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Abstract The proximal point algorithm is classical and popular in the community
of optimization. In practice, inexact proximal point algorithms which solve the in-
volved proximal subproblems approximately subject to certain inexact criteria are
truly implementable. In this paper, we first propose an inexact proximal point al-
gorithm with a new inexact criterion for solving convex minimization, and show
its O(1/k) iteration-complexity. Then we show that this inexact proximal point al-
gorithm is eligible for being accelerated by some influential acceleration schemes
proposed by Nesterov. Accordingly, an accelerated inexact proximal point algorithm
with an iteration-complexity of O(1/k2) is proposed.

Keywords Convex minimization · Proximal point algorithm · Inexact · Acceleration

1 Introduction

The proximal point algorithm (PPA) dates back to the work [1], and it was introduced
to the optimization literature in [2], and then was promoted substantially in [3]. In
this paper, we consider the application of PPA to convex minimization problems.
More specifically, we propose to solve the PPA subproblems approximately subject
to a new inexact criterion and show the O(1/k) iteration-complexity of this new
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inexact PPA. In addition, we demonstrate that the new inexact PPA can be accelerated
by Nesterov’s acceleration schemes and the iteration-complexity of the accelerated
inexact PPA is O(1/k2).

The paper is organized as follows. In Sect. 2, we provide some background and
illustrate our motivation. In Sect. 3, we propose a new inexact criterion for solv-
ing proximal subproblems approximately. Then a new inexact PPA with this inexact
criterion is proposed in Sect. 4. The global convergence and the O(1/k) iteration-
complexity of this new inexact PPA are also proved in this section. In Sect. 5, we show
that the new inexact PPA can be accelerated by Nesterov’s acceleration schemes, and
thus an accelerated inexact PPA with the O(1/k2) iteration-complexity is proposed.
Finally, some conclusions are given in Sect. 6.

2 Motivation

We consider the following convex minimization problem:

min
{
f (x) | x ∈ Ω

}
, (1)

where f : R
n → R ∪ {∞} is a proper closed convex function and Ω is a closed

convex subset in R
n. Throughout, we assume the solution set of (1) denoted by Ω∗

to be nonempty.
Let λ > 0 be a scalar and

Jλ(x) := Argmin

{
f (z) + 1

2λ
‖z − x‖2 | z ∈ Ω

}
, (2)

be the proximal operator defined in [1]. Then, for solving (1), the iterative scheme of
PPA is

xk+1 = Jλk

(
xk

) := Argmin

{
f (z) + 1

2λk

∥∥z − xk
∥∥2 | z ∈ Ω

}
, (3)

where the positive numbers {λk} are proximal parameters. Throughout, the sequence
{λk} is assumed to be nondecreasing.

The exact version of PPA (3) requires to solve exactly the proximal subproblem
(3) at each iteration, which can be as difficult as solving the original problem (1). In
[3], Rockafellar showed that the subproblem (3) can be practically alleviated to

xk+1 ≈ Jλk

(
xk

)
, (4)

whose convergence is ensured whenever the accuracy of (4) is subject to the criterion

∥∥xk+1 − Jλk

(
xk

)∥∥ ≤ εk with
∞∑

k=0

εk < ∞ (5)

or

∥∥xk+1 − Jλk

(
xk

)∥∥ ≤ εk

∥∥xk − xk+1
∥∥ with

∞∑

k=0

εk < ∞, (6)
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where {εk} should be a sequence of positive numbers. This concrete development on
inexact PPA [3] has inspired many other articles in the literature to consider more
practical inexact criteria with the purpose of avoiding the computation of Jλk

(xk).
We refer to some nice articles, e.g., [3–7] for convergence analysis of PPA.

The estimate of the convergence rate of PPA has also been addressed in the litera-
ture. In [6], the global convergence rate of the exact PPA (3) (where Ω = Rn and f

is a proper and lower semicontinuous convex function) was estimated in terms of the
objective residual

f (xk) − min
x∈Rn

f (x) = O

(
1

∑k−1
j=0 λj

)
,

from which the O(1/k) iteration-complexity is instantly implied provided that {λk}
is chosen to be λk ≥ λ > 0. Then, in [8], Güler showed that the exact PPA can be
accelerated by some acceleration schemes proposed in [9], and thus an accelerated
exact PPA with the O(1/k2) iteration-complexity was proposed. In addition, in [8],
Güler proposed some variants of PPAs and discussed the applications of Nesterov’s
acceleration schemes for these new PPAs. More specifically, let Ω := Rn in (1); {yk}
be an auxiliary sequence generated in the spirit of the acceleration technique in [10];
and let

Jλk
(yk) := Argmin

{
f (z) + 1

2λk

∥∥z − yk
∥∥2 | z ∈ Ω

}
. (7)

If the new iterate xk+1 is generated by

xk+1 = Jλk
(yk); (8)

then the global convergence rate of the new exact PPA (8) was estimated in term of
the objective residual

f (xk) − min
x∈Rn

f (x) = O

(
1

(
∑k−1

j=0

√
λj )2

)
,

from which the O(1/k2) iteration-complexity is implied if {λk} is chosen to be λk ≥
λ > 0. It was also shown in [8] that the proximal subproblem (8) can be performed
inexactly:

xk+1 ≈ Jλk
(yk) (9)

subject to

∥∥xk+1 − Jλk

(
yk

)∥∥ ≤ εk with
∞∑

k=0

εk < ∞. (10)

Obviously, the inexact criterion (10) is a straightforward extension of the earliest
one (5). If there exists a constant M > 0 such that

λi ≤ Mλj whenever i ≤ j ;



J Optim Theory Appl (2012) 154:536–548 539

and for some σ > 0 such that

εk = O
(
1/kσ

)
, k = 0,1,2, . . . ;

then the global convergence rate of the inexact PPA (9) subject to (10) was estimated
in [8]:

f (xk) − min
x∈Rn

f (x) ≤ O

(
1

k2

)
+ O

(
1

k2σ−1

)
.

The O(1/k2) iteration-complexity is thus obtained whenever σ ≥ 3/2.
The applicability of the inexact criterion (10) in practice may be limited due to

(a) the expensiveness or unavailability of Jλk
(yk); (b) the summable requirement

on εk essentially requires increasing accuracy for solving the subproblems; (c) the
accuracy of solving the subproblems are controlled by absolute errors, rather than
relative errors which are more likely to induce attractive numerical performance, as
shown widely in the literature. Thus, we are inspired to develop an accelerated inexact
PPA whose convergence rate is the same O(1/k2) as in [8], while its inexact criterion
for executing (9) is more implementable than (10). This is the aim of the paper.

3 A New Inexact Criterion

In this section, we propose a new inexact criterion for performing the inexact prox-
imal subproblem (9). To yield an inexact criterion with easy operability, our discus-
sion is under the additional assumption that f (x) is differentiable and its differential
(denoted by ∇f (x)) is Lipschitz continuous, i.e., there exists a constant L > 0 such
that

∥
∥∇f (x) − ∇f (y)

∥
∥ ≤ L‖x − y‖, ∀x, y ∈ Rn.

But the framework of the coming analysis can be extended to the nonsmooth case of
f (x).

As we have mentioned, to propose accelerated inexact PPAs with the O(1/k2)

iteration-complexity, an auxiliary sequence {yk} should be generated by some Nes-
terov’s acceleration schemes (see [8]). With the auxiliary sequence {yk}, the proximal
subproblem at each iteration of this type of methods is (8). In view of the optimal-
ity condition, it is easy to verify that solving (8) amounts to solving the following
projection equation:

x = PΩ

[
yk − λk∇f (x)

]
, (11)

where PΩ denotes the projection operator onto Ω under the Euclidean distance. Thus,
an inexact PPA is to seek an approximate solution of (8), denoted by zk+1, such that

zk+1 ≈ PΩ

[
yk − λk∇f

(
zk+1)]. (12)

Let {zk} be a sequence satisfying (12) (the inexactness will be specified later). We
denote

xk+1 := PΩ

[
yk − λk∇f

(
zk+1)]. (13)
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Then it is clear that xk+1 is the exact solution of the subproblem (8) if

xk+1 = zk+1

or

∇f
(
xk+1) = ∇f

(
zk+1).

We are now ready to present our new inexact criterion to perform the inexact
proximal subproblem (9).

A new inexact criterion

For given yk ∈ R
n and λk > 0, let zk+1 be given by (12) and xk+1 be given by (13).

We require that

(
zk+1 − xk+1)T (∇f

(
zk+1) − ∇f

(
xk+1)) ≤ 1

2λk

∥∥yk − xk+1
∥∥2

. (14)

The condition (14) is the acceptance condition for generating an approximate so-
lution of the proximal subproblem (8) by the inexact PPAs to be proposed. We call
such an iterate xk+1 satisfying (14) an acceptance vector.

Remark 3.1 As the proximal subproblem (3) is a strongly convex problem, such a
sequence {zk} satisfying (12) is ensured by many existing methods. In particular, if
λk ≤ 1/2L where L is the Lipschitz constant of ∇f (x), we can easily take zk+1 = yk .
By doing so, the inexact criterion (14)

(
yk − xk+1)T

λk

(∇f
(
yk

) − ∇f
(
xk+1))

≤ ∥
∥yk − xk+1

∥
∥ · 1

2L

∥
∥∇f

(
yk

) − ∇f
(
xk+1)∥∥

≤ 1

2

∥∥yk − xk+1
∥∥2

is met.

Remark 3.2 The inexact PPAs in [3, 8] take xk+1 = zk+1. In the case of Ω = Rn,
(12) implies that

ξk+1 := λkf
(
zk+1) + (

zk+1 − yk
) ≈ 0. (15)

In [3] (see p. 880) and [8] (see Definition 3.1 in pp. 656 and 660), the inexact criterion
is set as

∥∥ξk
∥∥ ≤ εk and

∞∑

k=0

εk < ∞.

The difference of the proposed inexact criterion is that we take

xk+1 = yk − λkf
(
zk+1).
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Using the notation of ξk (15), we have

xk+1 = zk+1 − ξk+1,

and thus our criterion (14) becomes

(
ξk+1)T (∇f

(
xk+1 + ξk+1) − ∇f

(
xk+1)) ≤ 1

2λk

∥
∥yk − xk+1

∥
∥2

.

Remark 3.3 Since ∇f is assumed to be Lipschitz continuous with the constant L,
the proposed inexact criterion (14) is guaranteed if we ensure that

∥∥ξk+1
∥∥ ≤

√
1

2λkL
· ∥∥yk − xk+1

∥∥.

4 An Inexact PPA

In this section, we present an inexact PPA whose proximal subproblems are solved
subject to the new inexact criterion (14). Then we prove the convergence of the new
inexact PPA and show its O(1/k) iteration-complexity. Before presenting the inexact
PPA, we first prove a proposition which plays important roles in the coming analysis.

Lemma 4.1 For given yk and λk > 0, let xk+1 be given by (13) subjected to the
inexact criterion (14). Then we have

2λk

(
f (x) − f

(
xk+1)) ≥ ∥∥yk − xk+1

∥∥2 + 2
(
x − yk

)T (
yk − xk+1), ∀x ∈ Ω.

(16)

Proof First, using the convexity of f , we have

f (x) ≥ f
(
zk+1) + (

x − zk+1)T ∇f
(
zk+1). (17)

Using the convexity of f again and by a manipulation, we have

f
(
xk+1) ≤ f

(
zk+1) + (

xk+1 − zk+1)T ∇f
(
xk+1)

= f
(
zk+1) + (

xk+1 − zk+1)T ∇f
(
zk+1)

+ (
xk+1 − zk+1)T (∇f (xk+1) − ∇f

(
zk+1))

≤ f
(
zk+1) + (

xk+1 − zk+1)T ∇f
(
zk+1) + 1

2λk

∥∥yk − xk+1
∥∥2

. (18)

The last inequality is due to the acceptance condition (14). It follows from (17) and
(18) that



542 J Optim Theory Appl (2012) 154:536–548

f (x) − f
(
xk+1) ≥ f

(
zk+1) + (

x − zk+1)T ∇f
(
zk+1)

−
(

f
(
zk+1) + (

xk+1 − zk+1)T ∇f
(
zk+1) + 1

2λk

∥∥yk − xk+1
∥∥2

)

= (
x − xk+1)T ∇f

(
zk+1) − 1

2λk

∥∥yk − xk+1
∥∥2

. (19)

On the other hand, since xk+1 is the projection of [yk − λk∇f (zk+1)] on Ω (see
(13)), it follows that

(
x − xk+1)T {[

yk − λk∇f
(
zk+1)] − xk+1} ≤ 0, ∀x ∈ Ω,

from which we obtain

(
x − xk+1)T

λk∇f
(
zk+1) ≥ (

x − xk+1)T (
yk − xk+1), ∀x ∈ Ω. (20)

For the first term of the right-hand side of (19), it follows from (20) that

(
x − xk+1)T ∇f

(
zk+1) ≥ 1

λk

(
x − xk+1)T (

yk − xk+1), ∀x ∈ Ω. (21)

Substituting (21) in (19), we obtain

f (x) − f
(
xk+1) ≥ 1

λk

(
x − xk+1)T (

yk − xk+1) − 1

2λk

∥∥yk − xk+1
∥∥2

= 1

2λk

∥∥yk − xk+1
∥∥2 + 1

λk

(
x − yk

)T (
yk − xk+1),

and the assertion of this lemma is proved. �

In the following, we present the new inexact PPA where the approximate solutions
of the proximal subproblems are subject to the proposed inexact criterion (14) and the
auxiliary sequence of {yk} can be avoided by simply taking yk ≡ xk .

Algorithm 1: An inexact PPA for (1)

Step 0. Take x0 ∈ Ω .
Step k. (k ≥ 0) xk+1 = PΩ [xk − λkf (zk+1)] where zk+1 satisfies (12) and the
inexact criterion (14) is satisfied.

The following theorem states the global convergence of the proposed Algorithm 1.

Theorem 4.1 Let {xk} be generated by the proposed Algorithm 1. Then we have

f
(
xk+1) ≤ f

(
xk

) − 1

2λk

∥∥xk − xk+1
∥∥2

, (22)
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and
∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − 2λk

(
f

(
xk+1) − f

(
x∗)), ∀x∗ ∈ Ω∗. (23)

Thus, {xk} is convergent to a solution point of (1).

Proof By using (16) for x = xk and yk = xk , we obtain the first assertion of this
theorem. Let x∗ ∈ Ω∗ and set yk = xk and x = x∗ in (16), we have

2λk

(
f

(
x∗) − f

(
xk+1)) ≥ ∥

∥xk − xk+1
∥
∥2 − 2

(
xk − x∗)T (

xk − xk+1).

Applying the relation

‖a − b‖2 − 2(a − c)T (a − b) = ‖b − c‖2 − ‖a − c‖2,

with

a = xk, b = xk+1 and c = x∗,

to the last inequality, we get the assertion (22) immediately.
The second assertion follows from the above inequality directly. From (23), we

have

k−1∑

l=0

2λl

(
f

(
xl

) − f
(
x∗)) ≤ ∥

∥x0 − x∗∥∥2 − ∥
∥xk − x∗∥∥2 ≤ ∥

∥x0 − x∗∥∥2
,

and thus

lim
k→∞

(
f

(
xk

) − f
(
x∗)) = 0.

Since {xk} is bounded, the sequence {xk} converges to x∗ ∈ Ω∗. �

In the following, we show the O(1/k) iteration-complexity of the proposed Algo-
rithm 1.

Theorem 4.2 Let {xk} be generated by the proposed Algorithm 1. Then we have

f (xk) − f (x∗) ≤ ‖x0 − x∗‖2

2kλ0
, ∀x∗ ∈ Ω∗, ∀k ≥ 1. (24)

Proof Because yk = xk , it follows from (23) that, for all l ≥ 0, we have

2λl

(
f

(
x∗) − f

(
xl+1)) ≥ ∥∥xl+1 − x∗∥∥2 − ∥∥xl − x∗∥∥2

, ∀x∗ ∈ Ω∗.

Using the fact that f (x∗) − f (xl) ≤ 0 and summing the above inequality over l =
0, . . . , k − 1, we obtain

2λ0

(

kf
(
x∗) −

k−1∑

l=0

f
(
xl+1)

)

≥ ∥∥xk − x∗∥∥2 − ∥∥x0 − x∗∥∥2
. (25)
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It follows from (22) that

2λ0
(
f

(
xl

) − f
(
xl+1)) ≥ λ0

λl

∥∥xl − xl+1
∥∥2

.

Multiplying the last inequality by l and summing over l = 0, . . . , k −1, it follows that

2λ0

k−1∑

l=0

(
lf

(
xl

) − (l + 1)f
(
xl+1) + f

(
xl+1)) ≥

k−1∑

l=0

λ0

λl

l
∥∥xl − xl+1

∥∥2
,

which simplifies to

2λ0

(

−kf
(
xk

) +
k−1∑

l=0

f
(
xl+1)

)

≥
k−1∑

l=0

λ0

λl

l
∥∥xl − xl+1

∥∥2
. (26)

Adding (25) and (26), we get

2kλ0
(
f

(
x∗) − f

(
xk

)) ≥ ∥∥xk − x∗∥∥2 − ∥∥x0 − x∗∥∥2 +
k−1∑

l=0

λ0

λl

l
∥∥xl − xl+1

∥∥2
,

and hence it follows that

f
(
xk

) − f
(
x∗) ≤ ‖x0 − x∗‖2

2kλ0
.

The proof is complete. �

5 An Accelerated Inexact PPA

In this section, we accelerate the proposed Algorithm 1 with the acceleration scheme
in [9]. Thus, an accelerated inexact PPA with the O(1/k2) iteration-complexity is
proposed for solving (1).

Algorithm 2: An accelerated inexact PPA
Step 0. Let {λk} be a nondecreasing and positive sequence and x1 ∈ R

n. Set y1 =
x1, t1 = 1.
Step k. (k ≥ 1) For given yk , xk+1 = PΩ [yk − λkf (zk+1)] where zk+1 satisfies
(12) and the inexact criterion (14) is satisfied.
Set

tk+1 =
1 +

√
1 + 4t2

k

2
, (27a)

and

yk+1 = xk+1 +
(

tk − 1

tk+1

)(
xk+1 − xk

)
. (27b)
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To derive the iteration-complexity of the proposed Algorithm 2, we need to prove
some properties of the corresponding sequence.

Lemma 5.1 The sequences {xk} and {yk} generated by the proposed Algorithm 2
satisfy

2t2
k vk − 2t2

k+1vk+1 ≥ 1

λk+1

∥∥uk+1
∥∥2 − 1

λk+1

∥∥uk
∥∥2

, ∀k ≥ 1, (28)

where vk := f (xk+1) − f (x∗) and uk := tkx
k+1 − (tk − 1)xk − x∗.

Proof By using Lemma 4.1 for k + 1, x = xk and x = x∗, we get

2λk+1
(
f

(
xk+1) − f

(
xk+2)) ≥ ∥∥yk+1 − xk+2

∥∥2 + 2
(
xk+1 − yk+1)T (

yk+1 − xk+2)

and

2λk+1
(
f

(
x∗) − f

(
xk+2)) ≥ ∥∥yk+1 − xk+2

∥∥2 + 2
(
x∗ − yk+1)T (

yk+1 − xk+2).

Using the definition of vk , we get

2λk+1(vk − vk+1) ≥ ∥∥yk+1 − xk+2
∥∥2 + 2

(
xk+1 − yk+1)T (

yk+1 − xk+2) (29)

and

−2λk+1vk+1 ≥ ∥∥yk+1 − xk+2
∥∥2 + 2

(
x∗ − yk+1)T (

yk+1 − xk+2). (30)

To get a relation between vk and vk+1, we multiply (29) by (tk+1 − 1) and add it to
(30):

2λk+1
(
(tk+1 − 1)vk − tk+1vk+1

)

≥ tk+1
∥∥xk+2 − yk+1

∥∥2 + 2
(
xk+2 − yk+1)T (

tk+1y
k+1 − (tk+1 − 1)xk+1 − x∗).

Multiplying the last inequality by tk+1 and using

t2
k = t2

k+1 − tk+1
(
and thus tk+1 = (

1 +
√

1 + 4t2
k

)
/2 as in (27a)

)
,

which yields

2λk+1
(
t2
k vk − t2

k+1vk+1
) ≥ ∥∥tk+1

(
xk+2 − yk+1)∥∥2 + 2tk+1

(
xk+2 − yk+1)T

× (
tk+1y

k+1 − (
tk+1 − 1

)
xk+1 − x∗).

Applying the relation

‖b − a‖2 + 2(b − a)T (a − c) = ‖b − c‖2 − ‖a − c‖2

to the right-hand side of the last inequality with

a := tk+1y
k+1, b := tk+1x

k+2, c := (tk+1 − 1)xk+1 + x∗,
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we get

2λk+1
(
t2
k vk − t2

k+1vk+1
) ≥ ∥

∥tk+1x
k+2 − (tk+1 − 1)xk+1 − x∗∥∥2

− ∥∥tk+1y
k+1 − (tk+1 − 1)xk+1 − x∗∥∥2

.

In order to write the above inequality in the form (28) with uk = tkx
k+1 −(tk −1)xk −

x∗, we need only to set

tk+1y
k+1 − (tk+1 − 1)xk+1 − x∗ = tkx

k+1 − (tk − 1)xk − x∗.

From the last equality, we obtain

yk+1 = xk+1 +
(

tk − 1

tk+1

)(
xk+1 − xk

)
.

This is just the accelerated step (27b) of the proposed accelerated inexact PPA. �

Since we have assumed that the sequence {λk} is nondecreasing, it follows from
(28) that

2t2
k vk − 2t2

k+1vk+1 ≥ 1

λk+1

∥∥uk+1
∥∥2 − 1

λk

∥∥uk
∥∥2

, ∀k ≥ 1.

To proceed the proof of the main theorem, we need the following Lemmas 5.2 and 5.3,
which have also been considered in [11]. We omit their proofs as they are trivial.

Lemma 5.2 Let {ak} and {bk} be positive sequences of reals satisfying

ak − ak+1 ≥ bk+1 − bk, ∀k ≥ 1.

Then, ak ≤ a1 + b1 for every k ≥ 1.

Lemma 5.3 The positive sequence {tk} generated by

tk+1 =
1 +

√
1 + 4t2

k

2
, with t1 = 1

satisfies

tk ≥ k + 1

2
, ∀k ≥ 1.

Now, we are ready to show that the proposed Algorithm 2 is convergent with the
rate O(1/k2).

Theorem 5.1 Let {xk} and {yk} be generated by the proposed Algorithm 2. Then we
have

f
(
xk

) − f
(
x∗) ≤ 2‖x1 − x∗‖2

λ1k2
, ∀x∗ ∈ Ω∗, ∀k ≥ 1. (31)
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Proof Let us define the quantities

ak := 2t2
k vk and bk := 1

λk

∥∥uk
∥∥2

.

By using Lemmas 5.1 and 5.2, we obtain

2t2
k vk ≤ a1 + b1,

which, combining with the definition vk and tk ≥ (k + 1)/2 (by Lemma 5.3), yields

f
(
xk+1) − f

(
x∗) = vk ≤ 2(a1 + b1)

(k + 1)2
. (32)

Since t1 = 1, and using the definition of uk given in Lemma 5.1, we have

λ1a1 = 2λ1t
2
1 v1 = 2λ1v1 = 2λ1

(
f

(
x2) − 2f

(
x∗)) and

λ1b1 = ∥∥u1
∥∥2 = ∥∥x2 − x∗∥∥2

.

Setting x = x∗ and k = 1 in (16), we have

2λ1
(
f

(
x2) − f

(
x∗)) ≤ 2

(
y1 − x∗)T (

y1 − x2) − ∥∥y1 − x2
∥∥2

= ∥∥y1 − x∗∥∥2 − ∥∥x2 − x∗∥∥2
.

Therefore, we have

λ1(a1 + b1) = 2λ
(
f

(
x2) − f

(
x∗)) + ∥∥x2 − x∗∥∥2

≤ ∥∥y1 − x∗∥∥2 − ∥∥x2 − x∗∥∥2 + ∥∥x2 − x∗∥∥2

= ∥∥x1 − x∗∥∥2
.

Substituting it in (32), the assertion is proved. �

Based on Theorem 5.1, for obtaining an ε-optimal solution (denoted by x̃) in the
sense that f (x̃) − f (x∗) ≤ ε, the number of iterations required by the proposed Al-
gorithm 2 is at most �√C/ε� where C = 2‖x1 − x∗‖2/λ1. That is, the O(1/k2)

iteration-complexity of Algorithm 2 is proved.

6 Conclusions

We show that Nesterov’s acceleration schemes can be applied to accelerate some in-
exact variants of the classical proximal point algorithm (PPA) with implementable
inexact criteria. As a result, an accelerated inexact PPA with the O(1/k2) iteration-
complexity is yielded. We are thus inspired to consider the possibility of accelerat-
ing some other methods which are related to PPA, e.g., the augmented Lagrangian
method and the alternating direction method.
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