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Abstract In this paper, we propose and analyze an algorithm that couples the gradi-
ent method with a general exterior penalization scheme for constrained or hierarchical
minimization of convex functions in Hilbert spaces. We prove that a proper but sim-
ple choice of the step sizes and penalization parameters guarantees the convergence
of the algorithm to solutions for the optimization problem. We also establish robust-
ness and stability results that account for numerical approximation errors, discuss
implementation issues and provide examples in finite and infinite dimension.

Keywords Convex optimization · Hierarchical minimization · Exterior
penalization · Non-autonomous gradient-like systems

1 Introduction

This paper is concerned with the study of a class of gradient-type algorithms to solve
constrained or hierarchical optimization problems in Hilbert spaces, using a fairly
general exterior penalization procedure.

The main result is that any sequence generated by our diagonal gradient scheme
(DGS) converges weakly to a solution of the constrained optimization problem; con-
vergence being strong, if the objective function is strongly convex. Moreover, it is
possible to account for numerical errors in the computation of the iterates, which
may arise, for instance, from inaccurate evaluations of the functions and gradients.
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Our method is based on an explicit discretization of the multiscale asymptotic
gradient (MAG) differential inclusion introduced in [1]. The idea behind the exte-
rior penalization approach is to add a high cost to constraint violation, forcing the
trajectory towards the feasible set.

It is worth mentioning that in [2] the authors consider implicit discretizations of
the MAG, which also produce solutions for the problem. This approach is closely re-
lated to the pioneer work [3] and also to [4, 5], and [6]. The fundamental advantage of
the purely explicit scheme presented in this work is the simplicity in the computation
of each iteration. In implicit schemes, each iteration has a considerably higher com-
putational cost because one typically has to solve a nonlinear equation. Moreover,
proximal schemes do not show better convergence properties when the functions in-
volved are regular. In fact, it sometimes works in the opposite way (see [7]). Another
advantage of gradient-type methods is the availability of different rules for the se-
lection of the step sizes, which can accelerate the convergence. A forward–backward
method is studied in [8], which is explicit with respect to the penalization and implicit
with respect to the objective function.

The paper is organized as follows: Sect. 2 contains the description of the algo-
rithm and the convergence results. Most technical aspects are gathered in Sect. 2.2.
In Sect. 3, we discuss several implementation issues, namely: stability and robust-
ness results which account for inexact computation of the iterates, step size selec-
tion and verification of the hypotheses. Finally, Sect. 4 contains some examples and
applications in mathematical programming, best approximation, partial differential
equations, and signal processing. We also provide a numerical illustration.

2 The Algorithm and Its Asymptotic Analysis

2.1 Preliminaries, Hypotheses and Main Result

Let H be a real Hilbert space with the norm and inner product given by ‖ · ‖ and 〈·, ·〉,
respectively. Let Φ and Ψ be proper convex functions on H and assume for simplicity
(see Sect. 3.3) that both are everywhere defined and differentiable. We consider the
problem of finding a point in the set

S := argmin{Φ(x) : x ∈ argmin(Ψ )}

assuming S , and thus argmin(Ψ ), is nonempty. On the one hand, S can be interpreted
as the set of solutions of a hierarchical optimization problem, where Ψ and Φ are
primary and secondary criteria, respectively. On the other hand, any (convex and
regular) constrained optimization problem of the form min{Φ(x) : x ∈ C} can be
expressed in this context by choosing, for instance, Ψ as the square of the distance
to the set C. Another simple example is when C := {x ∈ H : g(x) ≤ 0}, where g is
a differentiable convex function. In this case, one can take Ψ as the square of the
positive part of g (see Sect. 4 for further details). In what follows, we write C :=
argmin(Ψ ).
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In order to approximate points in S , we propose a diagonal gradient scheme
(DGS) which generates a sequence in H by coupling the gradient method with an
exterior penalization procedure with respect to Ψ , namely:

(DGS)

{
x1 ∈ H,

xn+1 = xn − λn∇Ωn(x
n), for n ≥ 1.

Here the penalized function Ωn is given by Ωn := Φ + βnΨ . The step size λn

and the penalization parameter βn are positive numbers. Throughout the paper,
we assume that the gradients ∇Φ and ∇Ψ are Lipschitz-continuous with constants
LΦ and LΨ , respectively. Therefore, ∇Ωn is Lipschitz-continuous with constant
Ln := LΦ + βnLΨ . This is a standard assumption for the convergence of gradient-
type systems (see [9, Sect. 1.2]). We shall also assume, without any loss of generality,
that minΨ = 0.

For the classical notation of Convex Analysis, see [10]. In particular, the Fenchel
conjugate of Ψ is Ψ ∗(x∗) := supy∈H {〈x∗, y〉 − Ψ (y)}; the support function of C at
x∗ is σC(x∗) := supc∈C〈x∗, c〉; and the normal cone to C at x is NC(x) := {x∗ ∈ H :
〈x∗, c − x〉 ≤ 0 for all c ∈ C} if x ∈ C and ∅ otherwise. We denote by R(NC) the
range of the operator NC . Consider the following hypotheses:

H1: There exist K,δ > 0 such that βn+1 − βn ≤ Kλn+1βn+1 and Ln

2 − 1
λn

≤ −(K +
δ) for all n ≥ 1.

H2:
∑

n≥1 λnβn[Ψ ∗( 2p
βn

) − σC(
2p
βn

)] < ∞ for all p ∈ R(NC).
H3: lim infn→∞ λnβn > 0 and

∑
n≥1 λn = ∞.

Hypotheses H1 and H3 essentially refer to the relationship between the growth
of (βn) and the decay of (λn). Hypothesis H2 relates the parameter sequences to the
shape of the function Ψ near the boundary of C. A more thorough discussion on the
verification of these hypotheses, along with examples, is given in Sect. 3. The main
result of this paper is the following:

Theorem 2.1
Assume Hypotheses H1–H3 hold and let (xn) satisfy (DGS). Then (xn) converges

weakly in H as n → ∞ to some x∗ ∈ S . If, moreover, Φ is strongly convex, then (xn)

converges strongly in H as n → ∞ to the unique x∗ ∈ S .

2.2 Convergence

Let us denote by (xn) an arbitrary sequence verifying (DGS) and provide some esti-
mations.

Lemma 2.1 Let x̄ ∈ S and set p̄ := −∇Φ(x̄). For each n ≥ 1, we have

∥∥xn+1 − x̄
∥∥2 − ‖xn − x̄‖2 + λnβnΨ (xn)

≤ ∥∥xn+1 − xn
∥∥2 + λnβn

[
Ψ ∗

(
2p̄

βn

)
− σC

(
2p̄

βn

)]
. (1)
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Proof First, observe that x̄ ∈ S implies 0 ∈ ∇Φ(x̄)+NC(x̄) and so p̄ ∈ NC(x̄). Since

xn+1 − xn

λn

+ βn∇Ψ (xn) = −∇Φ(xn),

the monotonicity of ∇Φ gives
〈
xn − xn+1

λn

− βn∇Ψ (xn) + p̄, xn − x̄

〉
≥ 0, (2)

and therefore,

2
〈
xn − xn+1, xn − x̄

〉 ≥ 2λnβn〈∇Ψ (xn), xn − x̄〉 + 2λn〈p̄, x̄ − xn〉. (3)

But the convexity of Ψ implies

0 = Ψ (x̄) ≥ Ψ (xn) + 〈∇Ψ (xn), x̄ − xn〉, (4)

whence

2λnβn〈∇Ψ (xn), xn − x̄〉 ≥ 2λnβnΨ (xn). (5)

On the other hand, recall that

2
〈
xn − xn+1, xn − x̄

〉 = ∥∥xn+1 − xn
∥∥2 + ‖xn − x̄‖2 − ∥∥xn+1 − x̄

∥∥2
. (6)

Combining (3), (5), and (6), we obtain

∥∥xn+1 − xn
∥∥2 + ‖xn − x̄‖2 − ∥∥xn+1 − x̄

∥∥2 ≥ 2λn〈p̄, x̄ − xn〉 + 2λnβnΨ (xn),

which we rewrite as
∥∥xn+1 − x̄

∥∥2 − ‖xn − x̄‖2 + λnβnΨ (xn)

≤ ∥∥xn+1 − xn
∥∥2 + 2λn〈p̄, xn〉 − λnβnΨ (xn) − 2λn〈p̄, x̄〉.

Finally, observe that p̄ ∈ NC(x̄) if and only if σC(p̄) = 〈p̄, x̄〉. Whence

2λn〈p̄, xn〉 − λnβnΨ (xn) − 2λn〈p̄, x̄〉

= λnβn

[〈
2p̄

βn

, xn

〉
− Ψ (xn) −

〈
2p̄

βn

, x̄

〉]

≤ λnβn

[
Ψ ∗

(
2p̄

βn

)
−

〈
2p̄

βn

, x̄

〉]

= λnβn

[
Ψ ∗

(
2p̄

βn

)
− σC

(
2p̄

βn

)]
,

which yields (1). �

If Φ is strongly convex, then the same argument leads to the following stronger
estimation:
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Lemma 2.2 Let Φ be strongly convex with parameter α > 0. Take x̄ ∈ S and set
p̄ := −∇Φ(x̄). For each n ≥ 1, we have

∥∥xn+1 − x̄
∥∥2 − ‖xn − x̄‖2 + λnβnΨ (xn) + αλn‖xn − x̄‖2

≤ ∥∥xn+1 − xn
∥∥2 + λnβn

[
Ψ ∗

(
2p̄

βn

)
− σC

(
2p̄

βn

)]
.

Proof The strong monotonicity of ∇Φ implies that inequality (2) can be reinforced
to 〈

xn − xn+1

λn

− βn∇Ψ (xn) + p̄, xn − x̄

〉
≥ α‖xn − x̄‖2.

This explains the additional term αλn‖xn − x̄‖2 on the left-hand side of the inequal-
ity. �

We now turn our attention to the values of the penalized function Ωn = Φ + βnΨ ,
whose gradient is Lipschitz-continuous with constant Ln = LΦ + βnLΨ . Observe
that from [9, Proposition A.24] we deduce that

Ωn(y) ≤ Ωn(x) + 〈∇Ωn(x), y − x〉 + Ln

2
‖x − y‖2 for all x, y in H . (7)

Lemma 2.3 For each n ≥ 1, we have

Ωn+1
(
xn+1) − Ωn(x

n) ≤ (βn+1 − βn)Ψ
(
xn+1) +

[
Ln

2
− 1

λn

]∥∥xn+1 − xn
∥∥2

.

Proof Recall that − xn+1−xn

λn
= ∇Ωn(x

n). By inequality (7), we have

Φ
(
xn+1) + βnΨ

(
xn+1)

≤ Φ(xn) + βnΨ (xn) −
〈
xn+1 − xn

λn

, xn+1 − xn

〉
+ Ln

2

∥∥xn+1 − xn
∥∥2

.

We conclude by adding βn+1Ψ (xn+1) to both sides and rearranging the terms. �

For x̄ ∈ S write

ξn := Φ(xn) + (1 − Kλn)βnΨ (xn) + K‖xn − x̄‖2

= Ωn(x
n) − KλnβnΨ (xn) + K‖xn − x̄‖2.

Corollary 2.1 Let x̄ ∈ S , set p̄ = −∇Φ(x̄) and assume Hypothesis H1 holds. Then
for each n ≥ 1 we have

ξn+1 − ξn + δ
∥∥xn+1 − xn

∥∥2 ≤ Kλnβn

[
Ψ ∗

(
2p̄

βn

)
− σC

(
2p̄

βn

)]
.
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Proof Hypothesis H1 and Lemma 2.3 together imply

Ωn+1
(
xn+1) − Ωn(x

n) ≤ Kλn+1βn+1Ψ
(
xn+1) − (K + δ)

∥∥xn+1 − xn
∥∥2

.

Now multiply inequality (1) by K to obtain

K
∥∥xn+1 − x̄

∥∥2 − K‖xn − x̄‖2 + KλnβnΨ (xn)

≤ K
∥∥xn+1 − xn

∥∥2 + Kλnβn

[
Ψ ∗

(
2p̄

βn

)
− σC

(
2p̄

βn

)]
.

The result follows upon adding the last two inequalities. �

We shall use the following elementary fact concerning the convergence of real
sequences. A proof can be found, for instance, in [11, Lemma 3.1] or [8, Lemma 2].

Lemma 2.4 Let (ζn) be bounded from below and let (δn) be non-negative. Assume

ζn+1 − ζn + δn ≤ εn

for all n ≥ 1 and
∑

n≥1 εn < ∞. Then limn→∞ ζn exists and
∑

n≥1 δn < ∞.

Proposition 2.1 Let x̄ ∈ S and let Hypotheses H1 and H2 hold. Then

(i) limn→∞ ξn exists and
∑

n≥1 ‖xn+1 − xn‖2 < ∞.
(ii) limn→∞ ‖xn − x̄‖ exists and

∑
n≥1 λnβnΨ (xn) < ∞.

(iii) limn→∞ Ωn(x
n) exists.

(iv) If, moreover, lim infn→∞ λnβn > 0 then limn→∞ Ψ (xn) = 0 and every weak
cluster point of the sequence (xn) lies in C.

Proof For (i) set ζn = ξn, δn = δ‖xn+1 − xn‖2 and εn = Kλnβn[Ψ ∗( 2p̄
βn

) − σC(
2p̄
βn

)],
where p̄ = −∇Φ(x̄). The second inequality in Hypothesis H1 implies 1 − Kλn > 0.
This fact and the convexity of Φ yield

ξn ≥ Φ(xn) + K‖xn − x̄‖2

≥ Φ(x̄) + 〈∇Φ(x̄), xn − x̄〉 + K‖xn − x̄‖2

≥ Φ(x̄) − ‖p̄‖‖xn − x̄‖ + K‖xn − x̄‖2

≥ Φ(x̄) − ‖p̄‖2

4K
,

and so the sequence (ξn) is bounded from below. Since p̄ ∈ NC(x̄), Hypothesis H2
implies

∑
n≥1 εn < ∞. Corollary 2.1 and Lemma 2.4 then give the result.

For (ii) set ζn = ‖xn− x̄‖2, δn = λnβnΨ (xn), εn = ‖xn+1 −xn‖2 +λnβn[Ψ ∗( 2p̄
βn

)−
σC(

2p̄
βn

)] and use inequality (1) along with part (i) and Lemma 2.4.
For (iii) just notice that

Ωn(x
n) = ξn + KλnβnΨ (xn) − K‖xn − x̄‖2
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and use parts (i) and (ii).
Finally, (iv) follows immediately from (ii). �

Proposition 2.2 Let x̄ ∈ S and assume Hypotheses H1 and H2 hold. Then

∑
n≥1

λn[Ωn(x
n) − Φ(x̄)] < +∞ (possibly −∞).

Proof The convexity of Φ gives

Φ(x̄) ≥ Φ(xn) + 〈∇Φ(xn), x̄ − xn〉.

This inequality and (4) together give

Φ(x̄) − Ωn(x
n) ≥ 〈∇Ωn(x

n), x̄ − xn〉 =
〈
xn − xn+1

λn

, x̄ − xn

〉
.

Using (6), we deduce that

2λn[Ωn(x
n) − Φ(x̄)] ≤ ∥∥xn − xn+1

∥∥2 + ‖xn − x̄‖2 − ∥∥xn+1 − x̄
∥∥2

,

and so

2
∑
n≥1

λn[Ωn(x
n) − Φ(x̄)] ≤ ∥∥x1 − x̄

∥∥2 +
∑
n≥1

∥∥xn+1 − xn
∥∥2

< +∞

as required. �

Now we are in position to prove the main result:

Proof of Theorem 2.1. By Opial’s Lemma [12] and part (ii) of Proposition 2.1, it
suffices to prove that every weak cluster point of the sequence {xn} lies in S . Let
(xkn) converge weakly to x∞ as n → ∞. But

∑
n≥1 λn = ∞ by the second state-

ment in Hypothesis H3. Therefore, part (iii) in Proposition 2.1 and Proposition 2.2
together imply limn→∞ Ωn(x

n) ≤ Φ(x̄) for every x̄ ∈ S . In view of the weak lower-
semicontinuity of Φ , we have

Φ(x∞) ≤ lim inf
n→∞ Φ(xkn) ≤ lim

n→∞Ωn(x
n) ≤ Φ(x̄)

for every x̄ ∈ S . But x∞ must belong to C by the first statement in Hypothesis H3 and
part (iv) in Proposition 2.1. This implies x∞ ∈ S and proves the weak convergence.
For the strong convergence in the strongly convex case, we use Lemma 2.2, observing
that the right-hand side of the inequality is summable by Hypothesis H2 and part (i)
in Proposition 2.1. Lemma 2.4 then implies that

∑
n≥1 λn‖xn − x̄‖2 < ∞, whence

lim infn→∞ ‖xn − x̄‖ = 0. Since limn→∞ ‖xn − x̄‖ exists, the sequence (xn) must
converge strongly to x̄. �
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3 Implementation Issues

In this section, we discuss some ideas leading to the practical use of this method.
First, we present some stability and robustness properties, which in particular allow
computing the iterates inexactly. Next we comment on the selection of the parame-
ter sequences (λn) and (βn) in order to satisfy the hypotheses of Theorem 2.1. We
also describe a complementary heuristic for the step size selection. Finally, we men-
tion some facts about the differentiability assumptions that explain how they can be
weakened.

3.1 Stability and Robustness

We now derive some stability properties of the algorithm described in the preceding
sections with respect to perturbations of the initial data.

For n ≥ 1 and x ∈ H , write Pn(x) = x − λn∇Ωn(x) so that the sequences gener-
ated by (DGS) verify xn+1 = Pn(x

n).

Lemma 3.1 Assume λnLn ≤ 2. Then the function Pn is nonexpansive.

Proof For x, y ∈ H , we have

‖Pn(x) − Pn(y)‖2 = ‖(x − y) − λn(∇Ωn(x) − ∇Ωn(y))‖2

= ‖x − y‖2 + λ2
n‖∇Ωn(x) − ∇Ωn(y)‖2

− 2λn〈x − y,∇Ωn(x) − ∇Ωn(y)〉.
Since ∇Ωn is Ln-Lipschitz, we deduce from [13, Corollary 10] that

〈x − y,∇Ωn(x) − ∇Ωn(y)〉 ≥ 1

Ln

‖∇Ωn(x) − ∇Ωn(y)‖2.

Whence

‖Pn(x) − Pn(y)‖2 ≤ ‖x − y‖2 + λn

[
λn − 2

Ln

]
‖∇Ωn(x) − ∇Ωn(y)‖2 ≤ ‖x − y‖2,

and so Pn is nonexpansive. �

Observe that the second inequality in Hypothesis H1 implies λnLn ≤ 2. We have
the following result concerning the stability of the sequence and its weak limits:

Proposition 3.1 Let (xn
1 ) and (xn

2 ) satisfy (DGS) starting from x1
1 and x1

2 , respec-
tively.

(i) If λnLn ≤ 2 for all n ≥ 1 then ‖xn
1 − xn

2 ‖ ≤ ‖x1
1 − x1

2‖ for all n ≥ 1.
(ii) If, moreover, xn

1 ⇀ x∞
1 and xn

2 ⇀ x∞
2 as n → ∞ then ‖x∞

1 − x∞
2 ‖ ≤ ‖x1

1 − x1
2‖.

Finally, we prove that convergence can still be granted if the sequence is computed
approximately with sufficiently small errors.
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Proposition 3.2 Let Hypotheses H1–H3 hold and assume (xn) satisfies

∥∥xn+1 − Pn(x
n)

∥∥ ≤ εn

for all n ≥ 1. The conclusions of Theorem 2.1 remain valid provided
∑

n≥1 εn < ∞.

Proof It suffices to apply [14, Proposition 6.2] in view of Lemma 3.1. �

3.2 The Hypotheses and Their Verification

One simple way to build sequences (λn) and (βn) satisfying Hypotheses H1 and H3
is the following: Take any K > 0, δ > 0, 0 < γ < 2

LΨ
and 0 < q ≤ 1. Then set

βn = γ [LΦ + 2(K + δ)]
2 − γLΨ

+ γKnq and λn = γ

βn

. (8)

Then, clearly, βn+1 −βn = γK[(n+ 1)q −nq ] ≤ γK = Kλn+1βn+1. This is the first
inequality in Hypothesis H1. On the other hand, for all n ≥ 1 one has

βn ≥ γ [LΦ + 2(K + δ)]
2 − γLΨ

.

Since 2 − γLΨ > 0, we have 2βn − γβnLΨ ≥ γ [LΦ + 2(K + δ)], and so 2βn ≥
γ [Ln + 2(K + δ)]. Dividing by 2γ and rearranging the terms, we obtain the second
inequality in Hypothesis H1. Hypothesis H3 is straightforward since 0 < q ≤ 1.

The following heuristic—based on the exact minimization rule1 (see [9, Sect. 1.2])
—can complement (8) as a criterion for the selection of the parameters. Recall that
Ωn(x) = Φ(x) + βnΨ (x) and write Tn = ∇Ωn so that xn+1 = xn − λnTn(x

n). For
λ > 0, write θn(λ) := Ωn(x

n −λTn(x
n)) and let λn be any minimizer of θn, provided

such minimizers exist (for instance, if Ωn is coercive). Since θn is differentiable one
must have θ ′

n(λn) = 0. In other words, λn solves

〈Tn(x
n − λnTn(x

n)), Tn(x
n)〉 = 0.

If Tn is replaced by a linear approximation T̃n near xn it seems reasonable to choose

λn = ‖T̃n(x
n)‖2

〈T̃ 2
n (xn), T̃n(xn)〉 .

Regarding Hypothesis H2, we begin by pointing out that it is the discrete version
of Hypothesis (H1) in [1] and was already introduced in [2]. Next, observe that all
the terms in the sum are nonnegative. Indeed, since Ψ is bounded from above by
the indicator function of the set C, the reverse inequality holds for their Fenchel
conjugates, whence Ψ ∗(p) − σC(p) ≥ 0 for all p ∈ H . On the other hand, if Ψ has
quadratic growth, Hypothesis H2 can be granted under a very simple assumption on

1Other alternatives are the limited minimization rule, the Armijo rule, and the Goldstein rule.
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the parameters. More precisely, suppose that Ψ (·) ≥ a
2 dist(·,C)2 for some a > 0.2

Then Ψ ∗(p) − σC(p) ≤ 1
2a

‖p‖2 for all p ∈ R(NC). In that case,

λnβn

[
Ψ ∗

(
2p

βn

)
− σC

(
2p

βn

)]
≤ 2λn‖p‖2

aβn

,

and so the summability of the sequence ( λn

βn
) is sufficient for H2. Notice that it is

also necessary if Ψ (·) = a
2 dist(·,C)2. Further, observe that if lim infn→∞ λnβn > 0—

which holds under Hypothesis H3—then the summability of (λ2
n) is sufficient for the

summability of ( λn

βn
).

3.3 The Regularity of Φ and Ψ

We shall comment briefly on two remarks concerning the Lipschitz-continuity as-
sumption on the gradients of Φ and Ψ .

Global to Local

One realizes a posteriori that a local Lipschitz-continuity assumption on the gradients
is sufficient for the convergence of the method. In practice, the problem is that the
parameter sequences (λn) and (βn) depend on the Lipschitz constants. In particular
instances it would be possible to use local Lipschitz constants on appropriate sublevel
sets.

Restricted Domain

The functions Φ and Ψ need only be defined and regular on a convex domain D ⊂ H ,
provided the sequence (xn) is well-defined in the sense that xn − λn∇Ωn(x

n) ∈ D

for all n ≥ 1. A more careful selection of the step sizes may be necessary. This seems
an interesting line for future research.

4 Examples

In this section, we describe several simple instances where this method can be ap-
plied. They appear in different contexts in science and engineering problems, such
as optimal control of linear systems, mathematical programming, domain decompo-
sition methods for PDEs, transport, imaging and signal processing (see [2, 8, 16] or
[17]), among others. As an illustration, we provide a numerical example in signal
reconstruction from partial information.

2This holds, for instance, if C = {x ∈ H : Ax = b} and Ψ (x) = ‖Ax − b‖2
Z

, where A : H → Z is a
bounded linear operator whose range is closed in Z (see, for example, [15, Paragraph II.7]).
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4.1 Relaxed Feasibility

The convex feasibility problem consists in finding a point in the intersection of
nonempty closed convex sets C1, . . . ,CM . This can be expressed as

(F) min
M∑

m=1

δCm(x),

where δCm denotes the indicator function of Cm. Due to possible inaccuracy in the
description of the sets C1, . . . ,CM , the intersection may be empty, and so problem
(F) may not have a solution. A relaxed form is

minΨ (x), where Ψ (x) = 1

2

M∑
m=1

wmdist(x,Cm)2

with wm > 0 for m = 1, . . . ,M.

This gives exact solutions of (F), if there are any and approximate solutions otherwise.
Observe that dist(x,Cm) = ‖x − Pm(x)‖, where Pm denotes the projection operator
onto Cm. Since

‖x + h − Pm(x + h)‖ ≤ ‖x + h − Pm(x)‖,
a simple computation shows that

dist(x + h,Cm)2 − dist(x,Cm)2 − 2〈x − Pm(x),h〉 ≤ ‖h‖2

for each m. Whence Ψ is differentiable and

∇Ψ (x) =
M∑

m=1

wm(x − Pm(x)).

The function Φ can be incorporated as a criterion for selecting particular feasible
points.

4.2 Convex Inequality Constraints

Consider the mathematical programming problem

min{Φ(x) : x ∈ C}, where C = {
x ∈ RN : gj (x) ≤ 0, for j = 1, . . . , J

}
,

where Φ and the gj ’s are proper differentiable convex functions on H . Let [r]+
denote the positive part of r ∈ R. Take Ψ (x) = 1

2

∑J
j=1[gj (x)]2+ so that C =

argmin(Ψ ). If each gj is differentiable, then so is Ψ and

∇Ψ (x) =
J∑

j=1

[gj (x)]+∇gj (x).
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4.3 Realizing the Distance Between Two Closed Affine Subspaces

For i = 1,2, consider a point bi in a Hilbert space Yi , a bounded linear operator
Ai : H → Yi and set Pi = {x ∈ H : Aix = bi}. The distance between P1 and P2 can
be expressed as

min{Φ(x1, x2) : (x1, x2) ∈ argmin(Ψ )},
where Φ(x1, x2) = 1

2‖x1 − x2‖2 and Ψ (x1, x2) = 1
2‖A1x1 − b1‖2 + 1

2‖A2x2 − b2‖2.
Here {

xn+1
1 = (1 − λn)x

n
1 + λnx

n
2 − λnβnA

∗
1(A1x

n
1 − b1),

xn+1
2 = λnx

n
1 + (1 − λn)x

n
2 − λnβnA

∗
2(A2x

n
2 − b2).

Observe that this can be seen as a two-step iteration where one first computes a
barycenter of xn

1 and xn
2 and then performs a steepest descent step with respect to

Ψ .

4.4 Structured Optimization with Coupling

Consider the minimization problem

min{F1(x1) + Q(x1, x2) + F2(x2) : A1x1 = A2x2, (x1, x2) ∈ H1 × H2}, (9)

where H1, H2, and Z are real Hilbert spaces, each Ai is a bounded linear (or affine)
operator from Hi to Z, each Fi is a proper differentiable convex function on Hi and Q

is a positive semidefinite quadratic function. Here Φ(x1, x2) = F1(x1)+Q(x1, x2)+
F2(x2) and Ψ (x1, x2) = ‖A1x1 − A2x2‖2. In this case,

{
xn+1

1 = xn
1 + λn∇F1(x

n
1 ) + λn∇x1Q(xn

1 , xn
2 ) − λnβnA

∗
1(A1x

n
1 − A2x

n
2 ),

xn+1
2 = xn

2 + λn∇F2(x
n
2 ) + λn∇x2Q(xn

1 , xn
2 ) − λnβnA

∗
2(A2x

n
2 − A1x

n
1 ).

Proximal-type algorithms often require computations of resolvents of sums for these
kinds of problems (see [16] or [18]). Exceptions are the predictor–corrector methods,
as studied in [19].

4.5 Stokes Equation

The following formulation has been taken from [20, Chapter IV, Section 2.5] and
pointed out by F. Álvarez. Let Ω be a bounded domain in Rd and let f ∈ L2(Ω;Rd).
Consider the problem of finding a velocity u ∈ H 1

0 (Ω;Rd) and a pressure p ∈
L2(Ω;R) such that

(S)

⎧⎨
⎩

−�u + ∇p = f on Ω,

div(u) = 0 on Ω,

u = 0 on ∂Ω.

We shall express (S) as a variational problem in the product space framework de-
scribed in Sect. 4.4 with H1 = H 1

0 (Ω;Rd)3, H2 = Z = L2(Ω;R), A1u = div(u),

3We can use ‖v‖
H1

0
= ‖∇v‖

L2 , by virtue of Poincaré Inequality.



J Optim Theory Appl (2012) 153:123–138 135

and A2 ≡ 0. However, we shall see that the problem can be completely decou-
pled and expressed as two simpler problems, one on each factor space. First, define
F1(u) = 1

2‖∇u‖2
L2 − 〈f,u〉L2 and consider the problem

(P) min{F1(u) : u ∈ H1 and div(u) = 0} = min{F1(u) + δ{0}(A1u) : u ∈ H1}.
If we define the Lagrangian function

L(u,p) = F1(u) + 〈p,A1u〉L2,

then the dual of (P) in the sense of Fenchel–Rockafellar is

(D) min{F ∗
1 (−A∗

1p) + δ∗{0}(p) : p ∈ L2} = min{F ∗
1 (−A∗

1p) : p ∈ H2}.
Here the pressure p can be interpreted as a Lagrange multiplier for the incompress-
ibility condition div(u) = 0. Observe that

F ∗
1 (−A∗

1p) = sup
v∈H1

{〈−A∗
1p,v〉H ∗

1 ,H1 − F1(v)}. (10)

For each p ∈ H2, the optimization problem above has a unique solution vp , which is
also the unique function in H1 satisfying −�vp = f + ∇p in the sense of distribu-
tions. Moreover,

F ∗
1 (−A∗

1p) = 1

2
‖∇vp‖2

L2 .

The reader can verify that (P) and (D) have solutions. Observe that, if u∗ is a solution
of (P) and p∗ is a solution of (D), then div(u∗) = 0 and

F1(u
∗) + F ∗

1 (−A∗
1p

∗) = 〈−A∗
1p

∗, u∗〉 = −〈p∗,A1u
∗〉 = 0.

This also implies that u∗ = vp∗ by uniqueness of solution of the optimization prob-
lem in (10). Whence −�u∗ + ∇(−p∗) = f in the sense of distributions, and so the
pair (u∗,−p∗) is a weak solution for (S). Moreover, (u∗,p∗) is a saddle point of
L (see [21, Sect. 8.4.4]). Setting F2(p) = 1

2‖vp‖2
H1

, Φ(u,p) = F1(u) + F2(p), and

Ψ (u,p) = 1
2‖div(u)‖2

L2 , the solutions of

min{Φ(u,p) : (u,p) ∈ argmin(Ψ )}
are weak solutions for Stokes equation (S) and can be approximated using our (DGS).
The complete decoupling makes this equivalent to solving one problem on each space
H1 and H2. Observe that F1 is strongly convex but F2 is not. Whence the velocities
converge strongly.

4.6 Signal Reconstruction

Let H = L2(Ω;R), where Ω is a bounded domain in RN . A signal x ∈ H is to be
reconstructed from partial information given by a set of observations and a priori
information on the signal itself. This is related to the stable signal recovery problem
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(see [22]). As an example, suppose that the support of the signal is known to be
contained in some set Ω0 ⊂ Ω (a priori information) and a finite number of its Fourier
coefficients have been computed (observations). Let w1, . . . ,wJ be selected Fourier
coefficients with respect to the normalized functions ê1, . . . , êJ . Assume they have
been computed approximately with a tolerance ε > 0. Then we have

C = {x ∈ H : supp(x) ⊂ Ω0 and |〈̂ej , x〉 − wj | ≤ ε for j = 1, . . . , J }.
In order to find the least-energy function satisfying the constraints, one can define

Φ(x) = 1

2
‖x‖2

L2(Ω;R)
and

Ψ (x) = 1

2
‖x‖2

L2(Ω\Ω0;R)
+ 1

2

J∑
j=1

[
|〈̂ej , x〉 − wj | − ε

]2

+
.

Here

∇Φ(x) = x, and ∇Ψ (x) = x1Ω\Ω0 +
J∑

j=1

ρj (x) êj ,

where 1 is the characteristic function and

ρj (x) =
⎧⎨
⎩

〈̂ej , x〉 − wj − ε if 〈̂ej , x〉 − wj > ε,

〈̂ej , x〉 − wj + ε if 〈̂ej , x〉 − wj < −ε,

0 otherwise,

for j = 1, . . . , J . One easily sees that LΦ = 1 and LΨ = J + 1. We provide a
simple numerical simulation with Ω = [0,2π] ⊂ R, Ω0 = [π,2π], ê1(t) = 1√

2π
,

ê2(t) = 1√
π

cos(t), ê3(t) = 1√
π

sin(t), w = (0,1,−1), and ε = 10−2. The following

naive SCILAB implementation uses βn = n and λn = 1
3n

starting from x1(t) = sin(t).

N=1000; h=0.02; eps=0.01;
t=0:h:2*%pi; K=length(t); K2=(K-1)/2;
e1=ones(1,K); e2=cos(t); e3=sin(t); w=[0, 1, -1];
x=sin(t); y=zeros(1,K);
for n=1:N
d1=(sqrt(2*%pi)/K)*sum(x)-w(1);
d2=(2*sqrt(%pi)/K)*sum(e2.*x)-w(2);
d3=(2*sqrt(%pi)/K)*sum(e3.*x)-w(3);
if d1>eps then rho1=d1-eps; elseif d1<-eps then rho1=d1+eps; else
rho1=0; end
if d2>eps then rho2=d2-eps; elseif d2<-eps then rho2=d2+eps; else
rho2=0; end
if d3>eps then rho3=d3-eps; elseif d3<-eps then rho3=d3+eps; else
rho3=0; end
lambdan=1/(3*n); betan=n;
y=x; for j=(K2+1):K y(1,j)=0; end
z=(1/sqrt(2*%pi))*rho1*e1+(1/sqrt(%pi))*rho2*e2+(1/sqrt(%pi))*rho3*e3;
x=(1-lambdan)*x-lambdan*betan*y-lambdan*betan*z;

end
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Fig. 1 Approximate solutions
x1 (– –), x10 (- - -), x100 (—)
and x1000 ( )

The processing time for 1000 iterations was 0.7 seconds on a personal computer
with an E2200 Intel(R) Pentium(R) Dual CPU and 3 GB of RAM. Figure 1 shows
the evolution of the approximate solutions.

Following Sect. 3.3, the energy may be replaced by different selection criteria,
such as the Boltzmann–Shannon entropy. Its implementation goes beyond the scope
of this paper, though.

5 Concluding Remarks

We have presented a diagonal gradient scheme inspired by previous works from
[1, 2], and [8]. The algorithm couples the gradient method with a general exterior
penalization procedure. We establish the weak or strong convergence according to
the properties of the objective function. Next, we provide some guidelines for the
implementation of the method. These include the selection of the parameters as well
as stability and robustness properties. Finally, we discuss applications to relaxed fea-
sibility, mathematical programming with convex inequality constraints, the distance
between (possibly infinite-dimensional) closed affine subspaces of a Hilbert space,
structured optimization with coupling, Stokes equation and signal reconstruction.

Acknowledgements Partly supported by FONDECYT grant 11090023 and Basal Proyect, CMM, Uni-
versidad de Chile. The author thanks H. Attouch for useful remarks.
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