‖2
F .

Lemma 2.6 (Lemma 14 in [15]) Let x, s ∈ V . Then

λmin(x + s) ≥ λmin(x) + λmin(s) ≥ λmin(x) − ‖s‖F

and

λmax(x + s) ≤ λmax(x) + λmax(s) ≤ λmax(x) + ‖s‖F .

Lemma 2.7 (Lemma 30 in [15]) Let x, s ∈ K . Then
∥∥P(x)1/2s − e

∥∥
F

≤ ‖x ◦ s − e‖F .

Lemma 2.8 (Theorem 4 in [24]) Let x, s ∈ K . Then

λmin
(
P(x)1/2s

) ≥ λmin(x ◦ s).

Recall that two matrices X and S are said to be similar iff they share the same
eigenvalues, including their multiplicities. In this case, we write X ∼ S. Analogously,
we say that two elements x and s in V are similar, and briefly denoted as x ∼ s, iff x

and s share the same eigenvalues, including their multiplicities (see, e.g., [16, 22]).
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Lemma 2.9 Let x, s ∈ V and x ∼ s. Then

det(x) = det(s) and tr(x) = tr(s).

Furthermore, one has

x ∈ K (intK) ⇐⇒ s ∈ K (intK).

Proof The desired results follow directly from Theorem 2.2. �

The following lemma gives the so-called NT-scaling of V , which was first estab-
lished by Faybusovich [25] in the framework of Euclidean Jordan algebras.

Lemma 2.10 (NT-scaling, Lemma 3.2 in [25]) Let x, s ∈ intK . Then there exists a
unique w ∈ intK such that

x = P(w)s.

Moreover,

w = P(x)
1
2
(
P

(
x

1
2
)
s
)− 1

2
[= P

(
s− 1

2
)(

P
(
s

1
2
)
x
) 1

2
]
.

The point w is called the scaling point of x and s (in this order).

As a consequence, there exists v ∈ intK such that

v = P(w)−
1
2 x = P(w)

1
2 s. (14)

Note that P(w)
1
2 and its inverse P(w)− 1

2 are automorphisms of intK (see, e.g., [22]).

Lemma 2.11 Let t > 0 and v ∈ K . Then

‖te − v‖F ≤ 1

t + λmin(v)

∥∥t2e − v ◦ v
∥∥

F
.

Proof It follows from Corollary 2.1 and Theorem 2.3 that

‖te − v‖F = ∥∥(
(te + v)−1 ◦ (te + v)

) ◦ (te − v)
∥∥

F

= ∥∥(te + v)−1 ◦ (
(te + v) ◦ (te − v)

)∥∥
F

= ∥∥(te + v)−1 ◦ (
t2e − v ◦ v

)∥∥
F

=
√√
√√

n∑

i=1

λ2
i (t

2e − v ◦ v)

λ2
i (te + v)

≤ 1

λmin(te + v)

√√√√
n∑

i=1

λ2
i

(
t2e − v ◦ v

)

= 1

t + λmin(v)

∥∥(
t2e − v ◦ v

)∥∥
F
.

This completes the proof. �
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3 Primal–Dual Path-Following Interior-Point Algorithm for SO

In this section, after reviewing the concept of the central path for SO, we extend
Darvay’s technique for LO to SO and obtain the new search directions for SO. The
generic primal–dual path-following interior-point algorithm for SO is also presented.

3.1 The Central Path for SO

We consider the SO problem given in the standard form

(SOP) min
{〈c, x〉 : Ax = b, x ∈ K

}
,

and its dual problem

(SOD) max
{
bT y : AT y + s = c, s ∈ K

}
,

where c and the rows of A lie in V , and b ∈ Rm. We call (SOP) feasible iff there exists
x ∈ K such that Ax = b, and strictly feasible, if in addition, x ∈ intK . Similarly, we
call (SOD) feasible iff there exists (y, s) ∈ Rm × K such that AT y + s = c, and
strictly feasible, if in addition, s ∈ intK . Throughout the paper, we assume that the
matrix A has full rank, i.e., rank(A) = m.

Throughout the paper, we assume that both (SOP) and (SOD) satisfy the interior-
point condition (IPC), i.e., both (SOP) and (SOD) are strictly feasible. This can be
achieved via the so-called homogeneous self-dual embedding (see, e.g., [7, 24]). Un-
der the IPC, finding an optimal solution of (SOP) and (SOD) is equivalent to solving
the following system

Ax = b, x ∈ K,

AT y + s = c, s ∈ K, (15)

x ◦ s = 0.

The basic idea of primal–dual IPMs is to replace the third equation in (15), the so-
called complementarity condition for (SOP) and (SOD), by the parameterized equa-
tion x ◦ s = μe with μ > 0. The system (15) can be written as

Ax = b, x ∈ K,

AT y + s = c, s ∈ K, (16)

x ◦ s = μe.

Since the IPC holds and A has full rank, the parameterized system (16) has a unique
solution (x(μ), y(μ), s(μ)) for each μ > 0 [12, 16], and we call x(μ) the μ-center
of (SOP) and (y(μ), s(μ)) the μ-center of (SOD). The set of μ-centers gives a ho-
motopy path (with μ running through all the positive real numbers), which is called
the central path. If μ → 0, then the limit of the central path exists and since the limit
points satisfy the complementarity condition x ◦ s = 0, it naturally yields an optimal
solution for (SOP) and (SOD) (see, e.g., [12, 16]).
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3.2 The New Search Directions for SO

Similarly to the LO case [17], we replace the standard centering equation x ◦ s = μe

by ψ(x◦s
μ

) = ψ(e), where ψ(·) is the vector-valued function induced by the univariate
function ψ(t), Then, we consider the following system

Ax = b, x ∈ K,

AT y + s = c, s ∈ K, (17)

ψ

(
x ◦ s

μ

)
= ψ(e).

A direct application of Newton’s method is to solve the nonlinear system (17) with μ

fixed. For any strictly feasible x ∈ intK and s ∈ intK , we want to find displacements
(�x,�y,�s) such that

A�x = 0,

AT �y + �s = 0, (18)

ψ

(
(x + �x) ◦ (s + �s)

μ

)
= ψ(e).

The third equation of the system (18) is equivalent to

ψ

(
x ◦ s

μ
+ x ◦ �s + �x ◦ s + �x ◦ �s

μ

)
= ψ(e). (19)

Note that

x ◦ s

μ
+ x ◦ �s + �x ◦ s + �x ◦ �s

μ
= e. (20)

Neglecting the term �x ◦ �s, from Corollary 2.3, we can replace (19) by

ψ

(
x ◦ s

μ

)
+ ψ ′

(
x ◦ s

μ

)
◦

(
x ◦ �s + �x ◦ s

μ

)
= ψ(e). (21)

This enables us to rewrite the system (18) as follows

A�x = 0,

AT �y + �s = 0, (22)

x ◦ �s + s ◦ �x = μ

(
ψ ′

(
x ◦ s

μ

))−1

◦
(

ψ(e) − ψ

(
x ◦ s

μ

))
.

Due to the fact that L(x)L(s) 	= L(s)L(x), in general, this system does not always
have a unique solution in intK . It is well known that this difficulty can be solved by
applying a scaling scheme (see, e.g., [12, 15]). It goes as follows.

Lemma 3.1 (Lemma 28 in [15]) Let u ∈ intK . Then

x ◦ s = μe ⇐⇒ P(u)x ◦ P(u)−1s = μe.
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Now we replace the third equation of the system (18) by

ψ

(
P(u)(x + �x) ◦ P(u)−1(s + �s)

μ

)
= ψ(e). (23)

Applying Newton’s method again and neglecting the term P(u)�x◦P(u)−1�s, from
Corollary 2.3, we get

P(u)x ◦ P(u)−1�s + P(u)−1s ◦ P(u)�x

= μ

(
ψ ′

(
P(u)x ◦ P(u)−1s

μ

))−1

◦
(

ψ(e) − ψ

(
P(u)x ◦ P(u)−1s

μ

))
. (24)

In this paper, we consider the NT-scaling scheme [1, 2]. Let u = w− 1
2 , where w is

the NT-scaling point of x and s. We define

v := P(w)− 1
2 x√

μ

[
= P(w)

1
2 s√

μ

]
(25)

and

Ā := 1√
μ

AP(w)
1
2 , dx := P(w)− 1

2 �x√
μ

, ds := P(w)
1
2 �s√
μ

. (26)

Replacing the third equation of the system (22) by (24), and then using (25) and (26),
after some elementary reductions, we obtain

Ādx = 0,

ĀT �y + ds = 0, (27)

dx + ds = pv,

where

pv = v−1 ◦ (
ψ ′(v ◦ v)

)−1 ◦ (
ψ(e) − ψ(v ◦ v)

)
.

The system (27) has a unique solution in intK (see, e.g., [16]). By choosing the func-
tion ψ(t) appropriately, this system can be used to define the new search directions.
For example:

• ψ(t) = t yields pv = v−1 − v, which gives the classical NT-search direction (see,
e.g., [22]);

• ψ(t) = t2 yields pv = 1
2 (v−3 − v), which gives the search direction differs from

the defined in [16] only by a constant multiplier;

• ψ(t) = t
q+1

2 , q ≥ 0 yields pv = 2
q+1 (v−q − v), which also includes the above two

cases.

In order to facilitate the analysis of the interior-point algorithm, we restrict our
analysis to the case where ψ(t) = √

t , which yields

pv = 2(e − v). (28)
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The new search directions dx and ds are obtained by solving (27) with (28) so that �x

and �s are computed via (26). If (x, y, s) 	= (x(μ), y(μ), s(μ)), then (�x,�y,�s)

is nonzero. The new iterate is obtained by taking a full Nesterov–Todd step as follows

x+ := x + �x, y+ := y + �y, s+ := s + �s. (29)

For the analysis of the algorithm, we define a norm-based proximity measure
δ(x, s;μ) as follows

δ(v) := δ(x, s;μ) := ‖pv‖F

2
= ‖e − v‖F . (30)

From the first two equations of the system (27), dx and ds are orthogonal, i.e.,

〈dx, ds〉 = 〈ds, dx〉 = 0. (31)

Furthermore, we can conclude that

δ(v) = 0 ⇐⇒ v = e ⇐⇒ dx = ds = 0 ⇐⇒ x ◦ s = μe. (32)

Hence, the value of δ(v) can be considered as a measure for the distance between the
given pair (x, y, s) and the μ-center (x(μ), y(μ), s(μ)).

3.3 The Generic Primal–Dual Path-Following Interior-Point Algorithm for SO

The generic primal–dual path-following interior-point algorithm is now presented in
Fig. 1.

Generic Primal–Dual Interior-Point Algorithm for SO

Input:
A threshold parameter 0 < τ < 1 (default τ = 1

2 );

an accuracy parameter ε > 0;

a fixed barrier update parameter 0 < θ < 1 (default θ = 1
2
√

r
);

a strictly feasible (x0, y0, s0) and μ0 = 〈x0,s0〉
r

such that δ(x0, s0;μ0) < τ .

begin
x := x0;y := y0; s := s0;μ := μ0;

while rμ ≥ ε do

begin
solve system (27) and use (26) to obtain (�x,�y,�s);

update (x, y, s) := (x, y, s) + (�x,�y,�s);

μ := (1 − θ)μ;
end

end

Fig. 1 Algorithm
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4 Analysis of the Algorithm

In this section, we will show that our algorithm can solve the SO problems in poly-
nomial time and prove the local quadratic convergence of the algorithm.

Let us further define

qv = dx − ds. (33)

Then, we have

dx = pv + qv

2
, ds = pv − qv

2
, dx ◦ ds = pv ◦ pv − qv ◦ qv

4
. (34)

It follows from (31) that ‖pv‖F = ‖qv‖F = 2δ(v).
Let 0 ≤ α ≤ 1, we define

x(α) := x + α�x and s(α) := s + α�s. (35)

The following lemma gives a sufficient condition for a feasible step-length ᾱ > 0
such that x(ᾱ) ∈ intK and s(ᾱ) ∈ intK .

Lemma 4.1 Let x, s ∈ intK and x(α) ◦ s(α) ∈ intK for α ∈ [0, ᾱ]. Then

x(ᾱ) ∈ intK and s(ᾱ) ∈ intK.

Proof Since x(α) ◦ s(α) ∈ intK for all α ∈ [0, ᾱ], Lemma 2.15 in [22], i.e., if x ◦ s ∈
intK , then det(x) 	= 0, implies that det(x(α)) and det(s(α)) do not vanish for all
α ∈ [0, ᾱ). Since det(x(0)) = det(x) > 0 and det(s(0)) = det(s) > 0, by continuity,
det(x(α)] and det(s(α)) stay positive for all α ∈ [0, ᾱ]. Moreover, by Theorem 2.2,
this implies that all the eigenvalues of x(α) and s(α) stay positive for all α ∈ [0, ᾱ].
Hence, we can conclude that all the eigenvalues of x(ᾱ) and s(ᾱ) are non-negative.
This implies the desired result. �

From (29), (25), and (26), we get

x+ = x + �x = √
μP(w)

1
2 (v + dx) and s+ = s + �s = √

μP(w)−
1
2 (v + ds).

Since P(w)
1
2 and its inverse P(w)− 1

2 are automorphisms of intK , Theorem 2.1 im-
plies that x+ and s+ belong to intK if and only if v + dx and v + ds belong to intK .

The following lemma shows the strict feasibility of the full Nesterov–Todd step
under the condition δ(x, s;μ) < 1.

Lemma 4.2 Let δ := δ(x, s;μ) < 1. Then the full Nesterov–Todd step is strictly fea-
sible.

Proof Let 0 ≤ α ≤ 1, we define

vx(α) := v + αdx and vs(α) := v + αds. (36)
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Then

vx(α) ◦ vs(α) = (v + αdx) ◦ (v + αds)

= v ◦ v + αv ◦ (dx + ds) + α2(dx ◦ ds)

= v ◦ v + αv ◦ pv + α2 pv ◦ pv − qv ◦ qv

4

= (1 − α)(v ◦ v) + α

(
e − pv ◦ pv

4

)
+ α2

(
pv ◦ pv − qv ◦ qv

4

)

= (1 − α)(v ◦ v) + α

(
e − (1 − α)

pv ◦ pv

4
− α

qv ◦ qv

4

)
. (37)

The second to last equality holds due to

v ◦ v + v ◦ pv = v ◦ v + 2v ◦ (e − v) = e − (e − v) ◦ (e − v) = e − pv ◦ pv

4
.

Furthermore, since 0 ≤ α ≤ 1, we have
∥∥∥∥(1 − α)

pv ◦ pv

4
− α

qv ◦ qv

4

∥∥∥∥
F

≤ (1 − α)

∥∥∥∥
pv ◦ pv

4

∥∥∥∥
F

+ α

∥∥∥∥
qv ◦ qv

4

∥∥∥∥
F

≤ (1 − α)
‖pv‖2

F

4
+ α

‖qv‖2
F

4
= δ2 < 1.

Corollary 2.4 implies that

e − (1 − α)
pv ◦ pv

4
− α

qv ◦ qv

4
∈ intK.

Thus

(1 − α)(v ◦ v) + α

(
e − (1 − α)

pv ◦ pv

4
− α

qv ◦ qv

4

)
∈ intK.

From Lemma 4.1, we have

vx(1) = v + dx ∈ intK and vs(1) = v + ds ∈ intK

for α = 1. Hence, the result of the lemma holds. �

According to (25), the v-vector after the step is given by

v+ := P(w+)− 1
2 x+√

μ

[
= P(w+)

1
2 s+√

μ

]
, (38)

where w+ is the scaling point of x+ and s+.

Lemma 4.3 (Proposition 5.9.3 in [16]) One has

v+ ∼ (
P(v + dx)

1
2 (v + ds)

)
)

1
2 .

In the next lemma, we proceed to prove the local quadratic convergence of the full
Nesterov–Todd step to the target point (x(μ), y(μ), s(μ)).
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Lemma 4.4 Let δ := δ(x, s;μ) < 1. Then

δ(x+, s+;μ) ≤ δ2

1 + √
1 − δ2

.

Thus δ(x+, s+;μ) ≤ δ2, which shows the quadratical convergence of the algorithm.

Proof From (37), with α = 1, we get

(v + dx) ◦ (v + ds) = e − qv ◦ qv

4
. (39)

By Lemma 2.6, (13), and Lemma 2.5, we obtain

λmin
(
(v + dx) ◦ (v + ds)

) = λmin

(
e − qv ◦ qv

4

)

≥ 1 −
∥∥∥∥
qv ◦ qv

4

∥∥∥∥
F

≥ 1 − ‖qv‖2
F

4
= 1 − δ2.

It follows from Lemma 4.3 and Lemma 2.8 that

λmin(v+) = λmin
((

P(v + dx)
1
2 (v + ds)

)) 1
2 )

≥ (
λmin

(
(v + dx) ◦ (v + ds)

)) 1
2 ≥

√
1 − δ2. (40)

Using Lemma 2.11 with t = 1, Lemma 2.7, (39), (40), and Lemma 2.5, we have

δ(x+, s+;μ) = ‖e − v+‖F ≤ 1

1 + λmin(v+)
‖e − v+ ◦ v+‖F

≤ 1

1 + λmin(v+)

∥∥e − (v + dx) ◦ (v + ds)
∥∥

F

= 1

1 + √
1 − δ2

∥∥∥∥
qv ◦ qv

4

∥∥∥∥
F

≤ 1

1 + √
1 − δ2

‖qv‖2
F

4

= δ2

1 + √
1 − δ2

.

This completes the proof. �

The following lemma gives an upper bound of the duality gap after a full
Nesterov–Todd step.

Lemma 4.5 After a full Nesterov–Todd step. Then

〈x+, s+〉 ≤ rμ.

Proof Since

e − qv ◦ qv

4
= (v + dx) ◦ (v + ds) ∈ intK,
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and using Lemma 2.4, we obtain

〈x+, s+〉 = μ
∥∥(v + dx) ◦ (v + ds)

∥∥2
F

= μ

∥∥∥∥e − qv ◦ qv

4

∥∥∥∥

2

F

≤ rμ.

This completes the proof. �

In the following lemma, we investigate the effect on the proximity measure of a
full Nesterov–Todd step followed by an update of the parameter μ.

Lemma 4.6 Let δ := δ(x, s;μ) < 1 and μ+ = (1 − θ)μ, where 0 < θ < 1. Then

δ(x+, s+;μ+) ≤ θ
√

r + δ2

1 − θ + √
(1 − θ)(1 − δ2)

.

Proof After updating μ+ = (1 − θ)μ, the vector v+ is divided by the factor
√

1 − θ .
From Lemma 2.11 with t = √

1 − θ , Lemma 2.7, (39), and (40), we have

δ(x+, s+;μ+) =
∥∥∥∥e − v+√

1 − θ

∥∥∥∥
F

= 1√
1 − θ

∥∥∥
√

1 − θe − v+
∥∥∥

F

≤ 1√
1 − θ(

√
1 − θ + λmin(v+))

∥∥(1 − θ)e − v+ ◦ v+
∥∥

F

≤ 1√
1 − θ(

√
1 − θ + λmin(v+))

∥∥(1 − θ)e − (v + dx) ◦ (v + ds)
∥∥

F

= 1√
1 − θ(

√
1 − θ + λmin(v+))

∥∥∥∥−θe + qv ◦ qv

4

∥∥∥∥
F

≤ 1

1 − θ + √
(1 − θ)(1 − δ2)

(
θ
√

r + ‖qv‖2

4

)

= 1

1 − θ + √
(1 − θ)(1 − δ2)

(
θ
√

r + δ2).

This completes the proof. �

Corollary 4.1 Let δ := δ(x, s;μ) ≤ 1
2 and θ = 1

2
√

r
with r ≥ 4. Then

δ(x+, s+;μ+) ≤ 1

2
.

Proof Note that

1 − θ = 1 − 1

2
√

r
≥ 1 − 1

2
√

4
= 3

4
.

From Lemma 4.6 and δ ≤ 1
2 , after some elementary reductions, we get

δ(x+, s+;μ+) ≤ 1

2
.

This completes the proof. �
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The following lemma gives an upper bound for the total number of iterations pro-
duced by our algorithm.

Lemma 4.7 Suppose that x0 and s0 are strictly feasible, μ0= 〈x0,s0〉
r

and δ(x0, s0;μ0)

is less than or equal to 1
2 . Moreover, let xk and sk be the vectors obtained after k it-

erations. Then the inequality 〈xk, sk〉 ≤ ε is satisfied for

k ≥ 1

θ
log

〈x0, s0〉
ε

.

Proof Lemma 4.5 implies that
〈
xk, sk

〉 ≤ rμk = r(1 − θ)kμ0 = (1 − θ)k
〈
x0, s0〉.

Then the inequality 〈xk, sk〉 ≤ ε holds if

(1 − θ)k
〈
x0, s0〉 ≤ ε.

Taking logarithms, we obtain

k log (1 − θ) + log
〈
x0, s0〉 ≤ log ε,

and using − log (1 − θ) ≥ θ , we observe that the above inequality holds if

kθ ≥ log
〈
x0, s0〉 − log ε = log

〈x0, s0〉
ε

.

Hence, the result of this lemma holds. �

Theorem 4.1 Let θ = 1
2
√

r
. Then the algorithm requires at most

O

(√
r log

〈x0, s0〉
ε

)

iterations. The output is a primal–dual pair (x, s) satisfying 〈x, s〉 ≤ ε.

Proof Let θ = 1
2
√

r
, Theorem 4.1 follows immediately from Lemma 4.7. �

Corollary 4.2 If one takes x0 = s0 = e, the iteration bound becomes

O

(√
r log

r

ε

)

which is the currently best known iteration bound for the small-update method.

5 Conclusions and Remarks

In this paper, we have shown that a full-Newton step primal–dual path-following
interior-point algorithm for LO presented in [17] can be extended to the context of
SO. Though the proposed algorithm is exactly an extension from LO to SO, it is not
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straightforward due to the non-polyhedral property of a symmetric cone. By employ-
ing Euclidean Jordan algebras, we derived the currently best known iteration bound
for the small-update method. This unifies the analysis for LO, SOCO, and SDO.

Some interesting topics for further research remain. The search direction used in
this paper is based on the NT-scaling scheme. It may be possible to design similar al-
gorithms using other scaling schemes and to obtain polynomial-time iteration bounds.
Another topic for further research may be the development of full Nesterov–Todd step
primal–dual infeasible interior-point algorithm for SO. Finally, an interesting topic is
the generalization of the analysis of the (infeasible) interior-point algorithms to the

case where ψ(t) = t
q+1

2 , q ≥ 0.
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