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Abstract We study some minimization problems for noncyclic mappings in metric
spaces. We then apply the solution to obtain some results in the theory of analytic
functions.
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1 Introduction

Let A and B be two nonempty subsets of a metric space X, and let T be a self map-
ping defined on the union of A and B in such a way that T maps either of A or B

into itself. In this paper, we aim to study the existence of solutions for some specific
minimization problems. First, we study the problem of minimizing the distance be-
tween x and T x when x runs through A. We then take up the problem of minimizing
the distance between x and y where x and y run through A and B , respectively. Ex-
amples are provided to illustrate the applications of our results. In particular, we use
our theorems to obtain some results in the theory of analytic functions.

2 Preliminaries

Let A,B be nonempty subsets of a metric space (X,d) and let T be a self-mapping
on A ∪ B . We say that T is cyclic provided that T (A) ⊆ B and T (B) ⊆ A. For
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cyclic mappings, the fixed point equation T x = x may not have solution. Thus it is
contemplated to find an approximate solution x ∈ A such that the error term d(x,T x)

is minimum. This leads to the notion of best proximity points. A point p ∈ A is called
a best proximity point for T provided that d(x,T x) = dist(A,B), where

dist(A,B) = inf
{
d(a, b) : a ∈ A, b ∈ B

}
.

The existence and convergence of best proximity points is an interesting topic in
optimization theory, which recently attracted the attention of many authors; see for
instance, [1–10].

Now let T : A∪B → A∪B be a noncyclic mapping, that is T (A) ⊆ A and T (B) ⊆
B . In this case, we can consider the following minimization problem: Find

min
x∈A

d(x,T x), min
y∈B

d(y,T y) and min
(x,y)∈A×B

d(x, y). (1)

We say that (x∗, y∗) ∈ A × B is a solution of (1) provided that

T x∗ = x∗, T y∗ = y∗ and d
(
x∗, y∗) = dist(A,B).

In [11], Eldred et al. studied the existence of solution of (1) for relatively nonexpan-
sive mappings in Banach spaces with a geometric property, called proximal normal
structure. The purpose of this article is to establish some theorems for noncyclic
mappings; in particular, to determine the solution of (1) in metric spaces with some
appropriate geometric property.

Let A and B be nonempty subsets of a metric space (X,d). In this work, we adopt
the following notations and definitions.

A0 := {
x ∈ A : d(x, y) = dist(A,B), for some y ∈ B

}
,

B0 := {
y ∈ B : d(x, y) = dist(A,B), for some x ∈ A

}
.

Definition 2.1 [12] Let (A,B) be a pair of nonempty subsets of a metric space (X,d)

with A0 �= ∅. The pair (A,B) is said to have P-property iff
{

d(x1, y1) = dist(A,B)

d(x2, y2) = dist(A,B)
	⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 2.1 [12] Let A,B be two nonempty closed, and convex subsets of a Hilbert
space X. Then (A,B) satisfies the P-property.

Example 2.2 Let A,B be two nonempty subsets of a metric space (X,d) such that
A0 �= ∅ and dist(A,B) = 0. Then (A,B) has the P-property.

Example 2.3 Let A,B be two nonempty, bounded, closed, and convex subsets of a
uniformly convex Banach space X. Then (A,B) has the P-property.

Proof First we prove that A0 �= ∅. Let {xn} and {yn} be two sequences in A,B re-
spectively, such that ‖xn − yn‖ → dist(A,B). Since A,B are bounded, there exist
subsequences {xnk

} and {ynk
} of {xn} and {yn}, respectively, such that xnk

⇀ p ∈ A,
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and ynk
⇀ q ∈ B , where “⇀” stands for the weak convergence in X. But according

to a well-known fact in basic functional analysis, we have

‖p − q‖ ≤ lim
k→∞ inf‖xnk

− ynk
‖ = dist(A,B).

This implies that A0 �= ∅. Now, let q, q ′ ∈ B and

‖p − q‖ = ‖p′ − q ′‖ = dist(A,B),

for some p,p′ ∈ A. If p − p′ = q − q ′, then the conclusion follows. Assume that
p − p′ �= q − q ′. Now, by the convexity of A,B and the uniform convexity of the
Banach space X, we must have

dist(A,B) ≤
∥∥∥∥
p + p′

2
− q + q ′

2

∥∥∥∥ <
1

2

[‖p − q‖ + ‖p′ − q ′‖] = dist(A,B),

which is a contradiction. Hence, (A,B) has the P-property. �

Definition 2.2 Let (A,B) be a pair of nonempty subsets of a metric space (X,d).
A mapping T : A ∪ B → A ∪ B is called relatively nonexpansive iff d(T x,T y) ≤
d(x, y), for all (x, y) ∈ A × B . In case A = B , we say that T is nonexpansive.

Definition 2.3 Let T : X → X be a mapping on a metric space (X,d). We say that
T is expansive provided that d(T x,T y) ≥ d(x, y), for all x, y ∈ X.

Definition 2.4 A self-mapping T : X → X is said to be asymptotically regular iff
limn→∞ d(T nx,T n+1x) = 0, for all x ∈ X.

Example 2.4 (See Theorem 8.22 of [13]) Let D be a nonempty, bounded, and convex
subset of a Banach space X. Assume that f : D → D is a nonexpansive mapping.
Then the mapping T : X → X defined by T := I+f

2 , where I is the identity mapping
on D, is an asymptotically regular mapping.

3 The Main Results

We begin our main results with the following theorem.

Theorem 3.1 Let (A,B) be a pair of nonempty, and closed subsets of a complete
metric space (X,d) such that A0 �= ∅ and that (A,B) satisfies the P-property. Let
T : A ∪ B → A ∪ B be a noncyclic mapping. Then the minimization problem (1) has
a solution provided that the following conditions are satisfied:

(i) T |A is contraction,
(ii) T is relatively nonexpansive.

Proof At first we note that T (A0) ⊆ A0. Indeed, if x ∈ A0, then there exists y ∈ B

such that d(x, y) = dist(A,B). But T is relatively nonexpansive; then

d(T x,T y) ≤ d(x, y) = dist(A,B).
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Hence, T x ∈ A0. Now let x0 ∈ A0. By the Banach contraction principle if xn+1 =
T xn, then xn → x∗ where x∗ is a fixed point of T in A. Since x0 ∈ A0, there exists
y0 ∈ B such that d(x0, y0) = dist(A,B). Again, since x1 = T x0 ∈ A0, there exists
y1 ∈ B such that d(x1, y1) = dist(A,B). Using this process, we obtain a sequence
{yn} in B such that

d(xn, yn) = dist(A,B),

for all n ∈ N ∪ {0}. Since (A,B) has the P-property, we must have

d(xn, xm) = d(yn, ym),

for all m,n ∈ N ∪ {0}. This implies that {yn} is a Cauchy sequence, and hence there
exists y∗ ∈ B such that yn → y∗. We now have

d
(
x∗, y∗) = lim

n→∞d(xn, yn) = dist(A,B).

On the other hand, since T is relatively nonexpansive, we obtain

d
(
T x∗, T y∗) ≤ d

(
x∗, y∗) = dist(A,B).

Thus, d(x∗, T x∗) = d(y∗, T y∗), according to the P-property of the pair (A,B).
Hence, (x∗, y∗) ∈ A × B is a solution of (1). �

In order to explore the existence of solution of (1), we state the following theorem.

Theorem 3.2 Let (A,B) be a pair of nonempty subsets of a complete metric space
(X,d) such that A is compact and B is closed. Let A0 �= ∅ and (A,B) satisfy the
P-property. Let T : A ∪ B → A ∪ B be a noncyclic mapping. Then the minimization
problem (1) has a solution provided that the following conditions are satisfied:

(i) T is relatively nonexpansive,
(ii) T |A is expansive,

(iii) T |B is contractive.

Proof Let x0 ∈ A0, and define xn+1 = T xn, for all n ∈ N ∪ {0}. An argument similar
to the one in the proof of Theorem 3.1 implies that T (A0) ⊆ A0 and hence there exists
yn ∈ B such that d(xn, yn) = dist(A,B), for all n ∈ N∪{0}. Since A is compact, there
exists a subsequence {xnk

} of the sequence {xn} such that xnk
→ x∗ ∈ A. By using

the P-property of the pair (A,B), we have d(xnk
, xns ) = d(ynk

, yns ), for all k, s ∈ N.
Thus, {ynk

} is a Cauchy sequence, and hence there exists y∗ ∈ B such that ynk
→ y∗.

Therefore,

d
(
x∗, y∗) = lim

k→∞d(xnk
, ynk

) = dist(A,B).

We now prove that T x∗ = x∗ and Ty∗ = y∗. Since T is relatively nonexpansive,

d
(
T 2x∗, T 2y∗) = d

(
T x∗, T y∗) = dist(A,B).

Again, by the P-property of (A,B), we obtain

d
(
x∗, T x∗) = d

(
y∗, T y∗) and d

(
T x∗, T 2x∗) = d

(
Ty∗, T 2y∗).
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Let Ty∗ �= T 2y∗. Since T |A is expansive and T |B is contractive, we must have

d
(
Ty∗, T 2y∗) < d

(
y∗, T y∗) = d

(
x∗, T x∗) ≤ d

(
T x∗, T 2x∗)

= d
(
Ty∗, T 2y∗),

which is a contradiction. This implies that Ty∗ = T 2y∗, from which it follows that
x∗ = T x∗, y∗ = Ty∗. �

The next theorem establishes the existence of solution of (1) under some other
conditions.

Theorem 3.3 Let (A,B) be a pair of nonempty subsets of a complete metric space
(X,d) such that A is compact and B is closed. Let A0 �= ∅ and (A,B) satisfy the P-
property and let T : A ∪ B → A ∪ B be a noncyclic mapping. Then the minimization
problem (1) has a solution provided that the following conditions are satisfied:

(i) T is relatively nonexpansive,
(ii) T |A is continuous and asymptotically regular.

Proof Let {xn}, {yn}, {xnk
}, {ynk

}, x∗ and y∗ be as in Theorem 3.2. Then we have
xnk

→ x∗ ∈ A,ynk
→ y∗ ∈ B , and d(x∗, y∗) = dist(A,B). Since T |A is continuous,

xnk+1 = T (xnk
) → T x∗. On the other hand, by the asymptotic regularity of T |A, we

obtain

d
(
x∗, T x∗) = lim

k→∞d
(
xnk

, T (xnk
)
)

= lim
k→∞d

(
T nk (x0), T

nk+1(x0)
) ≤ lim sup

n→∞
d
(
T n(x0), T

n+1(x0)
) = 0.

This implies that T x∗ = x∗. Since T is relatively nonexpansive, we conclude that

d
(
T x∗, T y∗) ≤ d

(
x∗, y∗) = dist(A,B).

Using the P-property of (A,B), we conclude that d(x∗, T x∗) = d(y∗, T y∗). Hence,
Ty∗ = y∗. �

Let us illustrate the above theorems with the following examples.

Example 3.1 Let X := R with the usual metric, and A := [−2,0],B := N. We note
that (A,B) has the P-property, by the fact that A0 and B0 have exactly one element.
Define T : A ∪ B → A ∪ B as follows:

T (x) =

⎧
⎪⎨

⎪⎩

x
2 , if x ∈ A,
x+1

2 , if x ∈ No,

x − 1, if x ∈ Ne,

where No,Ne are the set of odd natural numbers and even natural numbers, respec-
tively. It is easy to see that T is noncyclic on A∪ B and T (A0) ⊆ A0. Moreover, T |A



J Optim Theory Appl (2012) 153:298–305 303

is contraction. We show that T is relatively nonexpansive on A ∪ B . Let x ∈ A and
y ∈ B . If y ∈ No, then

d(T x,T y) =
∣∣∣
∣
x

2
− y + 1

2

∣∣∣
∣ = 1

2
(y − x) + 1

2
≤ (y − x) = d(x, y),

by the choice of x, y. If y ∈ Ne, then

|T x − Ty| =
∣
∣∣∣
x

2
− (y − 1)

∣
∣∣∣ = y − x

2
− 1 ≤ |y − x|.

Therefore, all conditions of Theorem 3.1 hold, and hence (1) has a solution. It is clear
that (x∗, y∗) = (0,1) is the solution of (1).

Example 3.2 Suppose that X := R
2 with the metric

d
(
(x, y), (x′, y′)

) = max
{|x − x′|, |y − y′|}.

Let A := {(x,0) : −1 ≤ x ≤ 1},B := {(0, y) : 0 ≤ y ≤ 1} and define T : A ∪ B →
A ∪ B by

T (x,0) = (−x,0) and T (0, y) =
(

0,
y

2

)
.

Since dist(A,B) = 0, the pair (A,B) has the P-property. It is easy to check that all the
conditions of Theorem 3.2 hold. Thus, the minimization problem (1) has a solution,
and this solution is (x∗, y∗) = (0,0).

Example 3.3 Let X := R with the usual metric and let A := [−π
2 ,0], and B := [2,3].

Then (A,B) has the P-property. Consider the noncyclic mapping T : A∪B → A∪B

with

T (x) =
{

x+sin(x)
2 , if x ∈ A,

x+2
2 , if x ∈ B.

Then T |A is continuous, and since the function f (x) := sin(x) is nonexpansive on
A, T |A is asymptotically regular by Example 2.4. Also, T is relatively nonexpansive.
Indeed, if x ∈ A,y ∈ B , then

|T x − Ty| =
∣∣∣∣
x + sin(x)

2
− y + 2

2

∣∣∣∣ = 1

2
(y − x) + 1

2

(
2 − sin(x)

) ≤ (y − x),

by the choice of x, y. Hence, by Theorem 3.3, (1) has a solution, and obviously this
solution is (x∗, y∗) = (0,2).

4 Application to Complex Function Theory

Theorem 4.1 Let A and B be nonempty, compact, and convex subsets of a domain D

of the complex plane. Let f (z) and g(z) be functions in D such that f (z) is analytic
in D. Suppose that

(a) f (A) ⊆ A and g(B) ⊆ B ,
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(b) |f ′(z)| < 1, for all z ∈ A,
(c) |f (z1) − g(z2)| ≤ |z1 − z2|, for z1 ∈ A and z2 ∈ B .

Then there exist z∗
1 ∈ A and z∗

2 ∈ B such that

z∗
1 = f

(
z∗

1

)
, z∗

2 = g
(
z∗

2

)
and

∣∣z∗
1 − z∗

2

∣∣ = dist(A,B).

Proof By Example 2.3, A0 �= ∅ and (A,B) has the P-property. Since |f ′(z)| is con-
tinuous on the compact set A, it attains its maximum at some point, say z∗

1 ∈ A. Let
k = |f ′(z∗

1)|. Then k < 1. Hence, for all z ∈ A, we have |f ′(z)| ≤ k < 1. Now for all
z,w ∈ A, we have

∣∣f (z) − f (w)
∣∣ =

∣∣∣∣

∫ z

w

f ′(ξ) dξ

∣∣∣∣ ≤ k|z − w|.

So, f (z) is a contraction on A. Now, if we define T : A ∪ B → A ∪ B with

T (z) =
{

f (z), if z ∈ A,

g(z), if z ∈ B,

then the result follows by invoking Theorem 3.1. �

Remark 4.1 It is interesting to note that if in Theorem 4.1, |f ′(z)| ≤ 1, for all z ∈ A,
then the conclusion is valid.

Proof Define the noncyclic mapping T : A ∪ B → A ∪ B with

T (z) =
{

z+f (z)
2 , if z ∈ A,

g(z), if z ∈ B.

Since |f ′(z)| ≤ 1 for all z ∈ A, a similar argument as in Theorem 4.1 implies that
f is nonexpansive on A. Thus T |A is asymptotically regular and continuous. Now,
it follows from Theorem 3.3 that there exists (z∗

1, z
∗
2) ∈ A × B such that T (z∗

1) =
z∗

1, T (z∗
2) = z∗

2 and |z∗
1 − z∗

2| = dist(A,B). That is,

z∗
1 = f

(
z∗

1

)
, z∗

2 = g
(
z∗

2

)
and

∣∣z∗
1 − z∗

2

∣∣ = dist(A,B). �

The following result for analytic functions is a special case of the preceding argu-
ment. This will improve Corollary 3.2 of [14].

Corollary 4.1 Let A be a nonempty, compact and convex subset of a domain D of
the complex plane. Let f (z) be an analytic function in D. Suppose that

(a) f (A) ⊆ A,
(b) |f ′(z)| ≤ 1, for all z ∈ A.

Then the fixed point equation f (z) = z has at least one solution in A.
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5 Concluding Remarks

In [11], the authors solved the minimization problem (1) by introducing a geometric
property on pairs of subsets in a Banach space X, namely, the proximal normal struc-
ture. In the current paper, we replaced the Banach space X by a metric space, and
used the P-property already introduced in [12]. Finally, in the last section we have
supplied an application to complex function theory.
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