Global Optimal Solutions of Noncyclic Mappings in Metric Spaces

A. Abkar · M. Gabeleh

Received: 13 July 2011 / Accepted: 4 November 2011 / Published online: 3 December 2011 © Springer Science+Business Media, LLC 2011

Abstract We study some minimization problems for noncyclic mappings in metric spaces. We then apply the solution to obtain some results in the theory of analytic functions.

Keywords Noncyclic mapping · Contraction mapping · Nonexpansive mapping · Fixed point

1 Introduction

Let *A* and *B* be two nonempty subsets of a metric space *X*, and let *T* be a self mapping defined on the union of *A* and *B* in such a way that *T* maps either of *A* or *B* into itself. In this paper, we aim to study the existence of solutions for some specific minimization problems. First, we study the problem of minimizing the distance between x and Tx when x runs through A. We then take up the problem of minimizing the distance between x and y where x and y run through A and B , respectively. Examples are provided to illustrate the applications of our results. In particular, we use our theorems to obtain some results in the theory of analytic functions.

2 Preliminaries

Let A, B be nonempty subsets of a metric space (X, d) and let T be a self-mapping on $A \cup B$. We say that *T* is cyclic provided that $T(A) \subseteq B$ and $T(B) \subseteq A$. For

A. Abkar \cdot M. Gabeleh (\boxtimes)

Mathematics Department, Imam Khomeini International University, Qazvin 34149, Iran e-mail: gab.moo@gmail.com

A. Abkar e-mail: abkar@ikiu.ac.ir cyclic mappings, the fixed point equation $Tx = x$ may not have solution. Thus it is contemplated to find an approximate solution $x \in A$ such that the error term $d(x, Tx)$ is minimum. This leads to the notion of best proximity points. A point $p \in A$ is called a best proximity point for *T* provided that $d(x, Tx) = \text{dist}(A, B)$, where

$$
dist(A, B) = inf{d(a, b) : a \in A, b \in B}.
$$

The existence and convergence of best proximity points is an interesting topic in optimization theory, which recently attracted the attention of many authors; see for instance, [[1–](#page-7-0)[10\]](#page-7-1).

Now let $T : A \cup B \rightarrow A \cup B$ be a noncyclic mapping, that is $T(A) \subseteq A$ and $T(B) \subseteq$ *B*. In this case, we can consider the following minimization problem: Find

$$
\min_{x \in A} d(x, Tx), \qquad \min_{y \in B} d(y, Ty) \quad \text{and} \quad \min_{(x, y) \in A \times B} d(x, y). \tag{1}
$$

We say that $(x^*, y^*) \in A \times B$ is a solution of ([1\)](#page-1-0) provided that

$$
Tx^* = x^*
$$
, $Ty^* = y^*$ and $d(x^*, y^*) = dist(A, B)$.

In $[11]$ $[11]$, Eldred et al. studied the existence of solution of (1) (1) for relatively nonexpansive mappings in Banach spaces with a geometric property, called proximal normal structure. The purpose of this article is to establish some theorems for noncyclic mappings; in particular, to determine the solution of (1) (1) in metric spaces with some appropriate geometric property.

Let *A* and *B* be nonempty subsets of a metric space (X, d) . In this work, we adopt the following notations and definitions.

$$
A_0 := \{ x \in A : d(x, y) = \text{dist}(A, B), \text{ for some } y \in B \},
$$

\n
$$
B_0 := \{ y \in B : d(x, y) = \text{dist}(A, B), \text{ for some } x \in A \}.
$$

Definition 2.1 [[12\]](#page-7-3) Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with $A_0 \neq \emptyset$. The pair (A, B) is said to have P-property iff

$$
\begin{cases} d(x_1, y_1) = \text{dist}(A, B) \\ d(x_2, y_2) = \text{dist}(A, B) \end{cases} \implies d(x_1, x_2) = d(y_1, y_2),
$$

where $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0$.

Example 2.1 [[12\]](#page-7-3) Let *A*, *B* be two nonempty closed, and convex subsets of a Hilbert space X . Then (A, B) satisfies the P-property.

Example 2.2 Let *A, B* be two nonempty subsets of a metric space (X, d) such that $A_0 \neq \emptyset$ and dist $(A, B) = 0$. Then (A, B) has the P-property.

Example 2.3 Let *A, B* be two nonempty, bounded, closed, and convex subsets of a uniformly convex Banach space *X*. Then *(A,B)* has the P-property.

Proof First we prove that $A_0 \neq \emptyset$. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in *A, B* respectively, such that $x_n - y_n$ \rightarrow dist(A, B). Since A, B are bounded, there exist subsequences $\{x_{n_k}\}\$ and $\{y_{n_k}\}\$ of $\{x_n\}\$ and $\{y_n\}\$, respectively, such that $x_{n_k} \to p \in A$,

and $y_{n_k} \rightarrow q \in B$, where " \rightarrow " stands for the weak convergence in *X*. But according to a well-known fact in basic functional analysis, we have

$$
||p - q|| \le \lim_{k \to \infty} \inf ||x_{n_k} - y_{n_k}|| = \text{dist}(A, B).
$$

This implies that $A_0 \neq \emptyset$. Now, let $q, q' \in B$ and

 $||p - q|| = ||p' - q'|| = \text{dist}(A, B),$

for some $p, p' \in A$. If $p - p' = q - q'$, then the conclusion follows. Assume that $p - p' \neq q - q'$. Now, by the convexity of *A, B* and the uniform convexity of the Banach space *X*, we must have

$$
dist(A, B) \le \left\| \frac{p + p'}{2} - \frac{q + q'}{2} \right\| < \frac{1}{2} \left[\| p - q \| + \| p' - q' \| \right] = dist(A, B),
$$

which is a contradiction. Hence, (A, B) has the P-property. \Box

Definition 2.2 Let (A, B) be a pair of nonempty subsets of a metric space (X, d) . A mapping $T : A \cup B \rightarrow A \cup B$ is called relatively nonexpansive iff $d(Tx, Ty) \leq$ $d(x, y)$, for all $(x, y) \in A \times B$. In case $A = B$, we say that *T* is nonexpansive.

Definition 2.3 Let $T : X \to X$ be a mapping on a metric space (X, d) . We say that *T* is expansive provided that $d(Tx, Ty) \geq d(x, y)$, for all $x, y \in X$.

Definition 2.4 A self-mapping $T : X \to X$ is said to be asymptotically regular iff $\lim_{n\to\infty} d(T^n x, T^{n+1} x) = 0$, for all $x \in X$.

Example 2.4 (See Theorem 8.22 of [[13\]](#page-7-4)) Let *D* be a nonempty, bounded, and convex subset of a Banach space *X*. Assume that $f: D \to D$ is a nonexpansive mapping. Then the mapping $T: X \to X$ defined by $T := \frac{I+f}{2}$, where *I* is the identity mapping on *D*, is an asymptotically regular mapping.

3 The Main Results

We begin our main results with the following theorem.

Theorem 3.1 *Let (A,B) be a pair of nonempty*, *and closed subsets of a complete metric space* (X, d) *such that* $A_0 \neq \emptyset$ *and that* (A, B) *satisfies the P-property. Let T* : *A* ∪ *B* → *A* ∪ *B be a noncyclic mapping*. *Then the minimization problem* ([1\)](#page-1-0) *has a solution provided that the following conditions are satisfied*:

- (i) $T|_A$ *is contraction*,
- (ii) *T is relatively nonexpansive*.

Proof At first we note that $T(A_0) \subseteq A_0$. Indeed, if $x \in A_0$, then there exists $y \in B$ such that $d(x, y) = \text{dist}(A, B)$. But *T* is relatively nonexpansive; then

$$
d(Tx, Ty) \le d(x, y) = dist(A, B).
$$

Hence, $Tx \in A_0$. Now let $x_0 \in A_0$. By the Banach contraction principle if $x_{n+1} =$ *T x_n*, then $x_n \to x^*$ where x^* is a fixed point of *T* in *A*. Since $x_0 \in A_0$, there exists *y*⁰ ∈ *B* such that $d(x_0, y_0) = \text{dist}(A, B)$. Again, since $x_1 = Tx_0 \in A_0$, there exists $y_1 \in B$ such that $d(x_1, y_1) = \text{dist}(A, B)$. Using this process, we obtain a sequence {*yn*} in *B* such that

$$
d(x_n, y_n) = \text{dist}(A, B),
$$

for all $n \in \mathbb{N} \cup \{0\}$. Since (A, B) has the P-property, we must have

$$
d(x_n, x_m) = d(y_n, y_m),
$$

for all $m, n \in \mathbb{N} \cup \{0\}$. This implies that $\{y_n\}$ is a Cauchy sequence, and hence there exists *y*[∗] ∈ *B* such that *y_n* → *y*[∗]. We now have

$$
d(x^*, y^*) = \lim_{n \to \infty} d(x_n, y_n) = \text{dist}(A, B).
$$

On the other hand, since *T* is relatively nonexpansive, we obtain

$$
d(Tx^*, Ty^*) \le d(x^*, y^*) = dist(A, B).
$$

Thus, $d(x^*, Tx^*) = d(y^*, Ty^*)$, according to the P-property of the pair (A, B) . Hence, $(x^*, y^*) \in A \times B$ is a solution of ([1\)](#page-1-0).

In order to explore the existence of solution of (1) (1) , we state the following theorem.

Theorem 3.2 *Let (A,B) be a pair of nonempty subsets of a complete metric space* (X, d) *such that A is compact and B is closed. Let* $A_0 \neq \emptyset$ *and* (A, B) *satisfy the P*-property. Let $T : A \cup B \rightarrow A \cup B$ be a noncyclic mapping. Then the minimization *problem* [\(1](#page-1-0)) *has a solution provided that the following conditions are satisfied*:

- (i) *T is relatively nonexpansive*,
- (ii) $T|_A$ *is expansive*,
- (iii) $T|_B$ *is contractive.*

Proof Let $x_0 \in A_0$, and define $x_{n+1} = Tx_n$, for all $n \in \mathbb{N} \cup \{0\}$. An argument similar to the one in the proof of Theorem [3.1](#page-2-0) implies that $T(A_0) \subseteq A_0$ and hence there exists $y_n \in B$ such that $d(x_n, y_n) = \text{dist}(A, B)$, for all $n \in \mathbb{N} \cup \{0\}$. Since A is compact, there exists a subsequence $\{x_{n_k}\}\$ of the sequence $\{x_n\}$ such that $x_{n_k} \to x^* \in A$. By using the P-property of the pair (A, B) , we have $d(x_{n_k}, x_{n_s}) = d(y_{n_k}, y_{n_s})$, for all $k, s \in \mathbb{N}$. Thus, $\{y_{n_k}\}\$ is a Cauchy sequence, and hence there exists $y^* \in B$ such that $y_{n_k} \to y^*$. Therefore,

$$
d(x^*, y^*) = \lim_{k \to \infty} d(x_{n_k}, y_{n_k}) = \text{dist}(A, B).
$$

We now prove that $Tx^* = x^*$ and $Ty^* = y^*$. Since *T* is relatively nonexpansive,

$$
d(T^{2}x^{*}, T^{2}y^{*}) = d(Tx^{*}, Ty^{*}) = dist(A, B).
$$

Again, by the P-property of *(A,B),* we obtain

$$
d(x^*, Tx^*) = d(y^*, Ty^*)
$$
 and $d(Tx^*, T^2x^*) = d(Ty^*, T^2y^*).$

Let $T y^* \neq T^2 y^*$. Since $T|_A$ is expansive and $T|_B$ is contractive, we must have

$$
d(Ty^*, T^2y^*) < d(y^*, Ty^*) = d(x^*, Tx^*) \le d(Tx^*, T^2x^*)
$$

= $d(Ty^*, T^2y^*)$,

which is a contradiction. This implies that $T y^* = T^2 y^*$, from which it follows that $x^* = Tx^*, y^* = Ty^*.$

The next theorem establishes the existence of solution of [\(1](#page-1-0)) under some other conditions.

Theorem 3.3 *Let (A,B) be a pair of nonempty subsets of a complete metric space* (X, d) *such that A is compact and B is closed. Let* $A_0 \neq \emptyset$ *and* (A, B) *satisfy the Pproperty and let* $T : A \cup B \rightarrow A \cup B$ *be a noncyclic mapping. Then the minimization problem* [\(1](#page-1-0)) *has a solution provided that the following conditions are satisfied*:

(i) *T is relatively nonexpansive*,

(ii) $T|_A$ *is continuous and asymptotically regular.*

Proof Let $\{x_n\}$, $\{y_n\}$, $\{x_{n_k}\}$, $\{y_{n_k}\}$, x^* and y^* be as in Theorem [3.2](#page-3-0). Then we have *x_{nk}* → *x*^{*} ∈ *A*, *y_{nk}* → *y*^{*} ∈ *B*, and *d*(*x*^{*}, *y*^{*}) = dist(*A*, *B*). Since *T* |*A* is continuous, $x_{n_k+1} = T(x_{n_k}) \rightarrow Tx^*$. On the other hand, by the asymptotic regularity of $T|_A$, we obtain

$$
d(x^*, Tx^*) = \lim_{k \to \infty} d(x_{n_k}, T(x_{n_k}))
$$

=
$$
\lim_{k \to \infty} d(T^{n_k}(x_0), T^{n_k+1}(x_0)) \le \limsup_{n \to \infty} d(T^{n}(x_0), T^{n+1}(x_0)) = 0.
$$

This implies that $Tx^* = x^*$. Since *T* is relatively nonexpansive, we conclude that

$$
d(Tx^*, Ty^*) \le d(x^*, y^*) = dist(A, B).
$$

Using the P-property of (A, B) , we conclude that $d(x^*, Tx^*) = d(y^*, Ty^*)$. Hence, $Ty^* = y^*$.

Let us illustrate the above theorems with the following examples.

Example 3.1 Let $X := \mathbb{R}$ with the usual metric, and $A := [-2, 0], B := \mathbb{N}$. We note that (A, B) has the P-property, by the fact that A_0 and B_0 have exactly one element. Define $T : A \cup B \rightarrow A \cup B$ as follows:

$$
T(x) = \begin{cases} \frac{x}{2}, & \text{if } x \in A, \\ \frac{x+1}{2}, & \text{if } x \in \mathbb{N}_o, \\ x-1, & \text{if } x \in \mathbb{N}_e, \end{cases}
$$

where \mathbb{N}_o , \mathbb{N}_e are the set of odd natural numbers and even natural numbers, respectively. It is easy to see that *T* is noncyclic on $A \cup B$ and $T(A_0) \subseteq A_0$. Moreover, $T|_A$

is contraction. We show that *T* is relatively nonexpansive on $A \cup B$. Let $x \in A$ and *y* ∈ *B*. If *y* ∈ \mathbb{N}_o , then

$$
d(Tx, Ty) = \left| \frac{x}{2} - \frac{y+1}{2} \right| = \frac{1}{2}(y-x) + \frac{1}{2} \le (y-x) = d(x, y),
$$

by the choice of *x*, *y*. If $y \in \mathbb{N}_e$, then

$$
|Tx - Ty| = \left| \frac{x}{2} - (y - 1) \right| = y - \frac{x}{2} - 1 \le |y - x|.
$$

Therefore, all conditions of Theorem [3.1](#page-2-0) hold, and hence ([1\)](#page-1-0) has a solution. It is clear that $(x^*, y^*) = (0, 1)$ $(x^*, y^*) = (0, 1)$ is the solution of (1) .

Example 3.2 Suppose that $X := \mathbb{R}^2$ with the metric

 $d((x, y), (x', y')) = \max\{|x - x'|, |y - y'|\}.$

Let *A* := { $(x, 0)$: −1 ≤ x ≤ 1}*, B* := { $(0, y)$: $0 \le y \le 1$ } and define *T* : *A* ∪ *B* → $A \cup B$ by

$$
T(x, 0) = (-x, 0)
$$
 and $T(0, y) = \left(0, \frac{y}{2}\right)$.

Since dist $(A, B) = 0$, the pair (A, B) has the P-property. It is easy to check that all the conditions of Theorem [3.2](#page-3-0) hold. Thus, the minimization problem ([1\)](#page-1-0) has a solution, and this solution is $(x^*, y^*) = (0, 0)$.

Example 3.3 Let *X* := \mathbb{R} with the usual metric and let $A := [-\frac{\pi}{2}, 0]$, and $B := [2, 3]$. Then (A, B) has the P-property. Consider the noncyclic mapping $T : A \cup B \rightarrow A \cup B$ with

$$
T(x) = \begin{cases} \frac{x + \sin(x)}{2}, & \text{if } x \in A, \\ \frac{x + 2}{2}, & \text{if } x \in B. \end{cases}
$$

Then $T|_A$ is continuous, and since the function $f(x) := \sin(x)$ is nonexpansive on *A*, $T|_A$ is asymptotically regular by Example [2.4](#page-2-1). Also, *T* is relatively nonexpansive. Indeed, if $x \in A$, $y \in B$, then

$$
|Tx - Ty| = \left| \frac{x + \sin(x)}{2} - \frac{y + 2}{2} \right| = \frac{1}{2}(y - x) + \frac{1}{2}(2 - \sin(x)) \le (y - x),
$$

by the choice of *x,y*. Hence, by Theorem [3.3](#page-4-0), ([1\)](#page-1-0) has a solution, and obviously this solution is $(x^*, y^*) = (0, 2)$.

4 Application to Complex Function Theory

Theorem 4.1 *Let A and B be nonempty*, *compact*, *and convex subsets of a domain D of the complex plane. Let* $f(z)$ *and* $g(z)$ *be functions in D such that* $f(z)$ *is analytic in D*. *Suppose that*

(a) $f(A) \subseteq A$ *and* $g(B) \subseteq B$,

(b) $|f'(z)| < 1$, *for all* $z \in A$,

(c) $|f(z_1) - g(z_2)| \le |z_1 - z_2|$, *for* $z_1 \in A$ *and* $z_2 \in B$.

Then there exist $z_1^* \in A$ *and* $z_2^* \in B$ *such that*

$$
z_1^* = f(z_1^*),
$$
 $z_2^* = g(z_2^*)$ and $|z_1^* - z_2^*| = dist(A, B).$

Proof By Example [2.3,](#page-1-1) $A_0 \neq \emptyset$ and (A, B) has the P-property. Since $|f'(z)|$ is continuous on the compact set *A*, it attains its maximum at some point, say $z_1^* \in A$. Let $k = |f'(z_1^*)|$. Then $k < 1$. Hence, for all $z \in A$, we have $|f'(z)| \le k < 1$. Now for all $z, w \in A$, we have

$$
\left|f(z) - f(w)\right| = \left| \int_w^z f'(\xi) \, d\xi \right| \leq k|z - w|.
$$

So, $f(z)$ is a contraction on *A*. Now, if we define $T : A \cup B \rightarrow A \cup B$ with

$$
T(z) = \begin{cases} f(z), & \text{if } z \in A, \\ g(z), & \text{if } z \in B, \end{cases}
$$

then the result follows by invoking Theorem [3.1.](#page-2-0)

Remark 4.1 It is interesting to note that if in Theorem [4.1,](#page-5-0) $|f'(z)| \le 1$, for all $z \in A$, then the conclusion is valid.

Proof Define the noncyclic mapping $T : A \cup B \rightarrow A \cup B$ with

$$
T(z) = \begin{cases} \frac{z + f(z)}{2}, & \text{if } z \in A, \\ g(z), & \text{if } z \in B. \end{cases}
$$

Since $|f'(z)| \leq 1$ for all $z \in A$, a similar argument as in Theorem [4.1](#page-5-0) implies that *f* is nonexpansive on *A*. Thus $T|_A$ is asymptotically regular and continuous. Now, it follows from Theorem [3.3](#page-4-0) that there exists $(z_1^*, z_2^*) \in A \times B$ such that $T(z_1^*) =$ z_1^* , $T(z_2^*) = z_2^*$ and $|z_1^* - z_2^*| = \text{dist}(A, B)$. That is,

$$
z_1^* = f(z_1^*),
$$
 $z_2^* = g(z_2^*)$ and $|z_1^* - z_2^*| = dist(A, B).$

The following result for analytic functions is a special case of the preceding argu-ment. This will improve Corollary 3.2 of [\[14](#page-7-5)].

Corollary 4.1 *Let A be a nonempty*, *compact and convex subset of a domain D of the complex plane*. *Let f (z) be an analytic function in D*. *Suppose that*

(a) $f(A) \subseteq A$, (b) $|f'(z)| \leq 1$, *for all* $z \in A$.

Then the fixed point equation $f(z) = z$ *has at least one solution in* A.

$$
\Box
$$

5 Concluding Remarks

In $[11]$ $[11]$, the authors solved the minimization problem (1) (1) (1) by introducing a geometric property on pairs of subsets in a Banach space *X*, namely, the proximal normal structure. In the current paper, we replaced the Banach space *X* by a metric space, and used the P-property already introduced in [[12\]](#page-7-3). Finally, in the last section we have supplied an application to complex function theory.

References

- 1. Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. **323**, 1001–1006 (2006)
- 2. Abkar, A., Gabeleh, M.: Results on the existence and convergence of best proximity points. Fixed Point Theory Appl. **2010**, 386037 (2010), 10 pp.
- 3. Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. **70**, 3665–3671 (2009)
- 4. Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. **71**, 2918–2926 (2009)
- 5. Derafshpour, M., Rezapour, Sh., Shahzad, N.: Best proximity points of cyclic *ϕ*-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. **37**, 193–202 (2011)
- 6. Di Bari, C., Suzuki, T., Vetro, C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. **69**, 3790–3794 (2008)
- 7. Wlodarczyk, K., Plebaniak, R., Banach, A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. **70**, 3332–3341 (2009)
- 8. Wlodarczyk, K., Plebaniak, R., Banach, A.: Erratum to: "Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces". Nonlinear Anal. (2008). doi[:10.1016/j.na.2008.04.037.](http://dx.doi.org/10.1016/j.na.2008.04.037) Nonlinear Anal. **71**(7–8), 3585–3586 (2009)
- 9. Abkar, A., Gabeleh, M.: Best proximity points for cyclic mappings in ordered metric spaces. J. Optim. Theory Appl. **150**, 188–193 (2011)
- 10. Vetro, C.: Best proximity points: convergence and existence theorems for *p*-cyclic mappings. Nonlinear Anal. **73**(7), 2283–2291 (2010)
- 11. Eldred, A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. **171**(3), 283–293 (2005)
- 12. Sankar Raj, V.: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. **74**, 4804–4808 (2011)
- 13. Khamsi, M.A., Kirk, W.A.: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New York (2001)
- 14. Sadiq Basha, S.: Best proximity points: global optimal approximate solutions. J. Glob. Optim. (2011). doi[:10.1007/s10898-009-9521-0](http://dx.doi.org/10.1007/s10898-009-9521-0)