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Abstract We introduce a new iteration method and prove strong convergence the-
orems for finding a common element of the set of fixed points of a nonexpansive
mapping and the solution set of monotone and Lipschitz-type continuous Ky Fan
inequality. Under certain conditions on parameters, we show that the iteration se-
quences generated by this method converge strongly to the common element in a real
Hilbert space. Some preliminary computational experiences are reported.
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1 Introduction

We consider a well-known Ky Fan inequality [1], which is very general in the sense
that it includes, as special cases, the optimization problem, the variational inequality,
the saddle point problem, the Nash equilibrium problem in noncooperative games
and the Kakutani fixed point problem; see [2-9]. Recently, methods for solving the
Ky Fan inequality have been studied extensively. One of the most popular methods
is the proximal point method. This method was introduced first by Martinet in [10]
for variational inequality and then was extended by Rockafellar in [11] for finding
the zero point of a maximal monotone operator. Konnov in [12] further extended the
proximal point method to the Ky Fan inequality with a monotone and weakly mono-
tone bifunction, respectively. Other solution methods well developed in mathematical
programming and the variational inequality, such as the gap function, extragradient,
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and bundle methods, recently have been extended to the Ky Fan inequality; see [5, 6,
13, 14].

In this paper, we are interested in the problem of finding a common element of the
solution set of the Ky Fan inequality and the set of fixed points of a nonexpansive
mapping. Our motivation originates from the following observations. The problem
can be on one hand considered as an extension of the Ky Fan inequality when the
nonexpansive mapping is the identity mapping. On the other hand, it has been signif-
icant in many practical problems. Since the Ky Fan inequality has found many direct
applications in economics, transportation, and engineering, it is natural that when the
feasible set of this problem results as a fixed-point solution set of a fixed-point prob-
lem, then the obtained problem can be reformulated equivalently to the problem. An
important special case of the Ky Fan inequality is the variational inequality, and this
problem is reduced to finding a common element of the solution set of variational
inequality and the solution set of a fixed-point problem; see [15-17].

The paper is organized as follows. Section 2 recalls some concepts related to Ky
Fan inequality and fixed point problems that will be used in the sequel and a new
iteration scheme. Section 3 investigates the convergence theorem of the iteration se-
quences presented in Sect. 2 as the main results of our paper. Applications are pre-
sented in Sect. 4.

2 Preliminaries

Let ‘H be a real Hilbert space with inner product (-, -) and norm || - ||. Let C be a
nonempty, closed, and convex subset of a real Hilbert space H and Proj- be the
projection of H onto C. When {x*} is a sequence in H, then x¥ — X (resp. x* — x)
will denote strong (resp. weak) convergence of the sequence {x¥} to x. Let f : C x
C — R be a bifunction such that f(x,x) =0 for all x € C. The Ky Fan inequality
consists in finding a point in

P(f.C):={x"eC: f(x* y)=0VyeC},

where f(x,-) is convex and subdifferentiable on C for every x € C. The set of so-
lutions of problem P(f, C) is denoted by Sol(f, C). When f(x,y) = (F(x),y — x)
with F : C — 'H, problem P(f,C) amounts to the variational inequality problem
(shortly, VI(F, C))

Find x* € C  such that (F(x*),y —x*)>=0 forally € C.
The bifunction f is called strongly monotone on C with 8 > 0 iff
fE Y+ fy.x)<—Bllx—yl>, Vx,yeC:

monotone on C iff

f,»+ f(y,x) <0, Vx,yeC;

pseudomonotone on C iff

fG,y)=0 = f(y,x)<0, Vx,yeC;
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Lipschitz-type continuous on C with constants ¢; > 0 and ¢ > 0 in the sense of
Mastroeni in [8] iff

FaN+fO,0= fx,2)—clx—yl*—clly—zI?, Vx,y,zeC.
When f(x,y)=(F(x),y—x)with F:C - H,

fa )+ f(.2)— fx.2)=(F(x) = F(y).y—z) forallx,y,zeC,
and it is easy to see that if F' is Lipschitz continuous on C with constant L > 0, i.e.,
I|F(x) — F(»)| <L|lx —y| forall x, y € C, then
L 2 2
(Fx) = F(y).y—z)| <Llx =yl lly —zll < E(HX — 17+ lly —zlI%),

and thus, f satisfies Lipschitz-type continuous condition with ¢; = ¢; = % Further-
more, when z = x, this condition becomes

f N+ f,x) =~ +e)ly—x|> Vx,yeC.

This gives a lower bound on f(x, y) + f (v, x) while the strong monotonicity gives
an upper bound on f(x,y) + f(y,x).
A mapping S : C — C is said to be contractive with 6 € ]0, 1[ iff

IS =S| <8lx=yll, ¥x,yeC.

If 6 = 1 then S is called nonexpansive on C. Fix(S) denotes the set of fixed points
of S.

In 1953, Mann [18] introduced a well-known classical iteration method to approx-
imate a fixed point of a nonexpansive mapping S in a real Hilbert space . This
iteration is defined as

xoeC, Kk :akxk—}—(l —ak)S(xk), Vk >0,

where C is a nonempty, closed, and convex subset of  and {az} C [0, 1]. Then {x¥}
converges weakly to x* € Fix(S).

Recently, Xu gave the strong convergence theorems for the following sequences
in a real Hilbert space H:

xOEC, xk+l=ozkg(xk)~|—(1—otk)S(xk), Yk >0,

where {ay} C]0, 1[, g: C — C is contractive and S : C — C is nonexpansive. In
[19], the author proved that the sequence {x¥} converges strongly to x*, where x* is
the unique solution of the variational inequality:

(1 —g)(x*),x —x*)>0, Vx eFix(5).

Chen et al. in [16] studied the viscosity approximation methods for a nonexpansive
mapping S and an a-inverse-strongly monotone mapping A : C — H, i.e., (A(x) —
A(y),x —y) > a||A(x) — A(y)||? for all x, y € C in a real Hilbert space H:

e C, k= akg(xk) + (1 —ap)S ProjC(xk — AkA(xk)), Vk >0,
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where {ox} C 10, 1[, {Ax} C [a, b] with 0 < a < b < 2« and Proj- denotes the metric
projection from H onto C. They proved that if some certain conditions on {oy} and
{Ax} are satisfied, then the sequence {x¥} converges strongly to a common element
of the set of fixed points of the nonexpansive mapping S and the set of solutions
of the variational inequality for the inverse-strongly monotone mapping A. To over-
come the restriction of the above methods to the class of «-inverse-strongly monotone
mappings, by using the extragradient method of Korpelevich in [7], Ceng et al. in [15]
could show the strong convergence result of the following method:

xoeC,

¥ =1 = y)x* 4+ m Proje (xF — M AGh)),

=1 — e = Bx* + o y* + BeS Proje (xF — MAGK)),
Cr={ze€C:llz—y I < llz = x* I + G = 3y + )b | AN 1%},

Qr={z€C:(z—xkx0—xk) <0},

xk+l = ProijQk (XO),

where the sequences {ox}, {Br}, {vx}, and {A;} were chosen appropriately. The au-
thors showed that the iterative sequences {x*}, {y¥}, and {z*} converged strongly to
the same point X = Projg,;(r, c)nFix(s) (x9).

For obtaining a common element of set of solutions of problem P(f, C) and the
set of fixed points Fix(S) of a nonexpansive mapping S of a real Hilbert space H
into itself, Takahashi and Takahashi in [20] first introduced an iterative scheme by
the viscosity approximation method. The sequence {x*} is defined by

O eH,
Find u* € C such that f(u*, y) + i(y —uk uk —xky>0, vyec,

K =g (R + (1 — ) SWh), vk =0,

where C is a nonempty, closed, and convex subset of H and g is a contractive map-
ping of 'H into itself. The authors showed that under certain conditions over {«y} and
{rr}, sequences {x*} and {u*} converge strongly to z = Projg, £,0)nFix(s) (8(2))-

Recently, iterative methods for finding a common element of the set of solutions
of Ky Fan inequality and the set of fixed points of a nonexpansive mapping in a real
Hilbert space have further developed by many authors; see [21-24]. At each iteration
k in all of the current algorithms, it requires solving an approximation auxiliary Ky
Fan inequality.

Motivated by the approximation method in [15] and the iterative method in [20]
via an improvement set of a hybrid extragradient method in [25], we introduce a
new iterative process for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of Ky Fan inequality for monotone and
Lipschitz-type continuous bifunctions. At each iteration, we only solve two strongly
convex optimization problems instead of a regularized Ky Fan inequality. The iterative
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process is given by

yk = argmin{ig f (x%, y) + LIy — x¥|2 1y e €},

ey
k= argmin{)»kf(yk, 1)+ %Ilt —xk)2:recy,
and compute the next iteration point
=g (xh) + et + (S (x*) + (1 =), vk=o0, @)

where g is a contractive mapping of H into itself. To investigate the convergence
of this scheme, we recall the following technical lemmas which will be used in the
sequel.

Lemma 2.1 [25] Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let f : C x C — R be a pseudomonotone and Lipschitz-type continuous
bifunction. For each x € C, let f(x,-) be convex and subdifferentiable on C. Then,
for each x* € Sol(f, C), the sequences {x*}, {y*}, {t*} generated by (1) satisfy the
following inequalities:

I = [ = [t =P = 1 = 2ge0 [ — 5

2

— (1 =2nme) |y = %7 vk >o.

Lemma 2.2 [26] Let {x*} and {y*} be two bounded sequences in a Banach
space and let {Bi} be a sequence of real numbers such that 0 < liminfy_, » B <
limsup,_, o Bk < 1. Suppose that

XK= Bixk + (1 — Bo)y*, Vk>0,
limsup,_, o (Iy*T! — yk || — x5+ — xk)) < 0.
Then

; k k| —
Jim st =5*] <o

Lemma 2.3 [27] Let T be a nonexpansive self-mapping of a nonempty, closed, and
convex subset C of a real Hilbert space H. Then I — T is demiclosed; that is, when-
ever {x*} is a sequence in C weakly converging to some x € C and the sequence
{U — T)(xk)} strongly converges to some Yy, it follows that (I — T)(x) = y. Here, I
is the identity operator of H.

Lemma 2.4 [19] Let {ax} be a nonnegative real number sequence satisfying
ak+1 = (1 —o)ax +o(ek), Vk=0,

where {ay} C10, 1[ is a real number sequence. If limg_, oo ax =0 and Z,fil o = 00,
then limy_ o0 a; = 0.
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3 Convergence Results
Now, we prove the main convergence theorem.

Theorem 3.1 Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let f : C x C — R be a monotone, continuous, and Lipschitz-type con-
tinuous bifunction, g : C — C be a contractive mapping with constant § €10, 1[, S
be a nonexpansive mapping of C into itself, and Fix(S) N Sol(f, C) # @. Suppose that
x0 e C, u €10, 1[, positive sequences {r}, {a}, {Bi}, and {yx} satisfy the following
restrictions:

. oS
limg_, 00 . =0, Zk:() Q) = OO,

0 < liminfy 00 Bx < limsup;_, o, B < 1,

My o0 Akt — Akl =0, (A} C [a, b1 C J0, 1[,  where L = max{2cy, 2¢2},

ap+ Bk +yve=1,
ap(2 —ax — 288 — 2y) €10, 1[.

3)
Then the sequences {x*}, {y*}, and {t*} generated by (1) and (2) converge strongly to
the same point x* € Fix(S) N Sol(f, C), which is the unique solution of the following
variational inequality:

(I —g)(x*),x —x*) =0, Vx €Fix(5) N Sol(f, C).
The proof of this theorem is divided into several steps.
Step I Claim that {x¥} is bounded.

Proof of Step 1 By Lemma 2.1 and x**! = o g (x%) + Brx* + me(uS&5 + (1 —
w)t), we have

||xk+1 _x*”
= fle(8(x) = x") + Bl = 2%) + yi (S (") + (4 = ot = x|

() =27+ Bl = 2]+ e e () + (0 = o =7

= a8 () = x| + Bt — x|+ w (e SO =27 + (A = | = 27)
() =2+ Bl =2 4 e =+ (= = x7))
(5) = x|+ Bl = 2] i =2

< anflg(x) = g ()| + g () = + Bl = 27| + e 5" = 7]

< bl — x| e g (x) = x*| + (0 = w0 = 2]

= (1= (1 = &ay) [|x* —x*| + 1 = H %
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Smax{”xk_x*””w }
1-6
S...
- ’ 1-6 '
Then
) _ %
kaﬂ—x*Hzfmax{”xo—x* , % }, Vk > 0.

So, {xk } is bounded. Therefore, by Lemma 2.1, the sequences {yk } and {tk} are
bounded. O

Step 2 Claim that lim_, o0 [|t¥ — x¥|| = 0.

Proof of Step 2 Since f(x, -) is convex on C for each x € C, we see that
k= argmin{%”t AP af R e c}
if and only if
Oeaz(kkf(yk,t)+%Ht—ka2>(tk)+Nc(tk), 4

where Nc¢(x) is the (outward) normal cone of C at x € C. Thus, since f(y¥, ) is
subdifferentiable on C, by the well-known Moreau—Rockafellar theorem [11], there
exists w € 82f(yk, t*) such that

FO5 0 = o5 5 = (we -1, vrec.
Substituting r = x* into this inequality to obtain
f(yk,x*) —f(yk,tk) z(w,x*—tk). 5)

On the other hand, it follows from (4) that 0 = Apw + tX — xK + 1, where w €
3 f (YK, %) and 7 € Nc(19). By the definition of the normal cone N¢ we have, from
this relation that

(tF—x5 0 —t%) > afw, iF —1), vrec. (6)
Set
N =uS(*) + A=t and X =gxt + (1 - pot. @)
For each k > 0, we have *= W, and hence
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k1 gk @18 + y it g8 +

Z
1= Bt 1= B
_ e @O — g0 |y 0 —
I — B+ 1 — Br+1
k k k k
N <ak+1g(x ) Vernt og(x) + )
I=frr1r 1= B 1 — B
_ @G — () e 0 =)

1 — Bi+1 I — Brs1

N ( Ok41 o )(g(xk) — ). ®)

1= B1 1—f

Since f(x, -) is convex on C for all x € C, we have
f(yk, tk+1) _ f(yk, tk) > (w, JLan . tk),
where w € 82f(yk, tk). Substituting ¢ = **1 into (6), then we have
<tk _ xk, tk+1 _ tk> > )»k<w, tk _ tk+1)
= e (f (5 15) = R 4. ©)

By the similar way, we also have

([k+1 S R tk+l) > Ak+l(f(yk+1’tk+l) _ f(yk+1’tk))' (10)
Using (9), (10), and f is Lipschitz-type continuous and monotone, we get

1

”xk+1 _
2

PP = S P
> (*HT gk kg kR k)
= (F (5 15) = £ (O5 )
T hiet (FORTL ) = F (AT R)
2o (=F (5 ) = et |y =P = o = )
+ kk+l(_f(tk+17 tk) — e ||yk+1 _ ket ”2 —¢ “tk _ kel ”2)
> (a1 — M) f (5, 4
> — Mgt — rkl | £ (5, 5T
Hence,

Htk+1 _ ¢k “2 < ka+1 ik H2+2|)Lk+1 —kk||f(tk,tk+1)}.

@ Springer



J Optim Theory Appl (2012) 154:303-320 311
Therefore, we have
[t = ok P = (S (A1) + (= ) = (S (eF) + (1 = ) |
= |n(S(H) = () + (1 = (e =)
< ] S(H) = S|P = A =P
< “kaﬂ —xk||2+ (1 —pL)||lk+] —tk||2
< =P (1= g (=
+ 2 Akt — Ml £ (e, )
< | = F P 200 = ) g — del| £ (L) |
Combining this with (8), we obtain
||Zk+1 _ Zk ”2
_ [ e ™) — b)) N Vi1 (<!
1 — Brt1 1 — Bry1
k41 2
1_;k+1 1—l3k ”g( )_nk” M
B (o et {6301 N V1 U At/
- 1 — Brt1 1 — Brt1
41 2
1—l§k+1 1 —,Bk ”g( O =+
_ et I =2y —
- 1 — Brr1 I — Br+1
k41 2
1_;k+1 - 1_,3k Hg( )_nk“ Mk
] e
- I — Brr1
N Vet (X5 = K12 4200 — ) e — 2l | £ GEL 22D
1 — Br+1
Q41 . kY k|2
‘1—/3k+1 T—f| I86) =+ e
[ P 2pi1(1— ) hagr — Akl | £ @5, 5]
1 — Br+1
‘ i (k) = ok |* + My, (1)

1=fr1 1-=8
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where M} is defined by
M, — < 20041 204 )
1=Bey1 1—=Bk

a1 (@M — g b)) e T =0b
X ,g(x ) —-n).
1 — Biy1 I — Brs1

Since Step 2, limgoorr = 0,0 < liminfy_ o B < limsup,_, . Bx < 1 and
limg 00 [[Ak4+1 — Ak |l = 0, we have limy_, oo My =0 and

lim sup(”szrl - ”2 - ka+l —xk ”2) <0.
k—00

So,

limsup(||z**! = 2| — [«*+! = xF]) <o0.
k— 00
By Lemma 2.2, we have limy_, o [|z¥ — x¥|| = 0 and hence

lim ——||x* —x¥| =o0.
k—oo I — Bk
Note that 0 < liminfy_, o Br < limsup;_, o, B < 1, we have

e+l

lim ||x x| =o. (12)

k—00
Since
||xk+1 it ”2

= e (g () =) + Ble* = 2") + m (S (*) + (A = et =)

<l g(e*) =7+ Bl xt =7 S () + (1 = ek x|

(
<arflg(x*) =27 |” + Bt — 7
(]S x|+ = k)

<orfg () —x7 |7+ Bt — P 5t - P+ - =]

and Step 1, we have
[ —

<arfg () —x* "+ Bt = P bt =P+ -t =]

2

<) 5"+l =+ vl =5 P = o (|34 - 7]

— (1= 2hgen) |5k = ¥4 = (1 = 2en) |y = 1))
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= | g (%) — x| P+ [ = x* | = (4 = (1 = 2gen) |5 — |2
— (1= Wyl =222 |y = 5.
Then
(1 — w1 = 2heen) | x* — ¥
e R e L e
=g (o) ="+ (k= = = (| = =)

Stxk”g(xk) _x*HZ + ||xk —kaH(”xk —x*|| + ka+1 _X*i )7

forevery k =0,1,....ByStep2, £ €10, 1[, oax + Bx + yx = 1, limg_, oo x =0, (12),
and 0 < liminfy, o Br < limsup,_, o, Bx < 1, and we have

lim ||x* — y¥| =0. (13)
k—o00
By the similar way, we also have

Jim |y* =% =o. (14)
Using [|lxk — ]| < [lx* — y*[| + ly* — %I, (13) and (14), we have

Jim x4 =0, -
Step 3 Claim that

Jim <~ 5(x4)] = 0.
Proof of Step 3 From x**! = a g (x%) + Brx® + v (uS(x¥) 4+ (1 — w)t*), we have
=k = g (6F) + Brx® + i (S (%) + (1 — pr*) — x*
= o (8 (") = %) + i (S(r*) — %) + (1 = wwa (¢ — x*)
and hence
e S(c) —x¥] = ot — b g () — 2 (1= o — ]

Using this, limy— oo 0k =0, o + B +yx = 1,0 < liminfy ., o0 B < limsup,_, oo i <
1, Step 2, Step 3, and (12), we have

lim ||xk — S(xk)n =0. 0

k—o00
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Step 4 Claim that
limsup(x* — g(x*), n* — x*) >0,

k— 00

where nk is defined by (7).

Proof of Step 4 Since {n*} is bounded, there exists a subsequence {n*i} of {n*} such
that

limsup(x* — g(x*), nk — x*)= lim (x* — g(x*), ki — x*).

k—> 00 i—o00

By Step 1, the sequence {n*i} is bounded, and hence there exists a subsequence {nkif }
of {n%} which converges weakly to 7. Without loss of generality, we suppose that the
sequence {1’} converges weakly to 77 such that

limsup(x* — g(x*), nk — x*)= lim (x* — g(x*), nki — x*). (15)

k— 00 i—00
Using Step 2, Step 3, and nk = uS(xk) + (1 - /L)tk, we also have

. ko k| _
Jim % —n"] =o0.

Since Lemma 2.3, {r%} converges weakly to 7 and Step 3, we get
Sm=n <& neFix(s). (16)

Now, we show that 7 € Sol(f, C). By Step 2, we have

ki . n ki .~
X n, y n.

Since y* is the unique solution of the strongly convex problem
|1 k|2 kLY.
mind 2y <P+ 7 (4, 0): vecl,

we have
1
0e BZ(Akf(xk, y) + E”y —xk ||2> (yk) + Nc(yk).
This follows that
O:kkw—i—yk—xk—i—wk,

where w € 8, f (x¥, y¥) and w* € N¢(y%). By the definition of the normal cone N,
we have

(V= y =) 2w, v —y), wyec (17)

On the other hand, since f (xk ,-) is subdifferentiable on C, by the well-known
Moreau—Rockafellar theorem, there exists w € 9, f (xk, yk ) such that

FEE ) = 5 YY) = (wy —yF), vyec.
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Combining this with (17), we have
(R y) = £ 0) = (pF =25 yF =) vyec.
Hence,
g (KT, y) = F(RIyR)) = (YR =2k yki =), vy ec.
Then, using {Xt} C [a, b] C ]0 Z[ and continuity of f, we have
f@,y)=0, VyeC.
Combining this and (16), we obtain
ki — ij € Fix(S) N Sol(f, C).
By (15) and the definition of x*, we have

limsup(x* — g(x*), n* —x*) = (x* — g(x*), 7 —x*) > 0. 0

k— o0
Step 5 Claim that the sequences {x¥}, {y¥}, and {r*} converge strongly to x*.
Proof of Step 5 Since n* = uS(x*) 4+ (1 — )r* and Lemma 2.1, we have
[f = * = (S () = x) + (1 = (i = ) |
< uf[$E) =27+ A =l - x|
<l = P 1= ([ = = (= 2men [ = P
— (1 =2 |y* = )

< o+ =2

Using this and x**! = ;g (x*) + Bexk + yin*, we have

i

= |l (g (x*) — x*) + B (x* —x*) + m (n* —x*)“2

<apfg() = |* + AR — x|+ 2 | -
+ 20 Be(g (xF) — x*, xF — x¥) + 28w || x* — x|
+ 2yia(g (xF) — x*, n* — x*)

=7 g(+") =" |+ (1 =)’ [ = x[* + 20 Be{g (x*) — g (x*). 2" — %)
+ 205 Belg (x*) — x*, K — x*) + 2pelg (xF) — g (x*),
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+opanlg(x¥) — x* o — x%)
<o s () =2+ (1 =) xF x|+ 20t — |
+ 2 Bifg (x%) — x*, K — x*) 4 2y | F — ¥
+opanlg(x¥) — x*. o — x%)
= ((1 — a)® + 20 B + 2y | x* — *Hz +ai|g(x*) - X*Hz
+ 20 e (v*) — 1, x* — 1)+ 2panfg () — 2%, o — 1)
< (1 — o) + 20088 + 2yean) [x* — 2| + 0 () — x|

+ 20 B max{O, (g(x*) —x* xk - x*)}

k

+ 2ypay max{0, (g (x*) — x*, nk — x*)}
= (1= Ap)|x* = x*|* + B,
where Ay and By, are defined by

Ay =20 — a} — 20 B8 — 2yxou,
B = ¢ llg (") — x*|I* + 2a By max{0, (g(x*) — x*, x* —x*)}
+ 2yoy max{0, (g(x*) — x*, n* —x*)}.

Since limy_, o0 ox =0, Y _po.; k = 00, Step 2, and Step 4, we have

limsup(x* — g(x*), xk— x*) >0,

k—o00

and hence

o0
Be=o(Ay,  lim Ac=0, ) Ax=oo.

By Lemma 2.4, we obtain that the sequence {x*} converges strongly to x*. It follows
from Step 3 that the sequences {y*} and {r} also converge strongly to the unique
solution x*. O

4 Applications and Numerical Results

Let C be a nonempty, closed, and convex subset of a real Hilbert space H and F
be a function from C into H. In this section, we consider the variational inequality
VI(F, C). The set of solutions of VI(F, C) is denoted by Sol(F, C). Recall that the
function F is called

e Strongly monotone on C with g > 0 iff

(F(x) = F(y),x —y) = Bllx —yI?, Vx,yeC.
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e Monotone on C iff
(F(x) = F(y),.x—y)=0, Vx,yeC.
e Pseudomonotone on C iff
(F).x—y)=0 = (F(x),x—y)=0, Vx,yeC.

e Lipschitz continuous on C with constants L > 0 (shortly, L-Lipschitz continuous)
iff
|Fe) = Fy|| <Llx—yl, Vx,yeC.

Since
) 1
yk = argmln{)»kf(xk,y) + E”y —)ck”2 1 ye C}

= argmin{M(F(xk), y —xk)+ %Hy —xk”z iye C}
= Projc(xk — AkF(xk)),

equation (1), and Theorem 3.1, the convergence theorem for finding a common el-
ement of the set of fixed points of a nonexpansive mapping S and the solution set
Sol(F, C) is presented as follows.

Theorem 4.1 Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let F : C — H be monotone and L-Lipschitz continuous, g : C — C
be a contractive mapping, S be a nonexpansive mapping of C into itself, and
Fix(S) N Sol(F, C) # @. Suppose that u € 10, 1[, positive sequences { i}, {ox}, { Bk},
and {yx} satisfy the following restrictions:

limg o0 2k =0, > po ok = 00,
0 < liminfy_ o0 B < limsupy_, o Bx < 1,
limg oo A1 — Akl =0,  {Ax} Cla, b] for some a,b € ]0, %[,

ar+ B+ v =1,

ar (2 —ox — 288 — 2y1) €10, 1[.

Then the sequences {x*}, {y*}, and {t*} generated by
Mec,

¥ =Proje (" — A F(x*)),

t5 = Projc(xk — 1 F (),

=g (6F) + B + (SR + (1 — %), Yk >0,
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converge strongly to the same point x* € Fix(S) N Sol(F, C), which is the unique
solution of the following variational inequality:

<(I -9 (x*), X — x*) >0, Vx eFix(S)NSol(F, C).

Now, we consider a special case of problem P(f, C), the nonexpansive mapping
S is the identity mapping. Then iterative schemes (1) and (2) are to find a solution of
Ky Fan inequality P (f, C). The iterative process is given by
VecC ,
yE = argmin{Ar f (¥, y) + 5 lly =272 y € €Y,
. (18)
t = argmin{Ac f (4, ) + 5lly = 24P y € C),
= o g (6F) + Brxh + yr(ux* + (1 — wyi%), vk =0,
where g is §-contractive and the parameters satisfy (3). By Theorem 3.1, the sequence
{xk} converges to the unique solution x* of the following variational inequality:

(I —g)(x),x —x*) =0, VxeSol(f,C).

It is easy to see that if x¥ = ¥ then x is a solution of P(f, C). So, we can say that

x¥ is an e-solution to P(f, C) if ||t* — x¥|| < €. To illustrate this scheme, we consider
to numerical examples in R>. The set C is a polyhedral convex set given by

xeRi,

X1+ x2 + x3 4+ 2x4 + x5 < 10,
2x1 +x2 — x3+ x4 +3x5 < 15,
X1+ x2 +x3 +x4 +0.5x5 >4,

and the bifunction f is defined by
f(x,y)=(Ax+ By +q,x =),

where the matrices A, B, g (randomly generated) are

3 15 0 0 0 3 15 0 0 O

15 25 0 0 O 15 351 0 O
A=10 2 3 1 0], B=120 1 1 0 O0f,

0O 0 1 5 3 0O 0 1 25 1

0O 0 0 3 25 o 0 0 2 1

q=,4,6,8,DT.

Then A is symmetric positive semidefinite and f is Lipschitz-type continuous on C
with L =2¢1 =2c¢p = ||A — B|| = 3.7653. Since the eigenvalues of the matrix B — A
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are —3.5, —0.5, —1, —1, 0, we get that B — A is negative semidefinite. Therefore, f
is monotone on C. With

()_1 _ 1 8 _1 _ k
k+20

i= T2 ko,
10(k + 10)

xV = (1,2,1,1, l)T and € = 1070, the conditions (3) are satisfied and we obtain the
following iterates:

Iter (k) xf x§ xé‘ xf{ xé‘
0 1 2 1 1 1
1 0.6695 1.5337 0.7686 0.7481 0.6672
2 0.7092 1.3673 0.8069 0.8058 0.7217
3 0.9045 1.0437 09009 0.8992 0.5033
4 0.9338 0.9751 0.9298 0.9278 0.4670
5 0.9428 0.9540 0.9387 0.9366 0.4559
6 0.9455 0.9475 09414 0.9393 0.4524
7 0.9464 0.9456 09422 0.9402 0.4514
8 0.9466 0.9449 0.9425 09404 0.4511
9 0.9467 0.9448 0.9426 0.9405 0.4510
10 0.9467 0.9447 0.9426 0.9405 0.4510
11 0.9467 0.9447 09426 0.9405 0.4510

The approximate solution obtained after 11 iterations is
x' = (0.9467, 0.9447, 0.9426, 0.9405, 0.4510)".

We perform the iterative scheme (18) in Matlab R2008a running on a PC Desktop
Intel(R) Core(TM)2 Duo CPU T5750@ 2.00 GHz 1.32 GB, 2 Gb RAM.

5 Conclusion

This paper presented an iterative algorithm for finding a common element of the set
of fixed points of a nonexpansive mapping and the solution set of monotone and
Lipschitz-type continuous Ky Fan inequality. To solve the problem, most of current
algorithms are based on solving strongly auxiliary equilibrium problems. The fun-
damental difference here is that, at each main iteration in the proposed algorithms,
we only solve strongly convex problems. Moreover, under certain parameters, we
show that the iterative sequences converge strongly to the unique solution of a strong
variational inequality problem in a real Hilbert space.
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