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Abstract In this paper, we refine and improve the results established in a 2003 paper
by Deng in a number of directions. Specifically, we establish a well-posedness result
for convex vector optimization problems under a condition which is weaker than that
used in the paper. Among other things, we also obtain a characterization of well-
posedness in terms of Hausdorff distance of associated sets.
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1 Introduction

Vector optimization plays an important role in many branches of applied sciences.
Mathematically, the problem is to minimize (in certain sense) a vector-valued func-
tion over some feasible region. For the clarity of exposition, we assume throughout
that each component of the function is continuous over some finite-dimensional Eu-
clidean space, and the feasible region is a nonempty, closed subset of the Euclidean
space. When each component is a finite convex function, and the feasible region is a
convex set, we say that the problem is a convex vector optimization problem (CVOP
for short).

This research is mainly devoted to furthering the study of well-posedness of the
vector optimization problem considered by Deng [1]. It is well understood in the op-
timization community that well-posedness plays an important role in both sensitivity
analysis and convergence analysis of a wide range of numerical optimization meth-
ods. The literature on well-posedness for scalar optimization problems is rich, and
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the reader is directed to the monograph by Dontchev and Zolezzi [2] for motivations,
examples, and theories.

The study of well-posedness on vector optimization has gained momentum in re-
cent years by various scalarization techniques. Along this line of research, the ex-
isting results can be classified into two groups: the former group is concerned with
some strong forms (e.g., weak sharp minima) of well-posedness with more restrictive
assumptions, and the latter group is concerned with weak forms of well-posedness
with less restrictive assumptions. A sample of results for the former group includes
the weak sharp minimality property for multicriteria linear and piecewise linear pro-
gramming problems (see, e.g., Deng and Yang [3], Zheng and Yang [4], and refer-
ences therein), and optimality conditions for weak ψ -sharp minima for a local Pareto
minimizer (see, e.g., Xu and Li [5] and references therein). There are quite a number
of results belonging to the latter group, including categorization of several types of
well-posedness (see, e.g., Miglierina, Molho, and Rocca [6] and references therein),
and work in generalized finite-dimensional normed spaces (see, e.g., Luo, Huang,
and Peng [7] and references therein). Results using other techniques include classifi-
cation of the relationships between well-posedness of vector optimization problems
and well-posedness of vector variational inequalities (see, e.g., Crespi, Guerraggio,
and Rocca [8], and references therein).

Here, we review the results directly related to the current research. In a 2003 pa-
per by Deng [1], he initiated the study of “global” Tykhonov well-posedness for con-
vex vector optimization problems. A key result (Theorem 3.3 of [1]) states that, for
convex vector optimization problems, the “global” Tykhonov well-posedness holds
whenever each associated scalar optimization problem is globally well-posed. This
is significant since a number of verifiable sufficient conditions for well-posedness
are well known for scalar optimization problems [9]. Additional results along these
lines can also be found in [7] and references therein. We improve and refine the results
in [1] in a number of directions. Under a weaker assumption, we establish the conclu-
sions of Theorem 3.3 in [1]. We illustrate by examples that the obtained results are the
sharpest possible. See Theorem 3.2 and Examples 3.1 and 2.1 for more details. Fur-
thermore, we examine the interrelations of four properties: Hausdorff convergence of
the approximate solution sets of the scalarized problem, well-posedness of the scalar
problem, well-posedness of the vector problem, and Hausdorff convergence of the
approximate solution sets of the vector problem. Our contributions include, among
other things, a sufficient condition for epi-convergence of scalarized problems, and a
characterization of well-posedness in terms of Hausdorff distance of associated sets.

2 Preliminaries

For notational clarity, we denote the aforementioned vector optimization problem as
follows:

(P ) min F(x) subject to x ∈ X,

where F(x) = (f1(x), . . . , fl(x)) : R
m → R

l is continuous, and X ⊂ R
m is a

nonempty and closed set.
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It is well known that there are several solution concepts associated with (P ) [10].
In this paper, we consider the notion of weakly efficient set WEff(0,F,X) for

(P ). Recall that

WEff(0,F,X) := {
x ∈ X|F(x) − F(x) /∈ − int Rl+, ∀x ∈ X

}
.

Throughout, we assume that WEff(0,F,X) is nonempty.
Also, we define the ε-weakly efficient solution set

WEff(ε,F,X) := {
x ∈ X|F(x) + ε1 − F(x) /∈ − int Rl+, ∀x ∈ X

}
,

where 1 is the vector in R
l with all components equal to 1.

For a given λ ∈ Λ, we define a scalarized problem (P (λ)) as

(
P (λ)

)
min λT F (x) subject to x ∈ X,

where F and X are as above, and where Λ is the l − 1 simplex (the set of all vectors
in R

l+, with the sum of the entries totaling 1).
For ε ≥ 0, we denote the ε-approximate solution set to the scalarized problem

(P (λ)) by

Sλ(ε,F,X) := argmin
x∈X

λT F(x) =
{
x ∈ X|λT F (x) ≤ inf

x∈X
λT F(x) + ε

}
.

To quantify the difference between the ε-approximate solution sets and the ε-weakly
efficient solution sets, we use convergence in the sense of Hausdorff distance. Given
d ∈ R

m and D ⊂ R
m, we define

dist(d,D) := inf
d ′∈D

{‖d − d ′‖},

where ‖ · ‖ is the Euclidean distance.

Definition 2.1 For nonempty subsets C and D ⊂ R
m, the Hausdorff distance be-

tween them is defined as

Haus(C,D) := max
{

sup
c∈C

dist(c,D), sup
d∈D

dist(d,C)
}
.

Definition 2.2 We say that problem (P ) is well-posed if and only if for any sequence
{xn} ⊂ X, the following holds:

[
dist

(
F(xn),F

(
WEff(0,F,X)

)) → 0 as n → ∞]

⇒ [
dist

(
xn,WEff(0,F,X)

) → 0 as n → ∞]
. (1)

Note that this is slightly different from the definition from [1] because we do not
require F(WEff(0,F,X)) to be closed. The following example demonstrates that the
image of the weakly efficient solution set need not always be closed.
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Example 2.1 Suppose F : R
2 → R

2 to be defined by f1(x, y) = x2/y and f2(x, y) =
|x − 1/y|, where X = [0,∞[×[1,∞[.

The set WEff(0,F,X) = ({0} × [1,∞[) ∪ {(x,1/x) : 0 < x ≤ 1} is closed. But its
image is ({0}×]0,1]) ∪ (]0,1] × {0}), which is not closed.

Definition 2.3 For a given λ ∈ Λ, we define (P (λ)) to be well-posed if and only if
infx∈X λT F(x) is finite,

Sλ(0,F,X) 
= ∅,

and for any sequence {xn} ⊂ X we have that

[
λ

T
F (xn) → inf

x∈X
λ

T
F(x) as n → ∞

]

⇒ [
dist

(
xn,Sλ(0,F,X)

) → 0 as n → ∞]
. (2)

We say problem (P (λ)) is well-posed over Λ if and only if it is well-posed for all
λ ∈ Λ.

The following proposition is a very useful characterization of epiconvergence and
will be used in the next section to prove one of our main results, Proposition 3.1.

Proposition 2.1 [11] Suppose gn to be a sequence of real-valued functions on R
m.

We have that gn
e−→ g if and only if at each point x ∈ R

m both of the following condi-
tions hold:

lim inf
n

gn(xn) ≥ g(x) for every sequence xn → x, (3)

lim sup
n

gn(xn) ≤ g(x) for some sequence xn → x. (4)

Moreover, if it is true that e- lim supn(gn) ≤ g, then it is also true that lim supn(infgn)

≤ infg, where we define

epi
{

e- lim sup
n

gn

}
= lim inf

n

(
epi{gn}

)
.

The following theorem is also needed for Proposition 3.1. We use gn
CC−−→ g to

denote continuous convergence of functions.

Theorem 2.1 [11] Consider a sequence of functions {gn} and a function g, each from

R
m to R. If gn

CC−−→ g, then gn
e−→ g.

Unless otherwise stated, the notations used in this paper are standard [11].
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3 Main Results

The first of our main results relates and compares the solution sets of the scalarized
problem to well-posedness of the scalarized problem.

To quantify the difference between these sets, we use convergence in the sense of
Hausdorff distance, which is not a universal choice.

Theorem 3.1 does not use any kind of convexity assumptions. Although Theo-
rem 3.1 can be stated in a more general form, we prefer this format for the upcoming
Corollary 3.1.

Theorem 3.1 Suppose λ ∈ Λ to be fixed and Sλ(0,F,X) 
= ∅. We have that

Haus
(
Sλ(0,F,X),Sλ(ε,F,X)

) → 0 as ε ↓ 0

if and only if (P (λ)) is well-posed.

Proof First we show one direction, that Hausdorff convergence implies well-
posedness. Suppose {xn} to be a sequence in X such that

λT F (xn) → inf
x∈X

λT F(x) as n → ∞.

For each n, define εn = λT F (xn) − infx∈X λT F(x). So xn ∈ Sλ(εn,F,X). Consider

dist
(
xn,Sλ(0,F,X)

) ≤ sup
y∈Sλ(εn,F,X)

dist
(
y,Sλ(0,F,X)

)

= Haus
(
Sλ(0,F,X),Sλ(εn,F,X)

)

→ 0 as n → ∞ by hypothesis.

Therefore, (P (λ)) is well-posed.
Now we show the other direction that well-posedness implies Hausdorff conver-

gence. We proceed by contradiction. Suppose that

Haus
(
Sλ(0,F,X),Sλ(εn,F,X)

) 
→ 0 for some εn ↓ 0.

Since Sλ(0,F,X) ⊆ Sλ(εn,F,X), the Hausdorff distance can be expressed simply
by

sup
x∈Sλ(εn,F,X)

{
dist

(
x,Sλ(0,F,X)

)}
,

so there exists a sequence {xn} ⊂ X such that each xn ∈ Sλ(εn,F,X), and we have
that

dist
(
xn,Sλ(0,F,X)

) ≥ Δ

for some Δ > 0 and for all sufficiently large n.
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By location of xn, we have that

λT F (xn) ≤ inf
x∈X

λT F(x) + εn,

lim
n→∞λT F (xn) ≤ inf

x∈X
λT F(x).

And since (P (λ)) is well-posed, we have that dist(xn, Sλ(0,F,X)) → 0 as n → ∞.
This is a contradiction. �

The following proposition is needed for the proof of Lemma A.1, which is needed
for the proof of Theorem 3.2. However, Proposition 3.1 may be of independent inter-
est, as it deals with the well-known notion of epiconvergence.

Proposition 3.1 Suppose, for problem (P (λ)), each component of F to be continu-
ous.

If λn → λ, then λT
n F

CC−−→ λ
T
F , and in particular, by Theorem 2.1 [11], we get

that λT
n F

e−→ λ
T
F .

Proof For any sequence of points {xn} ⊂ R
m approaching some x ∈ R

m, consider

∣∣λT
n F (xn) − λ

T
F (x)

∣∣

≤ ∣∣λT
n F (xn) − λT

n F (x)
∣∣ + ∣∣λT

n F (x) − λ
T
F (x)

∣∣.

The first term goes to zero since F is continuous and {λn} ⊂ Λ is bounded. The

second term goes to zero since λn → λ. Thus λT
n F (xn) → λ

T
F (x), and so λT

n F
CC−−→

λ
T
F . �

The following theorem expands on Theorem 3.3 [1] by removing the requirement
that the set F(WEff(0,F,X)) be closed. In this proof, we refer to the conclusion of
Lemma A.1 from Appendix A.

Theorem 3.2 Suppose (P ) to be a CVOP, and that Sλ(0,F,X) 
= ∅ for all λ ∈ Λ. If
(P (λ)) is well-posed over Λ, then (P ) is well-posed in the sense of (1).

Proof Suppose {xn} ⊂ X to be a sequence with

dist
(
F(xn),F

(
WEff(0,F,X)

)) → 0 as n → ∞. (5)

We do not require F(WEff(0,F,X)) to be closed like in Deng’s 2003 Theorem
3.3 [1], but for each n there exists a point an ∈ WEff(0,F,X) such that

∥∥F(xn) − F(an)
∥∥ ≤ dist

(
F(xn),F

(
WEff(0,F,X)

)) + 1

n
. (6)

So, by statements (5) and (6),
∥∥F(xn) − F(an)

∥∥ → 0 as n → ∞. (7)
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By Theorem 2.1 in [12], which states that for ε ≥ 0 and (P ) a CVOP, WEff(ε,F,X) =⋃
λ∈Λ Sλ(ε,F,X), and thus we have that for each n there exists λn ∈ Λ such that

an ∈ Sλn(0,F,X). By boundedness of {λn}, without loss of generality, we can say
that λn → λ ∈ Λ.

By Lemma A.1, we have that λ
T
F (an) → infx∈X λ

T
F(x) as n → ∞. And then

by (7), we have that λ
T
F (xn) → infx∈X λ

T
F(x) as n → ∞.

Again, by Theorem 2.1 in [12], we have that Sλ(0,F,X) ⊆ WEff(0,F,X), and so

dist
(
xn,WEff(0,F,X)

) ≤ dist
(
xn,Sλ(0,F,X)

)

→ 0 as n → ∞ since
(

P (λ)
)

is well-posed over Λ.

Therefore, (P ) is well-posed, as desired. �

Various sufficient conditions under which the assumptions of Theorem 3.2 hold
are given in [1].

By Theorems 3.1 and 3.2, we get the following corollary.

Corollary 3.1 Suppose (P ) to be a CVOP, and Sλ(0,F,X) to be nonempty for all
λ ∈ Λ. If

Haus
(
Sλ(0,F,X),Sλ(ε,F,X)

) → 0 as ε ↓ 0

for all λ ∈ Λ, then (P ) is well-posed in the sense of (1).

The following corollary is a direct consequence of Theorem 3.2 and Corollary 2.2
in [9].

Corollary 3.2 If for (P ), each fi is convex quadratic function (in other words,
fi(x) = 1

2xT Bix + cT
i x where each Bi is a symmetric, positive semi-definite m × m

matrix, and the ci are m-dimensional vectors), and if X is a convex polyhedral set,
and each argminx∈Xfi 
= ∅, then (P (λ)) is well-posed over Λ, and thus (P ) is well-
posed in the sense of (1).

The following is a nontrivial vector example that shows there is no converse to
Theorem 3.2 in the situation where F is convex on X but not on all of R

l . We have
that (P ) is well-posed in the sense of (1), but (P (λ)) not well-posed for some λ ∈ Λ.

Example 3.1 Suppose F(x1, x2) = (
x2

1
x2

, x1) : R
2 → R

2 and that the feasible region

X = [0,∞[×[1,∞[⊂ R
2.

The first component of this function is convex on X; a proof is provided in Ap-
pendix B.

The weakly efficient solution set of F on X is the set {0} × [1,∞[, but its image
is simply the origin.
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Also, note that for λ = (1,0), it is not true that (P (λ)) is well-posed. Consider the
sequence of points {(1, n)} ⊂ X. It is true that

λT F (1, n) = 1

n
→ 0 = inf

x∈X
λT F(x).

However, dist((1, n), Sλ(0,F,X)) = 1 for all n.
It is clear that (P ) is well-posed in the sense of (1).
In the upcoming Corollary 3.3, we compare well-posedness of the scalar problem

and Hausdorff convergence of the ε-weakly efficient solution sets, using the condition
that

Haus
(
F

(
WEff(0,F,X)

)
,F

(
WEff(ε,F,X)

)) → 0 as ε ↓ 0. (8)

In the case where F is a scalar function it is clear that having (P ) be well-posed is
equivalent to having condition (8) imply Hausdorff convergence of the solution sets.

The following example justifies that it is reasonable in Corollary 3.3 to assume
that condition (8) holds.

Example 3.2 Suppose F : R → R
2 to be defined by F(x) = (x2, (x − 1)2), and that

X = R. We see the following:

WEff(0,F,X) = [0,1],
WEff(ε,F,X) = [−√

ε,1 + √
ε],

Haus
(
F

(
WEff(0,F,X)

)
,F

(
WEff(ε,F,X)

)) → 0 as ε ↓ 0.

Note that F(WEff(0,F,X)) is an arc in the first quadrant of R
2, and that

F(WEff(ε,F,X)) is a slightly longer arc.

Corollary 3.3 Suppose (P ) to be a CVOP and

Haus
(
F

(
WEff(0,F,X)

)
,F

(
WEff(ε,F,X)

)) → 0 as ε ↓ 0.

If (P (λ)) is well-posed over Λ, then

Haus
(
WEff(0,F,X),WEff(ε,F,X)

) → 0 as ε ↓ 0.

Proof First, we must show that (P ) being well-posed in the sense of (1) is equivalent
to the following:

[
Haus

(
F

(
WEff(ε,F,X)

)
,F

(
WEff(0,F,X)

)) → 0 as ε ↓ 0
]

⇒ [
Haus

(
WEff(ε,F,X),WEff(0,F,X)

) → 0 as ε ↓ 0
]
.

Suppose not, so Haus(F (WEff(ε,F,X)),F (WEff(0,F,X))) → 0 as ε ↓ 0; how-
ever, we have that Haus(WEff(ε,F,X),WEff(0,F,X)) 
→ 0. So, there exists a real
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sequence {εn} decreasing to zero and a sequence {xn} ⊂ X such that each xn ∈
WEff(εn,F,X), but

dist
(
xn,WEff(0,F,X)

) ≥ Δ

for some Δ > 0 and for all large n. Therefore, since (P ) is well-posed, we have that

dist
(
F(xn),F

(
WEff(0,F,X)

)) ≥ Δ̂

for some Δ̂ > 0 and for all large n. However, consider

dist
(
F(xn),F

(
WEff(0,F,X)

))

≤ sup
x∈WEff(εn,F,X)

dist
(
F(x),F

(
WEff(0,F,X)

))

= Haus
(
F

(
WEff(εn,F,X)

)
,F

(
WEff(0,F,X)

))

→ 0

by hypothesis.
The rest of the proof follows from Theorem 3.2. �

4 Concluding Remarks

In this paper, we have established a number of new results for global Tykhonov
well-posedness of (P ). Specifically, among other things, we show in Theorem 3.2
that (P ) is well-posed if (P ) is a CVOP and (P (λ)) is well-posed for all λ ∈ Λ.
Theorem 3.2 improves Theorem 3.3 of [1] by removing the closedness assumption
of F(WEff(0,F,X)). As demonstrated in [1], the verification of the closedness of
F(WEff(0,F,X)) is a nontrivial issue. Therefore, the improvement is useful and
it allows us to study well-posedness of a vector optimization problem via that of its
associated scalar optimization problems. Furthermore, we display an example of non-
closedness of F(WEff(0,F,X)) (see Example 2.1). For scalar optimization problem
(P (λ)), in Theorem 3.1, we provide a new characterization of well-posedness in terms
of the convergence of Hausdorff distances of its ε-approximate solutions. Finally, we
work out a number of consequences of Theorems 3.1 and 3.2 (see Corollaries 3.2
and 3.3).

Acknowledgements We thank two anonymous referees for their helpful suggestions, which resulted in
the improved presentation of the paper as well as of Proposition 3.1 and Theorem 3.2.

Appendix A

The following is a technical lemma.

Lemma A.1 Suppose F : X ⊂ R
m → R

l , (P ) to be a CVOP, argminfi 
= ∅ for
each i, and λn, λ ∈ Λ.
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If λn → λ and {an} ⊂ X such that each an ∈ Sλn(0,F,X), then λ
T
F (an) →

infx∈X λ
T
F(x) as n → ∞.

Proof By Proposition 3.1, since λn → λ, we have that λT
n F

e−→ λ
T
F . Thus

e- lim supn λT
n F = e- limn λT

n F = λ
T
F . Now, we can apply the second part of Propo-

sition 2.1 to get that then lim supn(infλT
n F ) ≤ infλ

T
F , and thus we can say for any

ε > 0,

inf
x∈X

λT
n F (x) ≤ inf

x∈X
λ

T
F(x) + ε (9)

for sufficiently large n.
Denote the ith component of λ by λi , and denote the ith component of λn by

λi(n). Define I = {i ∈ [1, l] : λi 
= 0}, the set indices of the components of λ which
are nonzero, and define I ′ = [1, l]\I as the complement of I , the set indices of the
components of λ which are zero. We use [1, l] to denote the set of all integers between
1 and l, inclusive.

Because each argminx∈Xfi(x) is nonempty, each fi is bounded below on the
set X for i ∈ [1, l], so we can assume that each fi is bounded below on {x ∈
R

m : dist(x,X) ≤ δ} for sufficiently small δ. Thus, we have that each collection
{fi(an)}∞n=1 is bounded below in particular.

Since each fi is bounded below and there are only finitely many i, there exists
α ∈ R such that

fi(x) ≥ α, ∀i ∈ [1, l], ∀x ∈ X. (10)

In particular, if we wish, we can define α as mini∈[1,l](infx∈X fi(x)). So, now we
know that fi(an) ≥ α for all i ∈ [1, l] and for all n.

Thus, by that fact, and since every component of λi is nonnegative, we have that
∑

i∈I ′
λi(n)fi(an) ≥ α

∑

i∈I ′
λi(n). (11)

So, by (11) and location of an,

α
∑

i∈I ′
λi(n) +

∑

i∈I

λi(n)fi(an) ≤
∑

i∈I ′
λi(n)fi(an) +

∑

i∈I

λi(n)fi(an)

=
∑

i∈I∪I ′
λi(n)fi(an)

= λT
n F (an)

= inf
x∈X

λT
n F (x). (12)

Recall that λi(n) → λi > 0 as n → ∞ for all i ∈ I , and that λi(n) → λi = 0 as
n → ∞ for all i ∈ I ′. So,

α
∑

i∈I ′
λi(n) → 0 as n → ∞. (13)
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Therefore, by (12), (13), and (9), we get

∑

i∈I

λi(n)fi(an) ≤ inf
x∈X

λT
n F (x) ≤ inf

x∈X
λ

T
F(x) + ε (14)

for some ε > 0 and for sufficiently large n.

Since infx∈X λ
T
F(x) is a constant, by (14) we see that there exists a β such that

∑

i∈I

λi(n)fi(an) ≤ β for all sufficiently large n. (15)

Now we shall show that there is a γ such that fi(an) ≤ γ for all i ∈ I and for suffi-
ciently large n.

If there were no such γ , then for some j ∈ I , it would not be true that fj (an) is
bounded above (recall that it must be bounded below). So without loss of generality,
fj (an) → ∞ as n → ∞. But (15) implies that either λj (n) → 0, which cannot hap-
pen because j ∈ I , or it would imply that

∑
i∈I\{j} λifi(an) → −∞, which cannot

happen because the λi are nonnegative and the fi(an) are bounded below. Therefore,
for all i ∈ I , {fi(an)}∞n=1 is bounded above by some γ . Since it is also bounded be-
low, it is bounded. Because λi(n) → λi , we have that ∀η > 0, there exists an N ∈ N

such that for all n ≥ N , we have
∣∣∣∣
∑

i∈I

(
λi − λi(n)

)
fi(an)

∣∣∣∣ ≤ η

2
. (16)

Now for all i ∈ I ′, we know that λi(n) → 0 as n → ∞. We also know that {fi(an)}li=1

is bounded below. So, for every η > 0, there exists N̂ ∈ N such that

−η

2
≤

∑

i∈I ′
λi(n)fi(an), ∀n ≥ N̂ . (17)

Therefore, for all sufficiently large n, we have

0 ≤ λ
T
F (an) − inf

x∈X
λ

T
F(x) (18)

=
∑

i∈I∪I ′
λifi(an) − inf

x∈X
λ

T
F(x) (19)

=
∑

i∈I

λifi(an) +
∑

i∈I ′
λifi(an) − inf

x∈X
λ

T
F(x) (20)

=
∑

i∈I

λifi(an) − inf
x∈X

λ
T
F(x) +

∑

i∈I

λi(n)fi(an) −
∑

i∈I

λi(n)fi(an) (21)

=
∑

i∈I

λi(n)fi(an) − inf
x∈X

λ
T
F(x) +

∑

i∈I

(
λi − λi(n)

)
fi(an) (22)
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=
∑

i∈I∪I ′
λi(n)fi(an) −

∑

i∈I ′
λi(n)fi(an) − inf

x∈X
λ

T
F(x)

+
∑

i∈I

(
λi − λi(n)

)
fi(an) (23)

≤
∑

i∈I∪I ′
λi(n)fi(an) −

∑

i∈I ′
λi(n)fi(an) − inf

x∈X
λ

T
F(x) + η

2
(24)

≤
∑

i∈I∪I ′
λi(n)fi(an) + η/2 − inf

x∈X
λ

T
F(x) + η/2 (25)

≤
∑

i∈I∪I ′
λi(n)fi(an) − inf

x∈X
λ

T
F(x) + η (26)

= λT
n F (an) − inf

x∈X
λ

T
F(x) + η. (27)

So, we have for large n that

0 ≤ λ
T
F (an) − inf

x∈X
λ

T
F(x) ≤ λT

n F (an) − inf
x∈X

λ
T
F(x) + η,

and now we can say that, for large n,

inf
x∈X

λ
T
F(x) ≤ λ

T
F (an) by definition of infimum,

≤ λT
n F (an) + η by above,

= inf
x∈X

λT
n F (x) + η by location of an,

≤ inf
x∈X

λ
T
F(x) + η + ε by (9).

Thus, since η and ε are arbitrary, we have proved our claim that

λ
T
F (an) → inf

x∈X
λ

T
F(x).

This completes the proof. �

Appendix B

Proposition B.1 The function f (x1, x2) = x2
1

x2
is convex on the feasible region X =

[0,∞[×[1,∞[.

Proof Consider (x1, x2) and (z1, z2) ∈ X, and λ ∈ [0,1]. We will show convexity
with the “poorly written backwards method,” whereby we begin with the statement
which we wish to prove, and write equivalent statements until we arrive at a statement
that is clearly true.
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f
(
λ�x + (1 − λ)�z) ≤ λf (�x) + (1 − λ)f (�z)

⇔ (λx1 + (1 − λ)z1)
2

λx2 + (1 − λ)z2
≤ λx2

1

x2
+ (1 − λ)z2

1

z2

⇔ (
λx1 + (1 − λ)z1

)2
x2z2 ≤ (

λx2
1z2 + (1 − λ)z2

1x2
)(

λx2 + (1 − λ)z2
)
.

That last line is true since the denominators are all positive by the definition of X.

⇔ λ2x2
1x2z2 + 2λ(1 − λ)x1x2z1z2 + (1 − λ)2x2z

2
1z2

≤ λ2x2
1x2z2 + (1 − λ)λx2

1z2
2 + (1 − λ)λx2

2z2
1 + (1 − λ)2x2z

2
1z2

⇔ 2λ(1 − λ)x1x2z1z2 ≤ λ(1 − λ)
[
x2

2z2
1 + x2

1z2
2

]
.

This statement is clearly true in the case where λ = 0 or λ = 1. Thus, the only case
that remains is when λ ∈ (0,1).

⇔ 2x1x2z1z2 ≤ x2
2z2

1 + x2
1z2

2

⇔ x1x2z1z2 + x1x2z1z2 − x2
2z2

1 − x2
1z2

2 ≤ 0

⇔ x1x2z1z2 − x2
1z2

2 + x1x2z1z2 − x2
2z2

1 ≤ 0

⇔ x1z2[x2z1 − x1z2] + x2z1[x1z2 − x2z1] ≤ 0

⇔ −x1z2[x1z2 − x2z1] + x2z1[x1z2 − x2z1] ≤ 0

⇔ (−x1z2 + x2z1)(x1z2 − x2z1) ≤ 0

⇔ −(x1z2 − x2z1)(x1z2 − x2z1) ≤ 0

⇔ −(x1z2 − x2z1)
2 ≤ 0

which is clearly true. Thus, our original statement that f was convex on X is true, as
desired. �
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