
J Optim Theory Appl (2012) 152:632–651
DOI 10.1007/s10957-011-9941-0

Optimality Conditions for Optimistic Bilevel
Programming Problem Using Convexifactors

Bhawna Kohli

Published online: 18 October 2011
© Springer Science+Business Media, LLC 2011

Abstract In this article, we introduce two versions of nonsmooth extension of
Abadie constraint qualification in terms of convexifactors and Clarke subdifferen-
tial and employ the weaker one to develop new necessary Karush–Kuhn–Tucker
type optimality conditions for optimistic bilevel programming problem with convex
lower-level problem, using an upper estimate of Clarke subdifferential of value func-
tion in variational analysis and the concept of convexifactor.
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1 Introduction

Bilevel programming lies at the heart of modern optimization theory. The bilevel pro-
gramming problem studies the two combined optimization problems, where variables
of the first (or upper-level) problem are the parameters of the second (or lower-level)
problem, and the optimal solution of the second problem is needed to calculate the
objective function value of the first problem. Many applications of bilevel program-
ming problems and recent developments on the subject have been discussed by Bard
[1] and Dempe [2]. The most important challenge is to develop optimality conditions
for the problem. Many researchers have worked in this direction, like Bard [3, 4],
Dempe [5, 6], Outrata [7], Ye and Ye [8], Ye and Zhu [9], Yezza [10], Babahadda and
Gadhi [11], etc.
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Constraint qualifications play an important role in deriving the Lagrange multiplier
rules. Since bilevel programming problems do not satisfy the usual constraint qual-
ifications CQs, such as Slater CQ, Mangasarian–Fromovitz CQ, in order to develop
optimality conditions, we need to study those CQs, which can be applied to them. Re-
cently, work has been done in this direction. Ye [13], in her paper, in 2004 has given
necessary and sufficient conditions, for equality and inequality constrained optimiza-
tion problems under the assumptions that the problem functions be either Gâteaux dif-
ferentiable or locally Lipschitz. Further, she has introduced constraint qualifications
in terms of the Michel–Penot subdifferential and then applied these results to bilevel
programming problems. Later, in 2006, Ye [14] has introduced nonsmooth constraint
qualifications for bilevel programming problems and derived Karush–Kuhn–Tucker
(KKT) type necessary optimality conditions under these qualifications. Recently,
Dempe, Dutta, and Mordukhovich [12] have obtained KKT type optimality condi-
tions for optimistic bilevel programming problems under the assumption of partial
calmness CQ given by Ye and Zhu [9], using tools of variational analysis.

In this paper, our aim is to develop KKT type necessary optimality conditions for
bilevel programming problems with a convex lower-level problem. Since Abadie CQ
[16] is weaker than most of the other CQs and, our problem is nonsmooth, therefore,
we have introduced two forms of ∂∗-Abadie CQ in terms of upper convexifactors and
the Clarke subdifferential. To establish the optimality conditions, we have used the
weaker form. These can be regarded as nonsmooth extensions of Abadie CQ to the
bilevel programming problem. Since these have been expressed in terms of a gener-
alized subdifferential, convexifactor, they give more than general conditions for the
problem. Convexifactors are important tools of nonsmooth analysis, which were in-
troduced by Demyanov [17] and were further studied by Demyanov and Jeyakumar
[18], Jeyakumar and Luc [19], Dutta and Chandra [20, 21], etc. In 2006, Li and Zhang
[15] used the concept of upper and lower convexifactors for introducing constraint
qualifications and obtained necessary optimality conditions for nonsmooth optimiza-
tion problems involving locally Lipschitz functions. Convexifactors are subsets of
many well-known subdifferentials; hence, our optimality conditions are sharper than
those using Clarke, Michel–Penot subdifferentials, etc.

The paper is organized as follows. In Sect. 2, we give basic definitions of con-
vexifactors, Clarke subdifferential, and basic subdifferential. Section 3 is devoted to
the bilevel programming problem; in Sect. 4, we discuss Lipschitz continuity of the
value function and introduce the above mentioned constraint qualifications. Finally,
in Sect. 5, necessary conditions have been derived under ∂∗-Abadie CQ. The results
developed in this section extend the corresponding ones in [12–14].

2 Tools of Analysis

In this paper, we have focused ourselves on finite dimensional spaces. We begin by
defining upper and lower Dini derivatives as follows:

Let F : R
n1 → R ∪ {±∞} be an extended real valued function and let x ∈ R

n1

where F(x) is finite. Then the upper and lower Dini derivatives of F at x in the
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direction v are defined respectively by

(F )+d (x, v) := lim sup
t→0+

F(x + tv) − F(x)

t
,

and

(F )−d (x, v) := lim inf
t→0+

F(x + tv) − F(x)

t
.

Dini derivatives may be finite as well as infinite. In particular, if F is locally Lipschitz,
both the upper and lower Dini derivatives are finite.

For any set A ⊂ R
n1 , the closure, convex hull, and the closed convex hull of A are

denoted respectively by A(clA), convA, and convA (cl convA).
We now give the definitions of convexifactors [20].

Definition 2.1 Let F : R
n1 → R ∪ {±∞} be an extended real valued function and let

x ∈ R
n1 where F(x) is finite.

(i) F is said to admit an upper convexifactor (UCF) ∂∗F(x) at x iff ∂∗F(x) ⊆ R
n1

is a closed set and

(F )−d (x, v) ≤ sup
x∗∈∂∗F(x)

〈x∗, v〉, for all v ∈ R
n1 ,

(ii) F is said to admit a lower convexifactor (LCF) ∂∗F(x) at x iff ∂∗F(x) ⊆ R
n1 is

a closed set and

(F )+d (x, v) ≥ inf
x∗∈∂∗F(x)

〈x∗, v〉, for all v ∈ R
n1 ,

(iii) F is said to admit a convexifactor (CF) ∂∗∗F(x) at x iff ∂∗∗F(x) is both an (UCF)
and (LCF) of F at x.

(iv) F is said to admit an upper semiregular convexifactor (USRCF) ∂∗F(x) at x iff
∂∗F(x) is an (UCF) of F at x and

(F )+d (x, v) ≤ sup
x∗∈∂∗F(x)

〈x∗, v〉, for all v ∈ R
n1 .

In particular, if equality holds in above, then ∂∗F(x) is called an upper regular con-
vexifactor (URCF) of F at x.

(v) F is said to admit a lower semiregular convexifactor (LSRCF) ∂∗F(x) at x iff
∂∗F(x) is a (LCF) of F at x and

(F )−d (x, v) ≥ inf
x∗∈∂∗F(x)

〈x∗, v〉, for all v ∈ R
n1 .

In particular, if equality holds in above, then ∂∗F(x) is called a lower regular con-
vexifactor (LRCF) of F at x.
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It may be noted that convexifactors are not necessarily convex or compact [19–21].
Because of these relaxations, convexifactors can be easily applied to a large class of
nonsmooth functions.

Definition 2.2 (Clarke [22]) Let F : R
n1 → R be a locally Lipschitz function on R

n1 .
Then Clarke subdifferential of F at x ∈ R

n1 is given as

∂cF (x) := {
ξ ∈ R

n1 |F 0(x, v) ≥ 〈ξ, v〉,∀v ∈ R
n1

}
,

where F 0(x, v) is Clarke generalized directional derivative of F at x ∈ R
n1 in direc-

tion v and is given by

F 0(x, v) := lim sup
y→x,t→0+

F(y + tv) − F(y)

t
, where y ∈ R

n1 and t > 0.

∂cF (x) is nonempty, convex, and compact set for each x ∈ R
n1 .

For a locally Lipschitz function F , ∂cF (x) is convexifactor of F at x [19].

Definition 2.3 (Dempe et al. [12, Definition 2.3]) Let F : R
n1 → R be Lipschitz con-

tinuous around x̄, its basic (limiting or Mordukhovich) subdifferential at x̄ is defined
by

∂F (x̄) := lim sup
x→x̄

∂̂F (x)

via the Painlevé–Kuratowski outer limit of the so-called Fréchet subdifferentials

∂̂F (x) :=
{
v ∈ R

n1 | lim inf
u→x

F (u) − F(x) − 〈v,u − x〉
‖u − x‖ ≥ 0

}

of F at x.
The basic subdifferential is always nonempty and compact for every locally Lip-

schitz function. It reduces to the classical gradient, that is, ∂F (x̄) := {�F(x̄)} for
strictly differentiable functions and to the subdifferential of convex analysis for con-
vex ones.

Definition 2.4 (Mordukhovich [23, Definition 1.63]) Let S : R
n1 ⇒ R

n2 be a set
valued mapping and x̄ ∈ domS.

(i) Given ȳ ∈ S(x̄), S is inner semicontinuous at (x̄, ȳ) iff for every sequence
xk → x̄ there is a sequence yk ∈ S(xk) converging to ȳ as k → ∞.

(ii) S is inner semicompact at x̄ with S(x̄) �= φ iff for every sequence xk → x̄ with
S(xk) �= φ there is a sequence yk ∈ S(xk) that contains a convergent subsequence
as k → ∞.

The inner semicontinuity of S at (x̄, ȳ) for every ȳ ∈ S(x̄) goes back to the standard
notion of inner/lower semicontinuity of S at x̄.

In finite dimensions, the inner semicompactness holds whenever S is uniformly
bounded around x̄.
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3 Bilevel Programming Problem

In this section, we study the bilevel programming problem given as follows:

(BLPP) min
x,y

F (x, y) s.t. Gj(x, y) ≤ 0, j ∈ J, y ∈ ψ(x),

where, for each x ∈ R
n1 , ψ(x) is the set of optimal solutions to the following opti-

mization problem:

min
y

f (x, y) s.t. gi(x, y) ≤ 0, i ∈ I,

where F,f : R
n1 × R

n2 → R, Gj : R
n1 × R

n2 → R, j ∈ J := {1,2, . . . ,m2}, and
gi : R

n1 × R
n2 → R, i ∈ I := {1,2, . . . ,m1}; ni and mi , i := 1,2 are integers with

ni ≥ 1 and mi ≥ 0. f (·, ·) and gi(., .), i ∈ I are continuous, convex, and ψ(x) :=
arg miny{f (x, y) : g(x, y) ≤ 0}.

So, the idea is that the lower level decision maker, or the follower minimizes
his/her objective function based on the leader’s choice x and returns the solution
y = y(x) to the leader, who then uses it to minimize his/her objective function. If the
optimal solution of the lower-level problem is uniquely determined for all x ∈ R

n1 ,
then the problem (BLPP) is well defined. However, if there are multiple solutions to
the lower-level problem for a given x, then the upper-level objective becomes a set-
valued map. In order to overcome this difficulty, two different solution concepts have
been considered in the literature, namely the optimistic solution and the pessimistic
one.

In this article, we have focused on the optimistic approach only. According to
this approach, the leader assumes the cooperation of the follower in the sense that
the follower will in any case take an optimal solution which is a best one from the
leader’s point of view. This leads to the following optimistic bilevel programming
problem (OBLPP):

(OBLPP) min
x

ϕ0(x), x ∈ R
n1

where ϕ0(x) := min
y

{
F(x, y) : Gj(x, y) ≤ 0, j ∈ J, y ∈ ψ(x)

}

and ψ(x) is the set of optimal solutions to the lower-level problem

min
y

f (x, y) s.t. gi(x, y) ≤ 0, i ∈ I.

A point x̄ ∈ R
n1 is called a local optimistic solution [12] of the bilevel programming

problem iff ȳ ∈ ψ(x̄), x̄ ∈ R
n1 , F(x̄, ȳ) = ϕ0(x̄) and there is a number ε > 0 such

that ϕ0(x) ≥ ϕ0(x̄), for all x ∈ R
n1 , ‖ x − x̄ ‖< ε.

To obtain necessary optimality conditions for optimistic bilevel programming
problem (OBLPP), we follow value function approach initiated by Outrata [7] ac-
cording to which optimistic bilevel programming problem can be converted into sin-
gle level mathematical programming problem with the help of the value function of
the lower-level problem given by

V (x) := min
y

{
f (x, y) : gi(x, y) ≤ 0, i ∈ I, y ∈ R

n2
}
.
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Then the reformulated optimistic bilevel programming problem (ROBLPP) is given
as:

(ROBLPP) min
x,y

F (x, y) s.t. f (x, y) − V (x) ≤ 0,

gi(x, y) ≤ 0, i ∈ I,

Gj (x, y) ≤ 0, j ∈ J,

(x, y) ∈ R
n1 × R

n2 .

Let X ⊆ R
n1 × R

n2 denote the feasible set for (ROBLPP), that is,

X := {
(x, y) ∈ R

n1 × R
n2 |f (x, y) − V (x) ≤ 0,

gi(x, y) ≤ 0, i ∈ I,Gj (x, y) ≤ 0, j ∈ J
}
.

However, the price to pay in this reformulation is that (ROBLPP) is nonsmooth even
for smooth initial data. Formulation (ROBLPP) of (OBLPP) has been developed by
Ye and Zhu [9], Babahadda and Gadhi [11], and Ye [13, 14]. The latest published re-
sults for optimistic bilevel programs are given by Dempe, Dutta, and Mordukhovich
[12]. The developments in their paper are based on the value function approach. Un-
der the assumption of the partial calmness constraint qualification [9], they have given
necessary optimality conditions for bilevel programs with smooth, convex, linear, and
Lipschitzian functions, describing the initial data of the (BLPP). Their results have
been proved by assuming solution set map of lower-level problem to be inner semi-
continuous and inner semicompact and by using advanced formulas for computing
basic subgradients of value function in variational analysis. In this paper, we fur-
ther develop the value function approach to prove necessary optimality conditions
for (BLPP).

Remark 3.1 (Dempe et al. [12]) Note that (ROBLPP) is globally equivalent to
(OBLPP), while local optimal solutions to (OBLPP) are always locally optimal to
(ROBLPP). The problems (BLPP) and (OBLPP) are not equivalent with respect to
local optimal solutions. But the problems (BLPP) and (ROBLPP) are fully equiva-
lent both with respect to local and global optimal solutions.

4 Regularity Conditions and Constraint Qualifications

In this section, we shall give regularity conditions with discussion on Lipschitz con-
tinuity of value function and shall introduce constraint qualifications.

We begin with the following definitions.
Given a nonempty subset S of R

n1 , the negative polar cone of S is defined by

S− := {
v ∈ R

n1 |〈x, v〉 ≤ 0,∀x ∈ S
}
.

S− is always closed and convex.
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We now give definitions of two tangent cones that will be useful in the sequel. Let
x ∈ S, then the adjacent cone A(S,x) and the contingent cone T (S, x) to S at x are
defined, respectively, by

A(S,x) := {
v ∈ R

n1 |∀tn ↓ 0∃vn → v such that x + tnvn ∈ S
}
.

T (S, x) := {
v ∈ R

n1 |∃tn ↓ 0 and vn → v such that x + tnvn ∈ S
}
.

Let (x̄, ȳ) ∈ X be feasible for (ROBLPP), we assume that gi , i ∈ I (x̄, ȳ), Gj ,
j ∈ J (x̄, ȳ) admit UCFs ∂∗gi(x̄, ȳ) and ∂∗Gj(x̄, ȳ), respectively, at (x̄, ȳ), where
I (x̄, ȳ) := {i ∈ I |gi(x̄, ȳ) := 0} and J (x̄, ȳ) := {j ∈ J |Gj(x̄, ȳ) := 0}.

Here, f (·, ·) and gi(·, ·), i ∈ I are convex functions, therefore, it is easy to check
that V (·) is a convex function and so we have used the same symbol for Clarke
subdifferential and the subdifferential of f and V since they coincide for convex
functions.

We know that when objective function and constraints of the lower-level problem
are convex the value function is convex. We now give two examples to show that there
are situations where it may happen that the convexity of value function depends on
the convexity of objective function of lower-level problem but not on the convexity
of the constraint function.

(i) Let

f (x, y) := x2 + y2 − 1,

g(x, y) := x2y ≤ 0,

V (x) :=
{

−1, x = 0,

x2 − 1, x �= 0.

Here, V is convex because f is convex though g is nonconvex.
(ii) Let

f (x, y) := x2y + y,

g1(x, y) := y ≤ 0, g2(x, y) := −y − 1 ≤ 0,

V (x) :=
{

−1, x = 0,

−(x2 + 1), x �= 0.

Here, V is nonconvex because f is nonconvex though g1 and g2 are convex.
To proceed further, we need to formulate the notion of lower-level regularity and

upper-level regularity followed by the discussion on Lipschitz continuity of value
function.

Given a point (x̄, ȳ) satisfying the lower level inequality constraints gi(x̄, ȳ) ≤ 0,
i ∈ I with the index set I (x̄, ȳ). We say that (x̄, ȳ) ∈ R

n1 ×R
n2 is lower-level regular

if the following implication holds in terms of the Clarke subdifferential.

[ ∑

i∈I (x̄,ȳ)

λivi := 0, λi ≥ 0

]
⇒ [

λi := 0 for all i ∈ I (x̄, ȳ)
]

whenever (ui, vi) ∈ ∂gi(x̄, ȳ) with some ui ∈ R
n1 as i ∈ I (x̄, ȳ).
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We can also define lower-level regularity in terms of an upper convexifactor of
gi(·, ·), i ∈ I at (x̄, ȳ) by replacing the Clarke subdifferential in the above implication
by the convex hull of convexifactor of gi(·, ·), i ∈ I at (x̄, ȳ).
Similarly, given (x̄, ȳ) ∈ R

n1 × R
n2 satisfying the upper-level inequality constraints

Gj(x̄, ȳ) ≤ 0, j ∈ J with the index set J (x̄, ȳ). We say that (x̄, ȳ) ∈ R
n1 × R

n2 is
upper-level regular if
[
(0,0) ∈

∑

j∈J (x̄,ȳ)

λj ∂
cGj (x̄, ȳ), λj ≥ 0

]
⇒ [

λj := 0 whenever j ∈ J (x̄, ȳ)
]
.

It may be noted that these regularity conditions developed in [23, Sect. 4.3] and used
in [12] in terms of basic subdifferential can be regarded as nonsmooth counter part of
the classical Mangasarian–Fromovitz constraint qualification for the lower-level and
upper-level problems, respectively.

Using Corollary 4.39 of [23], the constraint mapping K(x) := {y ∈ R
n2 |

gi(x̄, ȳ) ≤ 0, i ∈ I (x̄, ȳ)} is Lipschitz-like around (x̄, ȳ) under the lower-level regu-
larity of (x̄, ȳ). Let f be Lipschitz around (x̄, ȳ) for every ȳ ∈ ψ(x̄).

In addition to above, if

(i) ψ is inner semicompact at x̄, then, Theorem 5.2(ii) [24] ensures the Lipschitz
continuity of value function V around x̄.

(ii) ψ is inner semicontinuous at (x̄, ȳ) then, Theorem 5.2(i) [24] ensures the Lips-
chitz continuity of value function V around x̄.

Remark 4.1 In this paper, value function V is convex as argued earlier, and hence
locally Lipschitz. The assumptions of inner semicontinuity or inner semicompactness
are not necessary for convexity of the value function.

It has been observed by Ye and Zhu [9] that the usual CQs fail to hold for (BLPP)
and in this regard they have suggested partial calmness CQ for (BLPP). For a detailed
discussion on partial calmness CQ, one can see [9, 12]. We do have situations where
partial calmness CQ may not hold. Example 3.7 [12] illustrates this fact.

We now introduce two forms of ∂∗-Abadie constraint qualification using the con-
cept of convexifactors and Clarke subdifferential. These CQs generalize those of
[13, 14].

∂∗-Abadie CQ

∂∗-ACQ
( ⋃

i∈I (x̄,ȳ)

conv∂∗gi(x̄, ȳ) ∪
⋃

j∈J (x̄,ȳ)

conv∂∗Gj(x̄, ȳ) ∪ ∂f (x̄, ȳ) − ∂V (x̄) × {0}
)−

⊆ T
(
X, (x̄, ȳ)

)

∂∗-ACQ′
( ⋃

i∈I (x̄,ȳ)

conv∂∗gi(x̄, ȳ) ∪
⋃

j∈J (x̄,ȳ)

conv∂∗Gj(x̄, ȳ) ∪ ∂f (x̄, ȳ) − ∂V (x̄) × {0}
)−

⊆ A
(
X, (x̄, ȳ)

)
.
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Since A(X, (x̄, ȳ)) ⊆ T (X, (x̄, ȳ)), by definition of the ∂∗-Abadie CQ, we have the
following proposition.

Proposition 4.1 ∂∗-ACQ′ ⇒ ∂∗-ACQ.

5 Optimality Conditions

In this section, we shall prove Karush–Kuhn–Tucker (KKT) type necessary optimal-
ity conditions under ∂∗-ACQ. We begin with the following two lemmas, which will
be used in the derivation of our optimality conditions.

Lemma 5.1 (Li and Zhang [15]) Let S1 and S2 be two nonempty subsets of R
n1 .

Then

(i) conv(S1 + S2) := convS1 + convS2
(ii) cl(clS1 + clS2) := cl(S1 + clS2) := cl(S1 + S2).

Lemma 5.2 Let B be a nonempty, convex, and compact set and A be a convex cone.
If

sup
v∈B

〈v, d〉 ≥ 0, for all d ∈ A−,

then 0 ∈ B − A.

Theorem 5.1 Let (x̄, ȳ) be an optimal solution of (OBLPP). Assume that F be lo-
cally Lipschitz and admit bounded (USRCF) ∂∗F(x̄, ȳ) at (x̄, ȳ). Furthermore, we
suppose that gi , i ∈ I (x̄, ȳ), Gj , j ∈ J (x̄, ȳ) admit (UCFs) ∂∗gi(x̄, ȳ), i ∈ I (x̄, ȳ),
∂∗Gj(x̄, ȳ), j ∈ J (x̄, ȳ), respectively at (x̄, ȳ) and ∂∗-ACQ holds at (x̄, ȳ).

(a) Suppose that the argminimum map ψ be inner semicompact at x̄, that for each
vector y ∈ ψ(x̄), (x̄, y) be lower-level regular. Then, there exist scalars λ ≥ 0,
μi ≥ 0, i ∈ I (x̄, ȳ), τj ≥ 0, j ∈ J (x̄, ȳ), λi ≥ 0, i ∈ I and also y∗ ∈ ψ(x̄) such
that the following conditions hold:

(i) (0,0) ∈ cl

[
conv∂∗F(x̄, ȳ) −

{
λ
(
∂f (x̄, ȳ) − ∂xf (x̄, y∗) × {0})

− λ

(∑

i∈I

λi∂xgi(x̄, y∗) × {0}
)

+
∑

i∈I (x̄,ȳ)

μi conv ∂∗gi(x̄, ȳ) +
∑

j∈J (x̄,ȳ)

τj conv ∂∗Gj(x̄, ȳ)

}]
,

(ii) 0 ∈ ∂yf (x̄, y∗) +
∑

i∈I

λi∂ygi(x̄, y∗),

(iii) λigi(x̄, y∗) := 0, λi ≥ 0, i ∈ I.
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(b) Suppose that the argminimum map ψ be inner semicontinuous at (x̄, ȳ), that
the pair (x̄, ȳ) be lower-level regular. Then there exist scalars λ ≥ 0, μi ≥ 0,
i ∈ I (x̄, ȳ), τj ≥ 0, j ∈ J (x̄, ȳ), λi ≥ 0, i ∈ I such that (i), (ii), and (iii) hold
with y∗ replaced by ȳ.

Here, ∂, ∂x, and ∂y stand, respectively, for the full and partial subdifferentials of
convex analysis.

Proof Since (x̄, ȳ) is an optimal solution of (OBLPP), hence by Remark 3.1, an
optimal solution of (ROBLPP).

Let (v1, v2) ∈ T (X, (x̄, ȳ)), from the definition of tangent cone, it follows that
∃tn ↓ 0 and (vn1 , vn2) → (v1, v2) such that (x̄, ȳ) + tn(vn1 , vn2) ∈ X for all n.

Since (x̄, ȳ) is minimum of F over X, therefore, we have

F((x̄, ȳ) + tn(vn1 , vn2)) − F(x̄, ȳ)

tn
≥ 0, for sufficiently large n. (1)

Now

F((x̄, ȳ) + tn(vn1 , vn2)) − F(x̄, ȳ)

tn

= F((x̄, ȳ) + tn(vn1 , vn2)) − F((x̄, ȳ) + tn(v1, v2))

tn

+ F((x̄, ȳ) + tn(v1, v2)) − F(x̄, ȳ)

tn
. (2)

Since F is locally Lipschitz, therefore,

F((x̄, ȳ) + tn(vn1 , vn2)) − F((x̄, ȳ) + tn(v1, v2))

tn
→ 0 as n → ∞.

Taking Limit supremum on both the sides of equation (2) and noting above and (1),
we get

lim sup
tn→0+

F((x̄, ȳ) + tn(v1, v2)) − F(x̄, ȳ)

tn
= (F )+d

(
(x̄, ȳ), (v1, v2)

) ≥ 0.

That is, we have

(F )+d
(
(x̄, ȳ), (v1, v2)

) ≥ 0, for all (v1, v2) ∈ T
(
X, (x̄, ȳ)

)
.

By upper semiregularity of ∂∗F(x̄, ȳ) at (x̄, ȳ), it follows that

sup
η∈∂∗F(x̄,ȳ)

〈
η, (v1, v2)

〉 ≥ 0, for all (v1, v2) ∈ T
(
X, (x̄, ȳ)

)
, (3)

Since ∂∗-ACQ holds at (x̄, ȳ), we have

sup
η∈conv ∂∗F(x̄,ȳ)

〈
η, (v1, v2)

〉 ≥ 0, for all (v1, v2) ∈ A− (4)
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where A− is the negative polar cone of A and A is defined by

A :=
( ⋃

i∈I (x̄,ȳ)

conv ∂∗gi(x̄, ȳ) ∪
⋃

j∈J (x̄,ȳ)

conv ∂∗Gj(x̄, ȳ)

∪ (
∂f (x̄, ȳ) − ∂V (x̄) × {0})

)
.

Now, using Lemma 5.2, we get

(0,0) ∈ conv
(
conv ∂∗F(x̄, ȳ) − A

)
.

That is,

(0,0) ∈ conv

(
conv ∂∗F(x̄, ȳ) −

{ ⋃

i∈I (x̄,ȳ)

conv∂∗gi(x̄, ȳ)

∪
⋃

j∈J (x̄,ȳ)

conv ∂∗Gj(x̄, ȳ) ∪ (
∂f (x̄, ȳ) − ∂V (x̄) × {0})

})

which implies that there exists a sequence

(xn, yn) ∈ conv

(
conv ∂∗F(x̄, ȳ) −

{ ⋃

i∈I (x̄,ȳ)

conv∂∗gi(x̄, ȳ)

∪
⋃

j∈J (x̄,ȳ)

conv ∂∗Gj(x̄, ȳ) ∪ (
∂f (x̄, ȳ) − ∂V (x̄) × {0})

})

such that (xn, yn) → (0,0).
Applying Lemma 5.1(i) in the above condition, we get

(xn, yn) ∈ conv ∂∗F(x̄, ȳ) + conv

{
−

( ⋃

i∈I (x̄,ȳ)

conv ∂∗gi(x̄, ȳ)

∪
⋃

j∈J (x̄,ȳ)

conv ∂∗Gj(x̄, ȳ) ∪ (
∂f (x̄, ȳ) − ∂V (x̄) × {0})

)}
.

Using the convex hull property of a subset S of R
n1 , conv(−S) := − convS, we get

(xn, yn) ∈ conv ∂∗F(x̄, ȳ) − conv

{ ⋃

i∈I (x̄,ȳ)

conv∂∗gi(x̄, ȳ)

∪
⋃

j∈J (x̄,ȳ)

conv∂∗Gj(x̄, ȳ) ∪ (
∂f (x̄, ȳ) − ∂V (x̄) × {0})

}
.
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Since convexifactors are in general nonconvex sets, therefore, there exist scalars
λ ≥ 0, μi ≥ 0, i ∈ I (x̄, ȳ), τj ≥ 0, j ∈ J (x̄, ȳ) such that

(xn, yn) ∈ conv ∂∗F(x̄, ȳ) −
[ ∑

i∈I (x̄,ȳ)

μi conv∂∗gi(x̄, ȳ)

+
∑

j∈J (x̄,ȳ)

τj conv ∂∗Gj(x̄, ȳ) + λ
(
∂f (x̄, ȳ) − ∂V (x̄) × {0})

]

with

λ +
∑

i∈I (x̄,ȳ)

μi +
∑

j∈J (x̄,ȳ)

τj := 1. (5)

Thus,

(0,0) ∈ cl

[
conv∂∗F(x̄, ȳ) −

{ ∑

i∈I (x̄,ȳ)

μi conv ∂∗gi(x̄, ȳ)

+
∑

j∈J (x̄,ȳ)

τj conv ∂∗Gj(x̄, ȳ) + λ
(
∂f (x̄, ȳ) − ∂V (x̄) × {0})

}]
. (6)

Furthermore, we use the following relationship for convex, continuous function
f (x, y) that holds, e.g., by [23, Corollary 3.44]

∂f (x, y) ⊂ ∂xf (x, y) × ∂yf (x, y). (7)

Now, we have to determine an efficient estimate of subdifferential ∂V (x) of the value
function. Applying Theorem 8 [25] (its inner semicompact counterpart) and using
property (7), we get the following upper estimate of Clarke subdifferential of the
value function at x̄:

∂V (x̄) :=
[ ⋃

y∈ψ(x̄)

{ ⋃

(λ1,λ2,...,λm1 )∈Λ(x̄,y)

(
∂xf (x̄, y) +

∑

i∈I

λi∂xgi(x̄, y)

)}]
(8)

where Λ(x̄, y) is defined by

Λ(x̄, y) :=
{
(λ1, . . . , λm1) ∈ R

m1 |0 ∈ ∂yf (x̄, y) +
∑

i∈I

λi∂ygi(x̄, y),

λi ≥ 0, λigi(x̄, y) := 0, i ∈ I

}
. (9)

Combining (6), (8), and (9), we arrive at the necessary conditions (i), (ii), and (iii).
(b) To derive optimality conditions under the inner semicontinuity assumption

on ψ , we shall argue in the same way as above and shall get the following instead
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of (8):

∂V (x̄) :=
⋃

(λ1,λ2,...,λm1 )∈Λ(x̄,ȳ)

(
∂xf (x̄, ȳ) +

∑

i∈I

λi∂xgi(x̄, ȳ)

)

where

Λ(x̄, ȳ) :=
{
(λ1, . . . , λm1) ∈ R

m1 |0 ∈ ∂yf (x̄, ȳ) +
∑

i∈I

λi∂ygi(x̄, ȳ),

λi ≥ 0, λigi(x̄, ȳ) := 0, i ∈ I

}
.

Proceeding on the same lines, as in (a), we arrive at the necessary conditions (i), (ii),
and (iii) with the replacement of y∗ by ȳ. �

Remark 5.1 The notion of (USRCF) has been introduced by Dutta and Chandra [20]
where they have shown that for a locally Lipschitz function, most known subdif-
ferentials such as subdifferential of Clarke, Michel–Penot, Mordukhovich, etc. are
(USRCFs). We now provide an example [19, 20] which shows that these well known
subdifferentials may often contain convex hull of an (USRCF), and hence optimality
conditions in terms of (USRCFs) and upper convexifactors provide sharp results.

Example 5.1 (See [19, 20]) Let F : R
2 → R be a function defined by

F(x, y) := |x| − |y|.
The convexifactor of F at (0,0) is given by

∂∗F(0,0) = {
(−1,1), (1,−1)

}
,

Clarke and Michel–Penot subdifferentials are given by

∂cF (0,0) = ∂�F(0,0) = conv
{
(1,−1), (−1,1), (1,1), (−1,−1)

}
.

It has been shown in [23, 25], Mordukhovich (basic) subdifferential of F at (0,0) is
given by

∂F (0,0) = {
(v,−1)| − 1 ≤ v ≤ 1

} ∪ {
(v,1)| − 1 ≤ v ≤ 1

}

It follows that conv∂∗F(0,0) ⊂ ∂F (0,0) ⊂ ∂cF (0,0) = ∂�F(0,0).

Remark 5.2 It is interesting to compare the above results with those in [12]. We
observe that our optimality conditions are close to those of Theorem 4.1 [12] and
also generalizes them in view of Remark 5.1.

Remark 5.3 If we assume all the functions F,Gj , j ∈ J , f,gi, i ∈ I to be differen-
tiable in above theorem, then our optimality conditions under inner semicontinuity
assumption become close to those of Theorem 4.2 [12], as for differentiable func-
tion F , ∂∗F(x̄, ȳ) := {�F(x̄, ȳ)} and ∂F (x̄, ȳ) := {�F(x̄, ȳ)}.
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Here, we would like to point out that if our lower-level problem is general, that is,
functions involving are not necessarily convex, then the value function will be Lips-
chitz continuous by Theorem 5.2(ii) [24], if ψ is assumed to be inner semicompact at
x̄ and by Theorem 5.2(i) [24], if ψ is assumed to be inner semicontinuous at (x̄, ȳ).

Then, in Theorem 5.1, after (6), we shall proceed in the following way.
Now, we have to determine an efficient estimate of Clarke subdifferential ∂cV (x)

of the value function. Applying Theorem 3.57(ii) [23] in Theorem 8 [25] (its inner
semicompact counterpart), we get the following upper estimate of Clarke subdiffer-
ential of the value function at x̄:

∂cV (x̄) ⊂ cl conv

[ ⋃

y∈ψ(x̄)

{ ⋃

(λ1,λ2,...,λm1 )

u ∈ R
n1 |

(u,0) ∈ ∂cf (x̄, y) +
∑

i∈I

λi∂
cgi(x̄, y), λi ≥ 0, λigi(x̄, y) := 0, i ∈ I

}]
.

(7)

Now, before proceeding further we have to evaluate

cl conv

[ ⋃

y∈ψ(x̄)

{ ⋃

(λ1,λ2,...,λm1 )

u ∈ R
n1 |(u,0) ∈ ∂cf (x̄, y) +

∑

i∈I

λi∂
cgi(x̄, y),

λi ≥ 0, λigi(x̄, y) := 0, i ∈ I

}]
.

Let

ξ ∈ cl conv

[ ⋃

y∈ψ(x̄)

{ ⋃

(λ1,λ2,...,λm1 )

u ∈ R
n1 |(u,0) ∈ ∂cf (x̄, y) +

∑

i∈I

λi∂
cgi(x̄, y),

λi ≥ 0, λigi(x̄, y) := 0, i ∈ I

}]
. (8)

Then there exists a sequence

ξn ∈ conv

[ ⋃

y∈ψ(x̄)

{ ⋃

(λ1,λ2,...,λm1 )

u ∈ R
n1 |(u,0) ∈ ∂cf (x̄, y) +

∑

i∈I

λi∂
cgi(x̄, y),

λi ≥ 0, λigi(x̄, y) := 0, i ∈ I

}]

such that ξn → ξ as n → ∞.
Since ∂cf (x̄, y) ⊂ R

n1 × R
n2 and ∂cgi(x̄, y) ⊂ R

n1 × R
n2 , i ∈ I , by the classi-

cal Carathéodory theorem, there exist γ s
n ≥ 0,

∑n1+1
s=1 γ s

n := 1, ys
n ∈ ψ(x̄), λs

in ≥ 0,
s := 1,2, . . . , n1 + 1, i ∈ I , such that the following hold:
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(ξn,0) ∈
n1+1∑

s=1

γ s
n

(
∂cf

(
x̄, ys

n

) +
∑

i∈I

λs
in∂

cgi

(
x̄, ys

n

))
,

λs
ingi

(
x̄, ys

n

) := 0, i ∈ I.

We may assume that γ s
n → γ s , ys

n → ys , λs
in → λs

i as n → ∞. Since gi , i ∈ I , are
continuous functions and ∂cf and ∂cgi , i ∈ I are closed, therefore, as n → ∞, we
have

λs
i gi

(
x̄, ys

) := 0, i ∈ I (9)

and

(ξ,0) ∈
n1+1∑

s=1

γ s

(
∂cf

(
x̄, ys

) +
∑

i∈I

λs
i ∂

cgi

(
x̄, ys

))
.

Using the above and (8) and then (7), we get

∂cV (x̄) ⊂
n1+1∑

s=1

γ s

(
∂cf

(
x̄, ys

) +
∑

i∈I

λs
i ∂

cgi

(
x̄, ys

))
. (10)

Combining (6) and (10), we arrive at the following necessary condition:

(0,0) ∈ cl

[

conv ∂∗F(x̄, ȳ) −
{

λ

(

∂cf (x̄, ȳ) −
n1+1∑

s=1

γ s∂cf
(
x̄, ys

)

−
n1+1∑

s=1

γ s
∑

i∈I

λs
i ∂

cgi

(
x̄, ys

)
)

+
∑

i∈I (x̄,ȳ)

μi conv ∂∗gi(x̄, ȳ) +
∑

j∈J (x̄,ȳ)

τj conv ∂∗Gj(x̄, ȳ)

}]

. (11)

Hence, (9) and (11) are necessary optimality conditions obtained in (a).
(b) To derive optimality conditions under the inner semicontinuity assumption on

ψ , we shall argue in the same way as above and shall get the following instead of (7):

∂cV (x̄) ⊂ cl conv

[{ ⋃

(λ1,λ2,...,λm1 )

u ∈ R
n1 |(u,0) ∈ ∂cf (x̄, ȳ) +

∑

i∈I

λi∂
cgi(x̄, ȳ),

λi ≥ 0, λigi(x̄, ȳ) := 0, i ∈ I

}]
.

Now, proceeding on the same lines, as in (a), we arrive at the necessary optimality
conditions (9) and (11) with the replacement of ys by ȳ. �

We now give an example to illustrate Theorem 5.1.



J Optim Theory Appl (2012) 152:632–651 647

Example 5.2 Consider the problem

min
x,y

F (x, y) :=
⎧
⎨

⎩

|y|2, x ≤ 0, y < 0,

1, x < 0, y = 0,

|x| + |y|, otherwise.
s.t. G(x,y) ≤ 0, y ∈ ψ(x),

where G(x,y) :=
{

2, x > 0, y ∈ R,

−√−x + y, x ≤ 0, y ∈ R,

and, for each x ∈ R, ψ(x) is the set of optimal solutions to the following optimization
problem:

min
y

f (x, y) := x2 + |y − 1| + 2(y − 1) s.t. g(x, y) := y2 − y ≤ 0

where F,G,f,g : R × R → R.
The corresponding value function for lower-level problem is given by

V (x) :=
{

x2,

x2 − 1,
for all x ∈ R

and the set ψ(x) of optimal solutions to the lower-level problem is given by

ψ(x) := {0,1}, for all x ∈ R.

We have

F(x,0) :=
{

1, x < 0,

x, x ≥ 0,
F (x,1) := |x| + 1.

Hence, (0,0) is an optimal solution of the problem.
It can be seen that F admits (USRCF) ∂∗F(0,0) = {(x∗, y∗)|− 1 ≤ x∗ ≤ 1, −1 ≤

y∗ ≤ 0}, G and g admit (UCFs ) ∂∗G(0,0) = {(x∗, y∗)|x∗ ≥ 0, y∗ > 0}, ∂∗g(0,0) =
{(0, y∗)|y∗ < 0}, respectively, at (0,0). ∂f (0,0) = {0} × [1,3], ∂yf (0,0) = [1,3],
∂xf (0,0) = {0}, ∂V (0) × {0} = {(0,0)}, ∂g(0,0) = {(0,−1)}, ∂xg(0,0) = {0},
∂yg(0,0) = {−1}, ∂g(0,1) = {(0,1)}.

∂∗-ACQ holds at (0,0) where T (X, (0,0)) = {(x,0) : x ≤ 0} and X ⊂ R × R is
given by

X := {
(x,0)|x ≤ 0

} ∪ {
(x,1)|x ≤ 0

}
.

(0,0) and (0,1) are lower-level regular.
Then there exist scalars λ = 1

2 , λ1 = 1, μ = 1
2 , τ = 1 and y∗ = 0 ∈ ψ(0) such that

(0,0) ∈ cl

[
conv ∂∗F(0,0) −

{
λ
(
∂f (0,0) − ∂xf (0,0) × {0} − λ1∂xg(0,0) × {0})

+ μ conv∂∗g(0,0) + τ conv ∂∗G(0,0)

}]
,

0 ∈ ∂yf (0,0) + λ1∂yg(0,0),

λ1g(0,0) = 0.
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We now show with the help of an example that lower-level regularity assumption
in the above theorem cannot be relaxed.

Example 5.3 Suppose that in the above example we take

g1(x, y) := −y ≤ 0, g2(x, y) := y − 1 ≤ 0.

Then

∂g1(0,0) = {
(0,−1)

}
, ∂xg1(0,0) = {0}, ∂yg1(0,0) = {−1},

∂g1(0,1) = {
(0,−1)

}
, ∂xg1(0,1) = {0}, ∂yg1(0,1) = {−1},

∂g2(0,0) = {
(0,1)

}
, ∂xg2(0,0) = {0}, ∂yg2(0,0) = {1},

∂g2(0,1) = {
(0,1)

}
, ∂xg2(0,1) = {0}, ∂yg2(0,1) = {1},

∂∗g1(0,0) = {
(0,−1)

}
, ∂∗g2(0,0) = {

(0,1)
}
.

Here, (0,0) and (0,1) are not lower-level regular.
We can see that there exist scalars λ = 1, λ1 = 2, λ2 = 1, μ1 = 1, μ2 = 1

2 , τ = 1
2 ,

and y∗ = 0 ∈ ψ(0) such that

(0,0) ∈ cl

[
conv ∂∗F(0,0) −

{
λ
(
∂f (0,0) − ∂xf (0,0) × {0})

− λ
(
λ1∂xg1(0,0) × {0} + λ2∂xg2(0,0) × {0})

+ μ1 conv ∂∗g1(0,0) + μ2 conv ∂∗g2(0,0) + τ conv ∂∗G(0,0)

}]
,

0 ∈ ∂yf (0,0) + λ1∂yg1(0,0) + λ2∂yg2(0,0),

λ1g1(0,0) = 0 but λ2g2(0,0) �= 0.

The following example illustrates that we cannot relax the assumption of the Lip-
schitz condition on the objective function of the upper-level problem.

Example 5.4 Suppose that in Example 5.2 we take

F(x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
x + y, x > 0, y > 0,

x2, x > 0, y ≤ 0,√
y, x ≤ 0, y > 0,

x2 − |x| + 1, x < 0, y = 0,√−x − y, x ≤ 0, y < 0,

0, x = 0, y = 0,

F is not locally Lipschitz at (0,0).
F attains its optimal value at (0,0).

∂∗F(0,0) = {
(x∗, y∗)|x∗ ≤ −1, y∗ ≥ −1

}
is an (USRCF) of F at (0,0).
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We can see that for all λ ≥ 0, 1 ≤ λ1 ≤ 3, μ ≥ 0, τ ≥ 0, there exists y∗ = 0 ∈ ψ(0)

such that

(0,0) /∈ cl
[
conv ∂∗F(0,0) − {

λ(∂f (0,0) − ∂xf (0,0) × {0} − λ1∂xg(0,0) × {0})
+ μ conv∂∗g(0,0) + τ conv ∂∗G(0,0)

}]
,

0 ∈ ∂yf (0,0) + λ1∂yg(0,0),

λ1g(0,0) = 0.

The next example shows that the (SR) assumption on (UCFs) in Theorem 5.1
cannot be relaxed.

Example 5.5 In Example 5.2, if we take

F(x, y) :=
⎧
⎨

⎩

|x| sin log |x| + |y|, x > 0, y > 0;x > 0, y < 0;
x < 0, y > 0;x < 0, y < 0,

0, otherwise.

F attains its minimum at (0,0).
The bounded set, ∂∗F(0,0) = {(−1,1), (−1,−1)} is (CF) but not an (USRCF)

of F at (0,0). We can see that for all λ ≥ 0, 1 ≤ λ1 ≤ 3, μ ≥ 0, τ ≥ 0, there exists
y∗ = 0 ∈ ψ(0) such that

(0,0) /∈ cl
[
conv∂∗F(0,0) − {

λ
(
∂f (0,0) − ∂xf (0,0) × {0} − λ1∂xg(0,0) × {0})

+ μ conv ∂∗g(0,0) + τ conv ∂∗G(0,0)
}]

,

0 ∈ ∂yf (0,0) + λ1∂yg(0,0),

λ1g(0,0) = 0.

We end this section by providing an example which shows that the boundedness
assumption on (USRCF) of F in Theorem 5.1 cannot be relaxed.

Example 5.6 Suppose that in Example 5.2 we take

F(x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

|x| + |y|, x ≥ 0, y ∈ R ∼ (x = 0, y < 0),

|x| + |y|, x < 0, y > 0,

−|x| − |y|, x ≤ 0, y < 0,

100x2 + |x|, x < 0, y = 0,

and

G(x,y) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−√
x − 1 − y, x ≥ 0, y < 0,√−x + y, x < 0, y < 0,

−√
x − 1 − y, x > 0, y ≥ 0,

y − 2y2, x = 0, y ≥ 0,√−x + y, x < 0, y ≥ 0,



650 J Optim Theory Appl (2012) 152:632–651

F attains its optimal value at (0,0).

∂∗F(0,0) = {
(x∗, y∗)|x∗ > 0, y∗ > 0

}
is an (USRCF) of F at (0,0).

∂∗G(0,0) = {
(x∗, y∗)|x∗ ≤ 0, y∗ > 0

}
is an (UCF) of G at (0,0).

We can see that for all λ ≥ 0, 1 ≤ λ1 ≤ 3, μ ≥ 0, τ ≥ 0, there exists y∗ = 0 ∈ ψ(0)

such that

(0,0) /∈ cl
[
conv∂∗F(0,0) − {

λ
(
∂f (0,0) − ∂xf (0,0) × {0} − λ1∂xg(0,0) × {0})

+ μ conv ∂∗g(0,0) + τ conv ∂∗G(0,0)
}]

,

0 ∈ ∂yf (0,0) + λ1∂yg(0,0),

λ1g(0,0) = 0

but in view of Lemma 5.1(ii), there exists scalars λ = 1, λ1 = 1, μ = 3
2 , τ = 1 and

y∗ = 0 ∈ ψ(0) such that

(0,0) ∈ cl
[
conv∂∗F(0,0)

+ (−{
λ(∂f (0,0) − ∂xf (0,0) × {0} − λ1∂xg(0,0) × {0}) + μ conv ∂∗g(0,0) + τ conv ∂∗G(0,0)

})]
.

6 Conclusion

It is known that the bilevel programming problem does not satisfy most of the well-
known constraint qualifications such as the Slater CQ, the Mangasarian–Fromovitz
CQ. So, in search of the CQ applicable to the bilevel programming problem, we have
found Abadie CQ which is weaker than most of the other CQs, the suitable one. Since
the convexifactor is a weaker generalization of the idea of subdifferentials and is a
closed set and not necessarily convex or compact unlike most existing subdifferen-
tials in the literature, we have introduced two versions of a nonsmooth extension of
the Abadie CQ in terms of convexifactors and the Clarke subdifferential. We have em-
ployed the weaker version to establish the necessary optimality conditions using an
upper estimate of the Clarke subdifferential of value function in variational analysis
and the concept of the convexifactor.
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