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Abstract The relationship between bilevel optimization and multiobjective opti-
mization has been studied by several authors, and there have been repeated attempts
to establish a link between the two. We unify the results from the literature and gen-
eralize them for bilevel multiobjective optimization. We formulate sufficient con-
ditions for an arbitrary binary relation to guarantee equality between the efficient
set produced by the relation and the set of optimal solutions to a bilevel prob-
lem. In addition, we present specially structured bilevel multiobjective optimiza-
tion problems motivated by real-life applications and an accompanying binary re-
lation permitting their reduction to single-level multiobjective optimization prob-
lems.

Keywords Two-level optimization · Multiobjective programming · Multicriteria
optimization · Binary relations

1 Introduction

A bilevel optimization problem consists of two coupled optimization problems with
two decision makers, the leader and the follower. The leader’s problem, or the upper-
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level problem, is to make an optimal decision in anticipation of the follower’s re-
sponse. The follower’s problem, or the lower-level problem, is to make an optimal
decision given the leader’s decision. Thus, the lower-level problem is parameterized
by the upper-level decision and appears as a constraint in the upper-level problem.

Bilevel single-objective optimization has been studied in different formulations
and in the context of different applications for more than three decades. The appli-
cations of bilevel optimization cover decision making in, for example, organizational
hierarchies in which one decision maker is in a subordinate role to another. Bilevel
optimization also has applications in various design tasks. Due to the inherent diffi-
culty of bilevel optimization problems, their numerical solution still remains a chal-
lenge today. For further background, see the surveys [1–3], and the monographs by
Bard [4] and Dempe [5].

There have been several attempts to establish a connection between bilevel single-
objective optimization and multiobjective optimization. For the early attempts and a
proof that such attempts were in vain, see [6] and the references therein. Fülöp [7]
discovered that the feasible set of a bilevel linear program can be represented as the
efficient set of an appropriately constructed multiobjective linear program. Conse-
quently, a bilevel optimization problem can be posed as optimization over the effi-
cient set. Fülöp’s theorem was popularized by Dempe [5]. It has since been used as a
part of an algorithm for solving bilevel linear programs [8], but also criticized for the
high number of objectives in the resulting multiobjective problem [9].

Fülöp’s theorem was proposed and formulated for bilevel linear programs. Lin-
earity, however, is not necessary for the result. If the lower-level problem is a linear
program, then the reformulation results in optimization over the efficient set of a
multiobjective linear program. Otherwise, the resulting problem is nonlinear, but the
theorem remains valid if only formulated accordingly. In this paper, we formulate
Fülöp’s theorem for a general vector-valued function, thus allowing the lower-level
problem to be a nonlinear multiobjective optimization problem.

Fliege and Vicente [10] proposed a binary relation such that a solution to a bilevel
optimization problem is optimal if and only if it is efficient with respect to the pro-
posed relation. The result is stronger than Fülöp’s theorem and allows a reformulation
of a bilevel optimization problem as a multiobjective optimization problem. An es-
sentially identical binary relation and problem reformulation were later considered
by Ivanenko and Plyasunov [11] with the distinction that, compared to the relation
of Fliege and Vicente, the relation of Ivanenko and Plyasunov involves an extension
allowing the upper-level constraint functions to depend on the lower-level decision.

The theorems of Fülöp and of Fliege and Vicente are closely related. The binary
relation proposed by Fliege and Vicente consists of a union of two ordering rela-
tions: one concerned with feasibility, and the other with optimality with respect to
the upper-level objective. The former can be used to formulate a theorem equivalent
to Fülöp’s theorem (see [11, Proposition 1]). Conversely, the ordering relation im-
plied by Fülöp’s theorem can be used in the union as the relation concerned with
feasibility. In this paper, we generalize the binary relation proposed by Fliege and Vi-
cente for bilevel multiobjective optimization and formalize the connection to Fülöp’s
theorem.

The binary relation proposed by Fliege and Vicente is difficult to evaluate be-
cause whether any two decisions are in the relation depends on their optimality to the
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lower-level problem. The relation can be simplified for certain classes of problems
using appropriate optimality conditions [10, 11]. In [12], the results from [10] were
reiterated, and it was suggested that the optimal solutions to a bilevel optimization
problem could be obtained as the intersection of two efficient sets: one with respect
to the relation concerned with feasibility, and the other with respect to the relation
concerned with optimality at the upper level. However, it was not elaborated how
such an intersection could be calculated in practice.

In the last few years, there has been a growing interest in solving bilevel mul-
tiobjective optimization problems and the number of methods proposed for solving
such problems has increased rapidly. Calvete and Galé [13] and Alves et al. [9] pro-
posed scalarization approaches to bilevel linear programs with multiple objectives
at the upper level. Nie [14] and Bonnel and Morgan [15] studied bilevel optimiza-
tion problems with multiple objectives at the lower level. Nishizaki and Sakawa
[16, 17], Dell’Aere [18], and Arora and Arora [19] proposed methods for solving
bilevel multiobjective optimization problems by scalarization and substitution of op-
timality conditions for the lower-level problem.

For nonlinear bilevel multiobjective optimization problems, Eichfelder [20] and
Gebhardt and Jahn [21] proposed exact iterative methods. In Eichfelder’s method,
the solution set is constructed by means of a sequence of iteratively refined approx-
imations of the feasible set, whereas Gebhardt and Jahn propose a method based
on a so-called subdivision technique and iterative refinement. Both methods rely on
explicit discretization of the set of feasible leader’s decisions. Moreover, Shi and
Xia [22, 23] and Abo-Sinna and Baky [24] proposed interactive methods, Osman
et al. [25], Zhang et al. [26], Yano and Sakawa [27], and Baky [28, 29] proposed
fuzzy approaches, and Yin [30], Deb and Sinha [31], and Jia and Wang [32] proposed
evolutionary methods for solving bilevel multiobjective problems.

Introducing multiple objectives to a bilevel problem poses not only technical chal-
lenges, but conceptual as well. With multiple objectives at the lower level, one can no
longer assume that there exists a unique solution to the lower-level problem. The dif-
ferent formulations resulting from the leader’s anticipations of the follower’s actions
were analyzed by Nishizaki and Sakawa [16] and Nie [14]. A common approach is
to assume that if the set of optimal solutions to the lower-level problem is not a sin-
gleton, then the upper-level decision maker is allowed to make the choice. This as-
sumption brings about what is known as the optimistic bilevel optimization problem,
whereas the opposite case, in which the lower-level decision is always the one least
preferred by the upper-level decision maker, is known as the pessimistic formulation
[5, 16].

To our knowledge, the only result found in the literature that shows a connec-
tion between bilevel multiobjective optimization and multiobjective optimization is a
theorem due to Eichfelder [20]. Eichfelder’s theorem states that the feasible set of a
bilevel multiobjective optimization problem can be represented as the efficient set of
a multiobjective optimization problem. It is based on an ordering relation similar to
the part concerning feasibility in the relation proposed by Fliege and Vicente, and it is
roughly equivalent to the multiobjective generalization of Fülöp’s theorem discussed
above.

In this paper, we study the relationship between bilevel optimization and multiob-
jective optimization. In particular, we unify some existing results that have been in-
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dependently developed by different authors and generalize them for bilevel multiob-
jective optimization. In addition, we give sufficient conditions for an arbitrary binary
relation to guarantee equality between the efficient set produced by the relation and
the set of optimal solutions to a bilevel problem. The binary relations satisfying the
conditions can be used to reformulate bilevel multiobjective problems as multiobjec-
tive optimization problems; in effect, the original problem is reduced to a single-level
problem. Motivated by real-life applications, we present specially structured bilevel
multiobjective problems that can benefit from this reduction.

The paper is structured as follows. Problem formulation and necessary definitions
are given in Sect. 2. Results relating bilevel optimization and multiobjective opti-
mization are presented in Sect. 3. We lay a basis for deriving new binary relations
connecting bilevel and multiobjective optimization in Sect. 4, and propose a simple
binary relation that enables the reduction of bilevel multiobjective problems to single-
level problems in certain special cases. The special cases are introduced in Sect. 5 and
the paper is concluded in Sect. 6.

2 Problem Formulation

Let X ⊂ R
n be a nonempty set, and let f : X → R

p be a vector-valued function.
A general multiobjective optimization problem (MOP) has the form

min f (x) subject to x ∈ X, (1)

where X is the feasible set and f is the objective function. Vector x ∈ X, x =
(x1, . . . , xn), is called a (feasible) decision, and its image y = f (x), y = (y1, . . . , yp),
an outcome.

The minimization in (1) is understood as finding the set of decisions corresponding
to the set of minimal outcomes in the set Y := {f (x) : x ∈ X} with respect to a given
binary relation � on Y . For y, ȳ ∈ Y , if ȳ � y, then ȳ is said to dominate y with
respect to �. If there does not exist an outcome ȳ ∈ Y such that ȳ � y, then y is said
to be nondominated in Y . A decision x ∈ X is said to be efficient if its image under
f is nondominated. The set of nondominated outcomes is denoted by N(Y,�) and
called the nondominated set. The set of efficient decisions is denoted by E(X,f,�)

and called the efficient set.
Certain properties are often assumed for the relation � to make sure that prob-

lem (1) has a meaningful solution. For example, it is common to consider only binary
relations compatible with addition and positive scalar multiplication, which can be
represented as cones in R

p (see, e.g., [33, 34]). In particular, the following (partial)
ordering relations are ubiquitous in the field of multiobjective optimization:

ȳ < y def⇐⇒ ȳi < yi for all i = 1, . . . , p,

ȳ ≤ y def⇐⇒ ȳi ≤ yi for all i = 1, . . . , p and y �= ȳ,

ȳ � y def⇐⇒ ȳi ≤ yi for all i = 1, . . . , p.
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Nondominated outcomes and efficient decisions with respect to the relations ≤ and
< are called Pareto optimal and weakly Pareto optimal, respectively (see, e.g., [35]).
Unless otherwise stated, the minimization in (1) is defined with respect to the rela-
tion ≤.

Let Xu ⊂ R
nu and Xl(xu) ⊂ R

nl for all xu ∈ Xu be nonempty sets, and let

X = {
(xu,xl) : xu ∈ Xu, xl ∈ Xl(xu)

} ⊂ R
n,

where n = nu + nl . An optimistic bilevel multiobjective optimization problem
(BMOP) has the form

min
xu,xl

fu(xu,xl)

subject to xl ∈ E
(
Xl(xu), fl(xu, ·),≤

)
, (2)

xu ∈ Xu,

where fu : X → R
pu is the upper-level objective function and fl : X → R

pl is
the lower-level objective function. Vector xu is called the upper-level decision and
vector xl the lower-level decision. In the rest of this paper, a shorthand notation
x = (xu,xl) is frequently used to improve readability.

The notation used for the set Xl reflects the fact that, in general, the feasible set
of the lower-level problem depends on the upper-level decision xu. Some authors
consider a more general problem where, in addition, the set Xu may depend on the
lower-level decision xl . Such problems are, however, beyond the scope of this paper.

The feasible set of (2), denoted here by XI,

XI := {
x : xu ∈ Xu, xl ∈ E

(
Xl(xu), fl(xu, ·),≤

)}
, (3)

is called the induced set of (2) and consists of all the decisions x ∈ X such that xl

is efficient to the lower-level problem with an upper-level decision xu. We assume
minimization with respect to the relation ≤ at both the upper and the lower level of
problem (2). The efficient set of (2) is then, by definition, E(XI, fu,≤). Thus, the
induced set allows problem (2) to be written compactly as

min fu(x) subject to x ∈ XI. (4)

From problem (4), it is evident that the lower-level problem only appears as a con-
straint in the upper-level problem.

If the functions fu and fl are scalar valued, then problem (2) reduces to an ordi-
nary bilevel optimization problem, which can be written as

min
x

fu(xu,xl)

subject to xl = arg min
x̄l

{
fl(xu, x̄l ) : x̄l ∈ Xl(xu)

}
, (5)

xu ∈ Xu
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assuming that for all xu ∈ Xu there exists a unique optimal solution xl(xu) to the
lower-level problem. The induced set of (5) is

{
x : xu ∈ Xu, xl = arg min

x̄l

{
fl(xu, x̄l) : x̄l ∈ Xl(xu)

}}
, (6)

which is clearly a special case of (3). Problem (5) also has a compact formulation
analogous to (4), but using (6) instead of (3).

By a theorem due to Fülöp [7], the induced set of (5) can, under certain assump-
tions, be represented as an efficient set of a MOP. It follows that problem (5) is equiv-
alent to a problem of the form

min fu(x) subject to x ∈ E
(
X, f̄ ,≤)

, (7)

where f̄ is some vector-valued function defined on X. Problem (7) is known as op-
timization over the efficient set and it has been studied especially in the context of
multiobjective linear programs (see, e.g., [36–41]). We present Fülöp’s theorem gen-
eralized for problem (2) in the next section.

3 Representations by Efficient Sets

In this section, we review the results from the literature that establish a connection
between bilevel optimization and multiobjective optimization. We also generalize the
theorems that were proposed for single-objective bilevel optimization to bilevel mul-
tiobjective optimization with vector-valued objective functions allowed at both levels.
What is common to the results presented in this section is that they allow a reformu-
lation of a bilevel optimization problem by representing the problem or some aspect
of it as the efficient set of a specially crafted MOP.

We begin by presenting theorems relating the induced set of a bilevel problem to
the efficient set of a multiobjective problem. We then present a theorem connecting
the solution set of a bilevel problem to the efficient set of a multiobjective problem
and conclude the section by formalizing the relationships among the theorems pre-
sented. All the theorems are given in a unified form that makes a direct comparison
possible.

The first theorem states that the induced set XI can be represented as the efficient
set of a MOP. It is a generalization of a theorem given by Fülöp [7, Proposition 2.1]
for bilevel single-objective linear programs. For the generalized theorem, we adopt
the concise formulation of Fülöp’s theorem given in [8].

Let e ∈ R
nu be a vector with each component equal to 1, and let f̄F be the func-

tion f̄F : X → R
nu+1+pl : x → (xu, 〈e,−xu〉, fl(x)), where 〈·, ·〉 denotes the scalar

product in R
nu .

Theorem 3.1 The efficient set E(X, f̄F,≤) is equal to the induced set XI of prob-
lem (2).

Proof 1. Let x ∈ E(X, f̄F,≤) and assume, to the contrary, that x /∈ XI. Then there
exists x̄l ∈ Xl(xu) such that fl(xu, x̄l ) ≤ fl(x). Let x̂ equal the vector (xu, x̄l ). It
follows that x̂ ∈ X and f̄F(x̂) ≤ f̄F(x), which is a contradiction. Hence, x ∈ XI.
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2. Let x ∈ XI and assume, to the contrary, that x /∈ E(X, f̄F,≤). Then there ex-
ists x̄ ∈ X such that f̄F(x̄) ≤ f̄F(x). By definition, x̄u � xu, 〈e,−x̄u〉 ≤ 〈e,−xu〉,
fl(x̄) � fl(x), and (x̄u, 〈e,−x̄u〉, fl(x̄)) �= (xu, 〈e,−xu〉, fl(x)). It necessarily fol-
lows that x̄u = xu because x̄u ≤ xu would imply 〈e,−x̄u〉 > 〈e,−xu〉. Therefore,
fl(x̄) ≤ fl(x), which is a contradiction. Hence, x ∈ E(X, f̄F,≤), which completes
the proof. �

Independently of Fülöp, a theorem similar to Theorem 3.1 was given by Eich-
felder [20] for a nonlinear BMOP. We reproduce it here without a proof.

Let f̄E be the function f̄E : X → R
nu+pl : x → (xu, fl(x)), and let �E be a binary

relation on f̄E(X) defined as

f̄E(x̄) �E f̄E(x)
def⇐⇒ x̄u = xu ∧ fl(x̄) ≤ fl(x). (8)

Theorem 3.2 (Eichfelder [20, Theorem 4.1]) The efficient set E(X, f̄E,�E) is equal
to the induced set XI of problem (2).

A prominent feature of the MOPs resulting from Theorems 3.1 and 3.2 is that
their objective functions involve an identity mapping of the upper-level decision xu,
which makes it possible to differentiate between the outcomes corresponding to dif-
ferent leader’s decisions. The image space of the function f̄E in Theorem 3.2 has a
dimension one less than the image space of the function f̄F in Theorem 3.1 because
of the specialized dominance relation used in Theorem 3.2. Nonetheless, the reason-
ing behind the two theorems is identical. Both of the theorems result in MOPs with
the number of objectives greater than the dimension of the upper-level decision in the
original problem. Therefore, their applicability depends in part on the capability of
available solution methods to cope with a high number of objectives.

The following theorem states that not only the induced set, but also the efficient
set of (2) can be represented as the efficient set of a MOP. It is a multiobjective
generalization of a theorem given by Fliege and Vicente [10, Theorem 4.1].

Let f̄FV be the function f̄FV : X → R
nu+pu+pl : x → (xu, fu(x), fl(x)), and let �FV

be a binary relation on f̄FV(X) defined as

f̄FV(x̄) �FV f̄FV(x)

def⇐⇒ (
x̄u = xu ∧ fl(x̄) ≤ fl(x)

)

∨ ([
�x̂ ∈ X : x̂u = x̄u ∧ fl(x̂) ≤ fl(x̄)

] ∧ fu(x̄) ≤ fu(x)
)
.

(9)

Theorem 3.3 The efficient set E(X, f̄FV,�FV) is equal to the efficient set E(XI, fu,

≤) of problem (2).

Proof 1. Let x ∈ E(X, f̄FV,�FV) and assume, to the contrary, that x /∈ E(XI, fu,≤).
Then either x /∈ XI or there exists another decision x̄ ∈ XI such that fu(x̄) ≤ fu(x).

(a) If x /∈ XI, then there exists x̄ ∈ X such that x̄u = xu and fl(x̄) ≤ fl(x), which
is a contradiction. Hence, x ∈ XI.

(b) If there exists x̄ ∈ X such that fu(x̄) ≤ fu(x) and x̄ ∈ XI, then there does not
exist x̂ ∈ X for which x̂u = x̄u and fl(x̂u) ≤ fl(x̄u), which is a contradiction. Hence,
x̄ does not exist.
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Therefore, x ∈ E(XI, fu,≤).
2. Let x ∈ E(XI, fu,≤) and assume, to the contrary, that x /∈ E(X, f̄FV,�FV). It

follows immediately that x ∈ XI ⊂ X, leaving two cases. Let x̄ ∈ X be a decision
such that f̄FV(x̄) �FV f̄FV(x). If x̄u = xu and fl(x̄) ≤ fl(x), then x /∈ XI, which is a
contradiction. Otherwise, if x̄ ∈ XI and fu(x̄) ≤ fu(x), then x /∈ E(XI, fu,≤), which
is also a contradiction. Hence, x̄ does not exist and x ∈ E(X, f̄FV,�FV), which com-
pletes the proof. �

If there are no upper-level objectives in (2), or if the upper-level objective function
fu is constant, then the induced set and the efficient set of problem (2) are equal and
Theorem 3.3 reduces to Theorem 3.2. Theorem 3.2 is hence a special case of Theo-
rem 3.3. While there is no such relationship between Theorems 3.3 and 3.1, it is easy
to formulate a theorem similar to Theorem 3.3 but containing Theorem 3.1 as a spe-
cial case. The following two results describe the connections between Theorem 3.3
and Theorems 3.1 and 3.2.

Proposition 3.1 For all x, x̄ ∈ X, the statements f̄E(x̄) �E f̄E(x) and f̄F(x̄) ≤ f̄F(x)

are equivalent.

Proof Let x, x̄ ∈ X. If f̄E(x̄) �E f̄E(x), then x̄u = xu ∧ fl(x̄) ≤ fl(x) and, hence,
f̄F(x̄) ≤ f̄F(x). If f̄F(x̄) ≤ f̄F(x), then x̄u � xu and 〈e,−x̄u〉 ≤ 〈e,−xu〉, which implies
that x̄u = xu ∧ fl(x̄) ≤ fl(x) and, hence, f̄E(x̄) �E f̄E(x). �

Corollary 3.1 For all x, x̄ ∈ X, the following statements are equivalent:

(a) f̄FV(x̄) �FV f̄FV(x),
(b) f̄E(x̄) �E f̄E(x) ∨ ([�x̂ ∈ X : f̄E(x̂) �E f̄E(x̄)] ∧ fu(x̄) ≤ fu(x)),
(c) f̄F(x̄) ≤ f̄F(x) ∨ ([�x̂ ∈ X : f̄F(x̂) ≤ f̄F(x̄)] ∧ fu(x̄) ≤ fu(x)).

Proof The statements (a) and (b) are equivalent by definition. The statements (b)
and (c) are equivalent by Proposition 3.1. �

By Corollary 3.1, Theorem 3.3 could alternatively have been formulated in accor-
dance with Theorem 3.1 and not Theorem 3.2. However, in Theorem 3.2, the intent
of the result is perhaps more apparent from the formulation than in Theorem 3.1.
Therefore, we believe that the chosen formulation makes the presentation easier to
follow.

The virtue of Theorem 3.3 is that it allows a reduction of problem (2) to a MOP.
Unfortunately, the inherent difficulty of bilevel optimization is introduced into the
resulting MOP by the relation �FV, which depends on the efficiency of the lower-level
decisions. Thus, for any two decisions x, x̄ ∈ X, the computational effort of directly
evaluating the statement f̄FV(x̄) �FV f̄FV(x) is equivalent in the worst case to that of
solving an optimization problem. Moreover, as shown in the next section, the relation
�FV is nontransitive in general, which makes it difficult to work with in applications.
In the next section, we consider replacing the relation �FV in Theorem 3.3 by other,
potentially more tractable binary relations.



68 J Optim Theory Appl (2012) 153:60–74

4 Alternative Binary Relations

The binary relation �FV presented in the previous section is complicated by the fact
that, in general, no two decisions can be considered in isolation. This is because of
the condition requiring that any decision dominating another decision at the upper
level must be efficient to the lower-level problem. The condition makes the relation
depend not only on the two decisions at hand, but also on a possibly infinite number
of other decisions. Therefore, applying Theorem 3.3 to problem (2) would apparently
not make the problem any easier to solve. However, by Corollary 3.1, the reduction
of problem (2) to a MOP is not unique. Therefore, there may exist binary relations
that could be used in place of the relation �FV to obtain more useful reductions of
problem (2).

In this section, we first formulate sufficient conditions guaranteeing that, given a
set of decisions and an appropriate mapping, an arbitrary binary relation produces the
same efficient set as the relation �FV. We then propose a simple binary relation that
satisfies the sufficient conditions in certain special cases of problem (2) enabling a
potentially very efficient numerical solution.

Consider problem (2), and let f̄ be a vector-valued function with domain X and
� be a binary relation on f̄ (X).

Theorem 4.1 The efficient set E(X, f̄ ,�) is equal to the efficient set E(X, f̄FV,�FV)

if the following conditions are satisfied for all x, x̄, x̂ ∈ X:

(a) (inclusivity) f̄FV(x̄) �FV f̄FV(x) ⇒ f̄ (x̄) � f̄ (x),
(b) (compatibility) f̄ (x̄) � f̄ (x) ∧ x̄ ∈ XI ⇒ f̄FV(x̄) �FV f̄FV(x),
(c) (transitivity) f̄ (x̄) � f̄ (x̂) ∧ f̄ (x̂) � f̄ (x) ⇒ f̄ (x̄) � f̄ (x).

Proof 1. Let x ∈ E(X, f̄ ,�) and assume, to the contrary, that x /∈ E(X, f̄FV,�FV).
Then there exists x̄ ∈ X such that f̄FV(x̄) �FV f̄FV(x), and it follows from (a) that
f̄ (x̄) � f̄ (x), which is a contradiction. Hence, x ∈ E(X, f̄FV,�FV).

2. Let x ∈ E(X, f̄FV,�FV) and assume, to the contrary, that x /∈ E(X, f̄ ,�).
Then there exists x̂ ∈ X such that f̄ (x̂) � f̄ (x). If x̂ ∈ XI, it follows from (b) that
f̄FV(x̂) �FV f̄FV(x), which is a contradiction. Otherwise, there exists x̄ ∈ XI such
that x̄u = x̂u and fl(x̄) ≤ fl(x̂). Thus, f̄FV(x̄) �FV f̄FV(x̂) and it follows from (a) that
f̄ (x̄) � f̄ (x̂), from (c) that f̄ (x̄) � f̄ (x), and from (b) that f̄FV(x̄) �FV f̄FV(x), which
is a contradiction. Hence, x ∈ E(X, f̄ ,�), which completes the proof. �

It follows immediately that a binary relation satisfying all three conditions of The-
orem 4.1 can be used to reduce problem (2) to a MOP.

Corollary 4.1 The efficient set E(X, f̄ ,�) is equal to the efficient set E(XI, fu,≤)

of problem (2) if the relation � satisfies the conditions (a), (b), and (c) of Theorem 4.1.

Proof The result follows directly from Theorems 3.3 and 4.1. �

We next introduce a binary relation �SC that satisfies two of the conditions of
Theorem 4.1. It is defined on the same domain as the relation �FV and has a strong
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resemblance to it. However, unlike the relation �FV, the relation �SC does not depend
on any external information: whether any two decisions are in the relation is fully
determined by the decisions themselves and their respective outcomes. Consequently,
the relation �SC would make a good candidate to substitute for the relation �FV.

Let �SC be a binary relation on f̄FV(X) defined as

f̄FV(x̄) �SC f̄FV(x)

def⇐⇒ (
x̄u = xu ∧ fl(x̄) ≤ fl(x)

)

∨ (¬[
xu = x̄u ∧ fl(x) ≤ fl(x̄)

] ∧ fu(x̄) ≤ fu(x)
)
. (10)

Proposition 4.1 The relation �SC together with f̄ := f̄FV satisfies the conditions (a)
and (b) of Theorem 4.1.

Proof 1. Let x, x̄ ∈ X be any two decisions such that f̄FV(x̄) �FV f̄FV(x). If x̄u =
xu and fl(x̄) ≤ fl(x), then f̄FV(x̄) �SC f̄FV(x). Otherwise, fu(x̄) ≤ fu(x) and there
does not exist x̂ ∈ X such that x̂u = x̄u and fl(x̂) ≤ fl(x̄). Therefore, either xu �=
x̄u or fl(x) � fl(x̄), and it follows that f̄FV(x̄) �SC f̄FV(x). Hence, the relation �SC

satisfies (a).
2. Let x ∈ X and x̄ ∈ XI be any two decisions such that f̄FV(x̄) �SC f̄FV(x). If

x̄u = xu and fl(x̄) ≤ fl(x), then f̄FV(x̄) �FV f̄FV(x). Otherwise, fu(x̄) ≤ fu(x) and
from x̄ ∈ XI it follows that there does not exist x̂ ∈ X such that x̂u = x̄u and fl(x̂) ≤
fl(x̄). Hence, f̄FV(x̄) �FV f̄FV(x) and the relation �SC satisfies (b), which completes
the proof. �

The following counterexample shows that neither the relation �FV nor the rela-
tion �SC is transitive in general. Thus, neither relation satisfies the condition (c) of
Theorem 4.1. Consider the simple bilevel problem

min
x

xu − xl

subject to xl = arg min
x̄l

{
x̄l : x̄l ∈

[
1

2
(xu − 1),5

]}
, (11)

xu ∈ [0,5]
with a scalar decision and a scalar outcome at both levels. Let x = (1,0), x̄ = (3,1),
and x̂ = (3,3). Using the notation introduced for (2), it is readily seen that x, x̄,
x̂ ∈ X and x, x̄ ∈ XI. It follows that f̄FV(x) �FV f̄FV(x̄) and f̄FV(x̄) �FV f̄FV(x̂), but
f̄FV(x) ��FV f̄FV(x̂). Hence, the relation �FV is not transitive, which is also the case for
the relation �SC. Furthermore, f̄FV(x) �SC f̄FV(x̄), f̄FV(x̄) �SC f̄FV(x̂), and f̄FV(x̂) �SC

f̄FV(x), which demonstrates that the relation �SC not only is not transitive, it is cyclic.
Because of nontransitivity and cyclicity, the relation �SC is not a suitable replace-

ment for the relation �FV in general. While this conclusion is not surprising given the
simple structure of �SC, the relation is still useful in certain special cases of prob-
lem (2). Two such special cases will be introduced in the next section.

Both the relations �FV and �SC fail to satisfy the sufficient conditions given in The-
orem 4.1 because of the lack of transitivity. While transitivity is an essential property
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of any relation to be used within numerical solution methods, we note that based on
the proof of Theorem 4.1, the condition (c) does not need to be satisfied for all x,
x̄, x̂ ∈ X. Instead, the result holds even if the condition (c) is satisfied only for all x,
x̂ ∈ X and x̄ ∈ XI such that x̄u = x̂u and fl(x̄) ≤ fl(x̂). That is, if one is willing to
consider also nontransitive relations, the sufficient conditions given in Theorem 4.1
can be relaxed.

It can be seen that the relation �FV satisfies the sufficient conditions given in
Theorem 4.1 if they are relaxed as above. Let x, x̄, x̂ ∈ X be three decisions such
that x̄u = x̂u and fl(x̄) ≤ fl(x̂), and let f̄FV(x̄) �FV f̄FV(x̂) and f̄FV(x̂) �FV f̄FV(x).
It follows that x̂ /∈ XI and, consequently, that x̂u = xu and fl(x̂) ≤ fl(x). There-
fore, x̄u = xu and fl(x̄) ≤ fl(x) and, hence, f̄FV(x̄) �FV f̄FV(x). In contrast, the re-
lation �SC does not satisfy even the relaxed conditions: in the above counterexample,
f̄FV(x̄) �SC f̄FV(x̂) and f̄FV(x̂) �SC f̄FV(x), but f̄FV(x̄) ��SC f̄FV(x) despite the fact that
x̄u = x̂u, x̄l < x̂l , and x̄ ∈ XI. This is consistent with the fact that the relation �FV

fully captures the structure of problem (2) whereas the relation �SC does not.

5 Special Cases

In this section, we formulate two special cases of problem (2) and show that in those
special cases the relation �SC is transitive, and thus satisfies all the conditions of The-
orem 4.1. Therefore, the special cases can be solved as MOPs using the relation �SC.

The first special case is a BMOP with such a structure that all the objectives that
depend on the lower-level decision xl either appear only at the lower level or at both
the upper and the lower level. In other words, any objective present at the upper level
that is not present at the lower level must depend only on the upper-level decision xu.

Let X ∈ R
n be defined as in (2), and let fa : Xu → R

pa , fb : X → R
pb , and

fc : X → R
pc be three vector-valued functions. The problem described above can

be written as

min
x

(
fa(xu), fb(x)

)

subject to xl ∈ E
(
Xl(xu), (fb, fc)(xu, ·),≤

)
, (12)

xu ∈ Xu,

where any one of the functions fa , fb , or fc may be omitted. The upper-level and
the lower-level objective functions are fu = (fa, fb) and fl = (fb, fc)(xu, ·), respec-
tively.

This special case has been motivated by an integrated design and control problem
with multiple objectives and the control problem fully discretized (see, e.g., [42]).
The problem is formulated with the design problem at the upper level and the control
problem, which has to be parameterized by the design, at the lower level. In this
kind of problem, the upper-level objectives, such as investment cost, that are directly
related to the design aspects are naturally independent of the control variables. On
the other hand, the lower-level objectives that are relevant for the design are repeated
at the upper level.



J Optim Theory Appl (2012) 153:60–74 71

The following proposition provides means to solve (12) as a MOP using the binary
relation �SC from Sect. 4.

Proposition 5.1 Let the set X and the functions fu and fl be defined as in (12). The
efficient set E(X, f̄FV,�SC) is equal to the efficient set E(XI, fu,≤) of problem (12).

Proof By Proposition 4.1 and Corollary 4.1, it is sufficient to show that the rela-
tion �SC is transitive for problem (12), that is, for all x, x̄, x̂ ∈ X, it follows from
f̄FV(x̄) �SC f̄FV(x̂) and f̄FV(x̂) �SC f̄FV(x) that f̄FV(x̄) �SC f̄FV(x). Because of the dis-
junction in �SC, the proof consists of four parts. For the purpose of the proof, we
consider an omitted function fa , fb , or fc to be constant.

1. If x̄u = x̂u ∧ fl(x̄) ≤ fl(x̂) and x̂u = xu ∧ fl(x̂) ≤ fl(x), then x̄u = xu ∧ fl(x̄) ≤
fl(x) and, hence, f̄FV(x̄) �SC f̄FV(x).

2. If ¬(x̂u = x̄u ∧ fl(x̂) ≤ fl(x̄)) ∧ fu(x̄) ≤ fu(x̂) and x̂u = xu ∧ fl(x̂) ≤ fl(x), it
follows that fa(x̂u) = fa(xu), fb(x̂) � fb(x), and, therefore, fu(x̂) � fu(x).

(a) If x̂u �= x̄u, then xu �= x̄u.
(b) If x̂u = x̄u, then fl(x̂) � fl(x̄) and, therefore, fl(x) � fl(x̄).
In both cases, it follows that ¬(xu = x̄u ∧ fl(x) ≤ fl(x̄)) ∧ fu(x̄) ≤ fu(x) and,

hence, f̄FV(x̄) �SC f̄FV(x).
3. If x̄u = x̂u ∧ fl(x̄) ≤ fl(x̂) and ¬(xu = x̂u ∧ fl(x) ≤ fl(x̂)) ∧ fu(x̂) ≤ fu(x), it

follows that fa(x̄u) = fa(x̂u), fb(x̄) � fb(x̂), and, therefore, fu(x̄) � fu(x̂).
(a) If xu �= x̂u, then xu �= x̄u.
(b) If xu = x̂u, then fl(x) � fl(x̂) and, therefore, fl(x) � fl(x̄).
In both cases, it follows that ¬(xu = x̄u ∧ fl(x) ≤ fl(x̄)) ∧ fu(x̄) ≤ fu(x) and,

hence, f̄FV(x̄) �SC f̄FV(x).
4. If ¬(x̂u = x̄u∧fl(x̂) ≤ fl(x̄))∧fu(x̄) ≤ fu(x̂) and ¬(xu = x̂u∧fl(x) ≤ fl(x̂))∧

fu(x̂) ≤ fu(x), it follows that fu(x̄) ≤ fu(x). If xu = x̄u, which is possible only if fb

is nonconstant, it follows that fa(x̄u) = fa(xu) and fb(x̄) ≤ fb(x), which implies
that fb(x) � fb(x̄) and, thus, that fl(x) � fl(x̄). Therefore, ¬(xu = x̄u ∧ fl(x) ≤
fl(x̄)) ∧ fu(x̄) ≤ fu(x) and, hence, f̄FV(x̄) �SC f̄FV(x), which completes the proof. �

The second special case is a problem that originated from considering a multiob-
jective problem decomposed into a collection of subproblems each involving some
subset of the original objectives [43, 44]. The aim is to find the decisions that are
efficient both with respect to all the objectives and with respect to a given subset of
the objectives. That is to say, we look for those efficient decisions that would remain
efficient if only the given subset of objectives were retained.

Let X ⊂ R
n be a nonempty set, and let fa : X → R

pa and fb : X → R
pb be two

vector-valued functions. The above-described problem can be written as

min (fa, fb)(x) subject to x ∈ E(X,fb,≤), (13)

where the function fb encompasses the objectives that belong to the given subset and
the function fa the objectives that do not. At the lower level, the optimization is with
respect to all decision variables, that is, xl = x, and the lower-level problem is not
parameterized by any upper-level decision xu. The upper-level and the lower-level
objective functions are fu = (fa, fb) and fl = fb , respectively.
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Because there is no upper-level decision xu in (13), the relation �SC can be written
as

f̄FV(x̄) �SC f̄FV(x) ⇐⇒ fl(x̄) ≤ fl(x)∨(
fl(x) � fl(x̄) ∧ fu(x̄) ≤ fu(x)

)

⇐⇒ fl(x̄) ≤ fl(x) ∨ fu(x̄) ≤ fu(x).

(14)

The latter equivalence follows from the fact that fu(x̄) ≤ fu(x) implies fl(x) � fl(x̄),
which thus becomes redundant in the conjunction. The following proposition pro-
vides means to solve (13) as a MOP.

Proposition 5.2 Let the set X and the functions fu and fl be defined as in (13). The
efficient set E(X, f̄FV,�SC) is equal to the efficient set E(XI, fu,≤) of problem (13).

Proof The proof is similar to that of Proposition 5.1. By Proposition 4.1 and Corol-
lary 4.1, it is sufficient to show that the relation �SC is transitive for problem (13).
The simplified expression given by (14) is used. Because of the disjunction in �SC,
the proof consists of four parts.

1. If fl(x̄) ≤ fl(x̂) and fl(x̂) ≤ fl(x), it follows that fl(x̄) ≤ fl(x) and, hence,
f̄FV(x̄) �SC f̄FV(x).

2. If fu(x̄) ≤ fu(x̂) and fl(x̂) ≤ fl(x), it follows that fb(x̄) � fb(x̂) ⇔ fl(x̄) �
fl(x̂). Thus, fl(x̄) ≤ fl(x) and, hence, f̄FV(x̄) �SC f̄FV(x).

3. If fl(x̄) ≤ fl(x̂) and fu(x̂) ≤ fu(x), it follows that fb(x̂) � fb(x) ⇔ fl(x̂) �
fl(x). Thus, fl(x̄) ≤ fl(x) and, hence, f̄FV(x̄) �SC f̄FV(x).

4. If fu(x̄) ≤ fu(x̂) and fu(x̂) ≤ fu(x), it follows that fu(x̄) ≤ fu(x) and, hence,
f̄FV(x̄) �SC f̄FV(x), which completes the proof. �

The special case (13) is distinct from the special case (12) because in the latter an
objective function depending on the lower-level decision xl is not allowed to appear
only at the upper level. However, with fa , fb , and X as in (13), the special case (13)
is equivalent to BMOP

min fb(x) subject to x ∈ E
(
X, (fa, fb),≤

)
(15)

which is a valid instantiation of (12). The equivalence of problems (13) and (15) is
easily verified by repeating the derivation given in (14) for problem (15); the resulting
relation, when written in terms of fa and fb, will be identical to the relation derived
in (14) and, thus, the efficient sets of (13) and (15) must be equal.

6 Conclusion

In this paper, we brought together theorems connecting bilevel optimization and mul-
tiobjective optimization and provided sufficient conditions for a binary relation to
reduce a BMOP to a MOP. We generalized the results that assumed scalar-valued
objective functions for bilevel multiobjective optimization and presented all the re-
sults in a unified form for the first time. We also proposed a simple binary relation
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satisfying the sufficient conditions in certain special cases. In those special cases, the
proposed relation allows a BMOP to be reduced to a single-level MOP, which may
result in considerable savings in the computational effort required to solve such prob-
lems. Two special cases of a general BMOP, both originally motivated by the needs
of applications, were introduced and successfully reduced to MOPs. The two spe-
cial cases were found to be distinct, but closely related. It remains unclear, however,
whether there exists a common formulation covering both special cases and allowing
a comparable reduction.

Possible directions for future research include studying the practical aspects of
implementing a solution approach based on the results presented, applying existing
solution methods to the multiobjective problems resulting from the reduction to learn
how difficult they are to solve, and designing new algorithms for bilevel multiobjec-
tive optimization that make use of the achieved reduction.
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