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Abstract We investigate a global complexity bound of the Levenberg–Marquardt
Method (LMM) for nonsmooth equations. The global complexity bound is an upper
bound to the number of iterations required to get an approximate solution that satisfies
a certain condition. We give sufficient conditions under which the bound of the LMM
for nonsmooth equations is the same as smooth cases. We also show that it can be
reduced under some regularity assumption. Furthermore, by applying these results to
nonsmooth equations equivalent to the nonlinear complementarity problem (NCP),
we get global complexity bounds for the NCP. In particular, we give a reasonable
bound when the mapping involved in the NCP is a uniformly P-function.

Keywords Levenberg–Marquardt methods · Global complexity bound · Nonlinear
complementarity problems

1 Introduction

We consider a system of nonsmooth equations, where the mapping involved in the
system is locally Lipschitz continuous. When the system has a solution, it is equiv-
alent to the nonlinear least squares problem. In this paper, we assume that the least
squares merit function be continuously differentiable, though the mapping involved
in the system is nonsmooth. The system satisfying these assumptions includes im-
portant applications, such as the nonlinear complementarity problem (NCP) and the
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Karush–Kuhn–Tacker (KKT) system [1]. For the system of nonsmooth equations or
the NCP, the Levenberg–Marquardt method (LMM) is known to be an efficient solu-
tion method [2–8].

A global complexity bound is one of the important factors for choosing an appro-
priate solution method [9–17]. (See Sect. 2 for the detail of the global complexity
bounds.) Since it corresponds to the worst computational time, it is useful when we
want to estimate in advance the time for solving a large-scale problem. Recently, the
bounds of some general iterative methods for the unconstrained minimization prob-
lem, such as the steepest descent method and the Newton-type methods, have been
actively investigated. Thus, if we apply these results to the least squares problem,
we can estimate the bound for the problem. However, since these methods are not
specialized to the least squares problem, they are not efficient. In fact, the steepest
descent method converges slow in general. Moreover, the Newton-type methods [9–
11, 13–16] require the twice continuous differentiability of the mapping. Recently,
Ueda and Yamashita [17] investigated the bound of the LMM, which is a special
method for the least squares problem. Under the assumption that the mapping be
continuously differentiable, they give a bound without any regularity assumption on
the mapping. However, we cannot directly apply this result to a system of nonsmooth
equations.

In this paper, we consider an LMM for the nonsmooth equations. We give suffi-
cient conditions under which the LMM has the same bound as [17]. Moreover, under
some regularity assumption, we give a much better bound. By applying these results
to the NCP, we get the global complexity bounds for the NCP. In particular, we can get
a reasonable bound when the mapping involved in the NCP is a uniformly P-function.

This paper is organized as follows. In the next section, we give some definitions
related to the global complexity bound and the generalized Jacobian. In Sect. 3, we
introduce the LMM for nonsmooth equations. In Sect. 4, we give the global complex-
ity bounds of the LMM. In Sect. 5, we apply the results on the bounds to the NCP.
Finally, Sect. 6 concludes the paper.

2 Main Problems and Preliminaries

2.1 Main Problems

In this paper, we consider a system of nonsmooth equations

F(x) = 0, (1)

where F : R
n → R

m is a locally Lipschitz continuous mapping. As mentioned in the
Introduction, when the system (1) has a solution, it is equivalent to the nonlinear least
squares problem

minimizex∈Rn f (x) := 1

2

∥
∥F(x)

∥
∥

2
. (2)

We assume that the least squares merit function f be continuously differentiable.
When we solve an unconstrained minimization problem of a nonconvex function

f by some iterative methods, the global complexity bound is defined as follows.
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Definition 2.1 Let ε be a given positive constant. The global complexity bound is
defined as an upper bound of the number of iterations required to get an approximate
stationary point x such that

∥
∥∇f (x)

∥
∥ ≤ ε.

Ueda and Yamashita [17] showed that the global complexity bound of the LMM
for (2) is O(ε−2) under the assumption F be continuously differentiable.

A main purpose of the paper is to provide a global complexity bound of the LMM
for nonsmooth equations (1).

2.2 Notations

Throughout the paper, we use the following notations. For a vector x ∈ R
n, ‖x‖

denotes the Euclidean norm defined by ‖x‖ := √
xT x. For a symmetric matrix

M ∈ R
n×n, we denote the maximum eigenvalue and the minimum eigenvalue of M

as λmax(M) and λmin(M), respectively. For a matrix M ∈ R
n×m, ‖M‖ denotes the �2

norm of M defined by ‖M‖ := √

λmax(MT M). If M is symmetric positive semidef-
inite matrix, then ‖M‖ = λmax(M). B(x, r) denotes the closed sphere with center x

and radius r , i.e., B(x, r) := {y ∈ R
n | ‖y − x‖ ≤ r}. For sets S1 ⊆ R

n and S2 ⊆ R
n,

S1 + S2 denotes the sum of S1 and S2 defined by S1 + S2 := {x + y ∈ R
n | x ∈ S1,

y ∈ S2}. For a set S, P (S) denotes the set consisting of all the subsets of S.

2.3 Definitions

We give some definitions that will be used in the subsequent sections.
When a vector mapping F is nonsmooth, we cannot necessarily use the Jacobian

of F . Nevertheless, we can define the generalized Jacobian of F , if F is locally
Lipschitz continuous [18, 19].

Definition 2.2 Let DF ⊆ R
n be the set where F is differentiable.

(a) The B-subdifferential of F at x is defined by

∂BF(x) :=
{

J ∈ R
n×m

∣
∣ J = lim

k→∞∇F
(

xk
)

, lim
k→∞xk = x,

{

xk
} ⊆ DF

}

.

(b) The Clarke generalized Jacobian of F at x is defined by

∂F (x) := conv ∂BF(x),

where conv denotes the convex hull of the set.

Remark 2.1 Note that, since F is assumed to be locally Lipschitz continuous in this
paper, then we can use the above subdifferentials. Note also that ∂BF(x) and ∂F (x)

are nonempty and compact set for each x [18]. Moreover, if a least squares merit func-
tion f (x) := 1

2‖F(x)‖ is continuously differentiable, we have ∇f (x) = J T F (x),
∀J ∈ ∂F (x) by using the standard calculus rules [18].
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Remark 2.2 The Fischer–Burmeister function defined by ψ(a, b) := √
a2 + b2 −a −

b is not differentiable at (0,0), but it is locally Lipschitz continuous. Thus, the gen-
eralized Jacobian ∂ψ is well defined at (0,0).

Remark 2.3 To solve the nonsmooth equations (1), the Newton-type methods with
the generalized Jacobian are often used [3, 20]. For example, the generalized Newton
method updates the kth iterative point as xk+1 := xk + dk , where dk is a search
direction such that Jkd

k = −F(xk), Jk ∈ ∂F (xk).

From Definition 2.2, the generalized Jacobian ∂F is a point-to-set mapping
from R

n into P (Rn×m). Next, we introduce the upper semicontinuity of a point-to-set
mapping [21].

Definition 2.3 Let X be a subset of R
n, Y be a subset of R

n×m, and Θ be a point-to-
set mapping from X into P (Y ).

(a) Θ is uniformly compact near x̄ ∈ X if there exists a neighborhood N of x̄ such
that the closure of

⋃

x∈N Θ(x) is compact.
(b) Θ is closed at x̄ if xk → x̄, yk ∈ Θ(xk) and yk → ȳ imply ȳ ∈ Θ(x̄).
(c) Θ is upper semi-continuous at x̄ if Θ is uniformly compact near x̄ and closed

at x̄.

It is well-known that ∂F is upper semi-continuous [18]. Thus, for each x,
maxJ∈∂F (x) ‖J‖ is bounded above.

3 The Levenberg–Marquardt Method

In this section, we explain the LMM for the system of nonsmooth equations (1).
In what follows, let xk be the kth iterative point, Fk be F(xk), and Jk ∈ ∂F (xk).
Throughout the paper, we need the following assumptions.

Assumption 3.1

(a) The vector mapping F is locally Lipschitz continuous.
(b) The least squares merit function f is continuously differentiable.

As mentioned in Remark 2.1, we can use the generalized Jacobian under Assump-
tion 3.1(a). Moreover, the system (1) satisfying Assumption 3.1 includes important
applications such as the nonlinear complementarity problem (NCP) and the Karush–
Kuhn–Tacker (KKT) system.

For the current iterative point xk , an LMM adopts a search direction dk(μk) de-
fined by

dk(μk) := −(

J T
k Jk + μkI

)−1
J T

k Fk,

where μk is a positive parameter. In order to guarantee global convergence property,
μk is updated based on the idea of the trust-region method [22, 23]. Note that a search
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direction dk(μk) is given as a solution of a trust-region subproblem of (2), that is,

minimized∈Rn
1

2

∥
∥F

(

xk
) + Jkd

∥
∥

2 subject to ‖d‖2 ≤ Δ2
k,

and μk corresponds to the Lagrange multiplier of the Karush–Kuhn–Tucker condi-
tions of the subproblem. Since the trust-region method controls the trust-region radius
Δk for global convergence, it requires to solve the subproblem at each iteration [22].
On the other hand, Osborne [23] proposed to update μk directly instead of Δk . Then
dk(μk) is given as a solution of the linear equations which is much easier to solve
than the trust-region subproblem. Therefore, we adopt his updating rule with the fol-
lowing little modification. We set μk as

μk := νk‖Fk‖δ,

and we control a positive parameter νk instead of μk . Here, δ is a given constant
such that δ ≥ 0. In what follows, we denote the search direction as dk(νk) instead of
dk(μk).

We control νk as follows. Let fk : R
n × R → R be a model function of f at xk

defined by

fk(d, ν) := 1

2
‖Fk + Jkd‖2 + 1

2
ν‖Fk‖δ‖d‖2.

Let ρk : R
n × R → R be the ratio of the reduction of the merit function value to that

of the model function value, i.e.,

ρk(d, ν) := f (xk) − f (xk + d)

f (xk) − fk(d, ν)
.

If ρk(d
k(νk), νk) is large, then the LMM adopts dk(νk) and decreases the parame-

ter νk . On the other hand, if ρk(d
k(νk), νk) is small, then the LMM increases νk and

computes dk(νk) once again.
We describe the precise description of the LMM as follows.

The Levenberg–Marquardt Method

Step 0: Choose parameters ε, ν0, δ, γ1, γ2, η1, η2 such that

0 < ε < 1, ν0 > 0, δ ≥ 0, γ1 < 1 < γ2, 0 < η1 ≤ η2 ≤ 1.

Choose a starting point x0. Set k := 0.
Step 1: Choose Jk ∈ ∂F (xk). If ‖J T

k Fk‖ ≤ ε, then terminate. Otherwise, go to
Step 2.

Step 2: Step 2.0: Set lk := 1 and ν̄lk := νk .
Step 2.1: Compute

dk(ν̄lk ) = −(

J T
k Jk + ν̄lk‖Fk‖δI

)−1
J T

k Fk.
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Step 2.2: Compute

ρk

(

dk(ν̄lk ), ν̄lk

) = f (xk) − f (xk + dk(ν̄lk ))

f (xk) − fk(dk(ν̄lk ), ν̄lk )
.

If ρk(d
k(ν̄lk ), ν̄lk ) < η1, then update ν̄lk+1 := γ2ν̄lk , set lk :=

lk + 1, and go to Step 2.1. Otherwise, go to Step 3.
Step 3: If η2 > ρk(d

k(ν̄lk ), ν̄lk ) ≥ η1, then update νk+1 := ν̄lk .
If ρk(d

k(ν̄lk ), ν̄lk ) ≥ η2, then update νk+1 := γ1ν̄lk . Update xk+1 := xk +
dk(ν̄lk ). Set k := k + 1, and go to Step 1.

In what follows, for simplicity, we denote lk and μ̄lk at the last iteration of the
inner loops of Steps 2.0–2.2 for each k as l∗k and μ∗

k , respectively.
In the remainder of this section, we show that the LMM is well defined when

‖J T
k Fk‖ 
= 0. First, we give a lower bound of the reduction of the model function.

Lemma 3.1 Suppose that Assumption 3.1 holds. Then

f
(

xk
) − fk

(

dk(ν), ν
) = −1

2
FT

k Jkd
k(ν) ≥ ‖J T

k Fk‖2

2(‖Jk‖2 + ν‖Fk‖δ)
.

Proof By the definitions of f (xk), fk(d
k(ν), ν), and dk(ν), we have

f
(

xk
) − fk

(

dk(ν), ν
) = 1

2
‖Fk‖2 −

(
1

2

∥
∥Fk + Jkd

k(ν)
∥
∥

2 + 1

2
ν‖Fk‖δ

∥
∥dk(ν)

∥
∥

2
)

= −FT
k Jkd

k(ν) − 1

2
dk(ν)T

(

J T
k Jk + ν‖Fk‖δI

)

dk(ν)

= −1

2
FT

k Jkd
k(ν)

= 1

2
FT

k Jk

(

J T
k Jk + ν‖Fk‖δI

)−1
J T

k Fk

≥ λmin((J
T
k Jk + ν‖Fk‖δI )−1)

2

∥
∥J T

k Fk

∥
∥

2

= ‖J T
k Fk‖2

2λmax(J
T
k Jk + ν‖Fk‖δI )

= ‖J T
k Fk‖2

2(‖Jk‖2 + ν‖Fk‖δ)
.

This completes the proof. �

Next, we give an upper bound of ‖dk(ν)‖.
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Lemma 3.2 Suppose that Assumption 3.1 holds. Then

∥
∥dk(ν)

∥
∥ ≤ ‖J T

k Fk‖
ν‖Fk‖δ

.

Proof By the definition of dk(ν), we have

∥
∥dk(ν)

∥
∥ = ∥

∥
(

J T
k Jk + ν‖Fk‖δI

)−1
J T

k Fk

∥
∥

≤ ∥
∥
(

J T
k Jk + ν‖Fk‖δI

)−1∥∥ · ∥∥J T
k Fk

∥
∥

= λmax
((

J T
k Jk + ν‖Fk‖δI

)−1)∥
∥J T

k Fk

∥
∥

= 1

λmin(J
T
k Jk + ν‖Fk‖δI )

∥
∥J T

k Fk

∥
∥

≤ ‖J T
k Fk‖

ν‖Fk‖δ
,

where the last inequality follows from the positive semidefiniteness of J T
k Jk . �

From Lemmas 3.1 and 3.2, we give an upper bound of f (xk + dk(ν)).

Lemma 3.3 Suppose that Assumption 3.1 holds. Then

f
(

xk + dk(ν)
) ≤ fk

(

dk(ν), ν
) − ‖J T

k Fk‖2

2(‖Jk‖2 + ν‖Fk‖δ)

+ ‖J T
k Fk‖

ν‖Fk‖δ

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ.

Proof Since f is continuously differentiable, we have

f
(

xk + dk(ν)
)

= f
(

xk
) +

∫ 1

0
∇f

(

xk + τdk(ν)
)T

dk(ν)dτ

= f
(

xk
) +

∫ 1

0
∇f

(

xk + τdk(ν)
)T

dk(ν)dτ + fk

(

dk(ν), ν
) − fk

(

dk(ν), ν
)

+ FT
k Jkd

k(ν) − FT
k Jkd

k(ν)

= fk

(

dk(ν), ν
) + (

f
(

xk
) − fk

(

dk(ν), ν
) + FT

k Jkd
k(ν)

)

+
∫ 1

0

(∇f
(

xk + τdk(ν)
) − J T

k Fk

)T
dk(ν)dτ.

It then follows from Lemma 3.1 and ∇f (xk) = J T
k Fk that
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f
(

xk + dk(ν)
)

= fk

(

dk(ν), ν
) − (

f
(

xk
) − fk

(

dk(ν), ν
))

+
∫ 1

0

(∇f
(

xk + τdk(ν)
) − ∇f

(

xk
))T

dk(ν)dτ

≤ fk

(

dk(ν), ν
) − (

f
(

xk
) − fk

(

dk(ν), ν
))

+ ∥
∥dk(ν)

∥
∥

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ

≤ fk

(

dk(ν), ν
) − ‖J T

k Fk‖2

2(‖Jk‖2 + ν‖Fk‖δ)

+ ‖J T
k Fk‖

ν‖Fk‖δ

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ,

where the last inequality follows from Lemmas 3.1 and 3.2. �

Next, we give the following key lemma for the well definedness.

Lemma 3.4 Suppose that Assumption 3.1 holds. Suppose also that ‖J T
k Fk‖ 
= 0.

Then

ρk

(

dk(ν), ν
) ≥ 1

for ν sufficiently large.

Proof Since ‖J T
k Fk‖ 
= 0, we have ‖Fk‖ 
= 0. Thus, if ν is sufficiently large,

ν‖Fk‖δ ≥ ‖Jk‖2 holds. In what follows, we suppose that ν‖Fk‖δ ≥ ‖Jk‖2 holds with-
out loss of generality. It then follows from Lemma 3.3 that

f
(

xk + dk(ν)
)

≤ fk

(

dk(ν), ν
) − ‖J T

k Fk‖2

4ν‖Fk‖δ
+ ‖J T

k Fk‖
ν‖Fk‖δ

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ

≤ fk

(

dk(ν), ν
)

+ ‖J T
k Fk‖

4ν‖Fk‖δ

(

−∥
∥J T

k Fk

∥
∥ + 4

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ

)

. (3)

Taking ν → ∞, we have limν→∞ ‖dk(ν)‖ = 0 from the definition of dk(ν), and
hence

lim
ν→∞

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ = 0.
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Thus, since ‖J T
k Fk‖ 
= 0, the following inequality holds for sufficiently large ν.

4
∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ ≤ ∥
∥J T

k Fk

∥
∥.

It then follows from (3) that

f
(

xk + dk(ν)
) ≤ fk

(

dk(ν), ν
)

.

Therefore, by the definition of ρk(d
k(ν), ν), we have

ρk

(

dk(ν), ν
) = f (xk) − f (xk + dk(ν))

f (xk) − fk(dk(ν), ν)
≥ 1,

which is the desired inequality. �

Now, we show the well definedness of the LMM.

Theorem 3.1 Suppose that Assumption 3.1 holds. Suppose also that ‖J T
k Fk‖ 
= 0.

Then the LMM is well defined, i.e., the number lk of inner iteration is finite.

Proof From the updating rule of ν̄lk , we have ν̄lk → ∞ as lk → ∞. Thus, when lk is
sufficiently large, we have from Lemma 3.4 that

ρk

(

dk(ν̄lk ), ν̄lk

) = f (xk) − f (xk + dk(ν̄lk ))

f (xk) − fk(dk(ν̄lk ), ν̄lk )
≥ 1 ≥ η1.

Therefore, the LMM is well defined. �

4 Global Complexity Bound

In this section, we estimate the global complexity bound of the LMM. Let Kouter be
the total number of outer iterations when the algorithm terminates. If there does not
exist such Kouter, then we define Kouter := ∞. Moreover, let Ktotal be the total number
of inner iterations, i.e.,

Ktotal :=
Kouter−1

∑

k=0

l∗k .

Note that Ktotal means the total number of solving linear equations. Thus, it corre-
sponds to the global complexity bound of the LMM.

In order to investigate Ktotal, we firstly make the following assumption.

Assumption 4.1

(a) δ ≤ 1.
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(b) The level set of f at the initial point x0 is compact, i.e., Ω := {x ∈ R
n | f (x) ≤

f (x0)} is compact.

Since {f (xk)} is monotonically decreasing, the sequence {xk} is included in the
compact set Ω . Moreover, since the generalized Jacobian ∂F is upper semicontinu-
ous as mentioned in Sect. 2, there exist positive constants UF and UJ such that

∥
∥F(x)

∥
∥ ≤ UF , max

(‖J‖,∥∥J T
∥
∥
) ≤ UJ , ∀J ∈ ∂F (x), ∀x ∈ Ω. (4)

Now, we show that ‖dk(ν)‖ is bounded from above when ν ∈ [ν0,∞).

Lemma 4.1 Suppose that Assumptions 3.1 and 4.1 hold. Then, for any ν ∈ [ν0,∞),

∥
∥dk(ν)

∥
∥ ≤ Ud,

where Ud := UJ U1−δ
F

ν0
.

Proof It follows from Lemma 3.2 that

∥
∥dk(ν)

∥
∥ ≤ ‖J T

k Fk‖
ν‖Fk‖δ

≤ ‖J T
k ‖ · ‖Fk‖
ν‖Fk‖δ

≤ UJ U1−δ
F

ν0
,

where the last inequality follows from (4) and ν ≥ ν0. �

When F is continuously differentiable, Ueda and Yamashita [17] assumed that the
Jacobian of F is Lipschitz continuous to investigate the global complexity bound of
the LMM. However, since F is nonsmooth in this paper, the assumption does not hold
in general. Instead, we assume that the gradient of the merit function f is Lipschitz
continuous.

Assumption 4.2 Let Ud = UJ U1−δ
F /ν0. ∇f is Lipschitz continuous on Ω +

B(0,Ud), i.e., there exists a positive constant L such that

∥
∥∇f (x) − ∇f (y)

∥
∥ ≤ L‖x − y‖, ∀x, y ∈ Ω + B(0,Ud).

By using the assumption, we show that ρk(d
k(ν), ν) ≥ 1 if ν is greater than a

specific value depending on Fk .

Lemma 4.2 Suppose that Assumptions 3.1, 4.1, and 4.2 hold. Suppose also that

ν ≥ max(U2
J , ν0U

δ
F ,4L)

‖Fk‖δ
.

Then

ρk

(

dk(ν), ν
) ≥ 1.
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Proof From (4) and the assumption on ν, we have the following three inequalities:

ν
∥
∥Fδ

k

∥
∥ ≥ U2

J ≥ ‖Jk‖2, (5)

ν ≥ ν0U
δ
F

‖Fk‖δ
≥ ν0, (6)

ν
∥
∥Fδ

k

∥
∥ ≥ 4L. (7)

By using (5) and Lemma 3.3, we have

f
(

xk + dk(ν)
)

≤ fk

(

dk(ν), ν
) − ‖J T

k Fk‖2

4ν‖Fk‖δ
+ ‖J T

k Fk‖
ν‖Fk‖δ

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ

≤ fk

(

dk(ν), ν
)

+ ‖J T
k Fk‖

4ν‖Fk‖δ

(

−∥
∥J T

k Fk

∥
∥ + 4

∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ

)

. (8)

On the other hand, by using (6) and Lemma 4.1, we have xk +τdk(ν) ∈ Ω +B(0,Ud)

for any τ ∈ [0,1]. It then follows from Assumption 4.2 that

4
∫ 1

0

∥
∥
(∇f

(

xk + τdk(ν)
) − ∇f

(

xk
))∥

∥dτ ≤ 4
∫ 1

0
L

∥
∥τdk(ν)

∥
∥dτ

≤ 4L
∥
∥dk(ν)

∥
∥

≤ 4L‖J T
k Fk‖

ν‖Fk‖δ

≤ ∥
∥J T

k Fk

∥
∥,

where the second inequality follows from τ ∈ [0,1], the third inequality follows from
Lemma 3.2, and the last inequality follows from (7). It then follows from (8) that

f
(

xk + dk(ν)
) ≤ fk

(

dk(ν), ν
)

.

Therefore, by the definition of ρk(d
k(ν), ν), we have

ρk

(

dk(ν), ν
) = f (xk) − f (xk + dk(ν))

f (xk) − fk(dk(ν), ν)
≥ 1,

which is the desired inequality. �

From Lemma 4.2, we can show that ν∗
k ‖Fk‖δ is bounded from above.

Lemma 4.3 Suppose that Assumptions 3.1, 4.1, and 4.2 hold. Then

ν∗
k ‖Fk‖δ ≤ UνF ,

where UνF := γ2 max(U2
J , ν0U

δ
F ,4L).



J Optim Theory Appl (2012) 152:450–467 461

Proof From Lemma 4.2, if ν̄lk‖Fk‖δ ≥ max(U2
J , ν0U

δ
F ,4L), then ρk(d

k(ν̄lk ), ν̄lk )

≥ 1, and hence the inner loops of Step 2 must terminate. Therefore, if ν̄1‖Fk‖δ ≥
max(U2

J , ν0U
δ
F ,4L) at the kth iteration, then ν∗

k ‖Fk‖δ = ν̄1‖Fk‖δ . On the other
hand, if ν̄1‖Fk‖δ < max(U2

J , ν0U
δ
F ,4L), then ν∗

k ‖Fk‖δ must satisfy ν∗
k ‖Fk‖δ ≤

γ2 max(ν0U
δ
F ,4L). Otherwise, ν̄l∗k −1‖Fk‖δ > max(U2

J , ν0U
δ
F ,4L), which contra-

dicts ρk(d
k(ν̄l∗k −1), ν̄l∗k −1) < η1 ≤ 1. Consequently, we have

ν∗
k ‖Fk‖δ ≤ max

(

ν̄1‖Fk‖δ, γ2U
2
J , γ2ν0U

δ
F , γ24L

)

= max
(

ν∗
k−1‖Fk‖δ, γ2U

2
J , γ2ν0U

δ
F , γ24L

)

≤ max
(

ν∗
k−1‖Fk−1‖δ, γ2U

2
J , γ2ν0U

δ
F , γ24L

)

≤ · · · ≤ max
(

ν0‖F0‖δ, γ2U
2
J , γ2ν0U

δ
F , γ24L

)

= γ2 max
(

γ2U
2
J , ν0U

δ
F ,4L

)

from the updating rule of ν. �

By using the above lemma, we give a lower bound of the reduction of the merit
function when k < Kouter.

Lemma 4.4 Suppose that Assumptions 3.1, 4.1, and 4.2 hold. Then, for all k such
that k < Kouter,

f
(

xk
) − f

(

xk+1) > pε2,

where p := η1

2(U2
J +UνF )

.

Proof Since ρk(d
k(ν∗

k ), ν∗
k ) ≥ η1 from the definition of ν∗

k , we have

f
(

xk
) − f

(

xk+1) ≥ η1
(

f
(

xk
) − fk

(

dk
(

ν∗
k

)

, ν∗
k

)) ≥ η1‖J T
k Fk‖2

2(‖Jk‖2 + ν∗
k ‖Fk‖δ)

, (9)

where the last inequality follows from Lemma 3.1. On the other hand, we have
‖J T

k Fk‖ > ε, ∀k < Kouter from the definition of Kouter. It then follows from
Lemma 4.3, (4) and (9) that

f
(

xk
) − f

(

xk+1) ≥ η1‖J T
k Fk‖2

2(‖Jk‖2 + ν∗
k ‖Fk‖δ)

≥ η1

2(U2
J + UνF )

ε2,

which is the desired inequality. �

Now, we give an upper bound of Kouter.

Theorem 4.1 Suppose that Assumptions 3.1, 4.1, and 4.2 hold. Then

Kouter ≤
⌈

f (x0)

p
ε−2 + 1

⌉

.
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Proof Let K be �(f (x0)ε−2/p) + 1�. Suppose the contrary, i.e., Kouter > K . It then
follows from Lemma 4.4 that

f
(

x0) ≥ f
(

x0) − f
(

xK
) =

K−1
∑

j=0

(

f
(

xj
) − f

(

xj+1)) >

K−1
∑

j=0

pε2 = pε2K. (10)

On the other hand, we have

pε2K = pε2
⌈(

f (x0)

pε2

)

+ 1

⌉

> f
(

x0)

from the definition of K . This contradicts (10), and hence we obtain the theorem. �

From Theorem 4.1, the next theorem gives the global complexity bound Ktotal of
the LMM.

Theorem 4.2 Suppose that Assumptions 3.1, 4.1, and 4.2 hold. Then,

Ktotal ≤
⌈

logγ2

(
UνF Uδ

J γ
Kouter
2

ν0γ
Kouter
1

ε−δ

)

+ 1

⌉

,

and hence Ktotal = O(ε−2).

Proof Since ε < ‖J T
Kouter−1FKouter−1‖ ≤ UJ ‖FKouter−1‖ from (4), we have

‖FKouter−1‖ >
ε

UJ

.

Now we suppose the contrary of the theorem, i.e., Ktotal > �logγ2
(ε−δUνF Uδ

J ×
γ

Kouter
2 /ν0γ

Kouter
1 ) + 1�. The number of satisfying ρk(d

k(ν̄lk ), ν̄lk ) < η1 is
∑Kouter−1

k=0 (l∗k − 1). Moreover, the number of satisfying ρk(d
k(ν̄lk ), ν̄lk ) ≥ η2 is at

most Kouter. It then follows from the updating rule of νk that

ν∗
Kouter−1‖FKouter−1‖δ > ν∗

Kouter−1U
−δ
J εδ

= ν0γ

∑Kouter−1
k=0 (l∗k −1)

2 γ
Kouter
1 U−δ

J εδ

= ν0γ
Ktotal
2 γ

−Kouter
2 γ

Kouter
1 U−δ

J εδ

> ν0γ

logγ2

( UνF Uδ
J

γ
Kouter
2

ν0γ
Kouter
1

ε−δ
)

2 γ
−Kouter
2 γ

Kouter
1 εδ = UνF ,

where the last inequality follows from the assumption that Ktotal > �logγ2
(UνF Uδ

J ×
γ

Kouter
2 /ν0γ

Kouter
1 ) + 1�. This contradicts Lemma 4.3. It then follows from Theo-

rem 4.1 that

Ktotal ≤
⌈

logγ2

(
UνF Uδ

J γ
Kouter
2

ν0γ
Kouter
1

ε−δ

)

+ 1

⌉
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= ⌈

Kouter(1 − logγ2
γ1) + logγ2

UνF + δ logγ2
UJ + δ logγ2

ε−1

− logγ2
ν0 + 1

⌉

≤
⌈⌈

f (x0)

p
ε−2 + 1

⌉

(1 − logγ2
γ1) + logγ2

UνF + δ logγ2
UJ

+ δ logγ2
ε−1 − logγ2

ν0 + 1

⌉

,

and hence Ktotal = O(ε−2). �

Note that since J T
k Fk = 0 does not imply Fk = 0, Theorem 4.2 does not provide a

global complexity bound of ‖Fk‖ ≤ ε̂ for some positive constant ε̂. To get the bound,
we replace the termination criterion in Step 1 with ‖Fk‖ ≤ ε̂ in the remainder of this
section. We call the resulting method the modified LMM, and denote the total number
of inner iterations of the modified LMM as K̂total. Note that since f is nonconvex,
the modified LMM may not terminate. Thus, we further assume a regularity of the
generalized Jacobian.

Assumption 4.3 There exists a positive constant σ such that λmin(JkJ
T
k ) ≥ σ for all

k ≥ 0.

Under Assumption 4.3, we give the global complexity bound K̂total.

Theorem 4.3 Suppose that Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Then K̂total =
O(log ε̂−1).

Proof Since ρk(d
k(ν∗

k ), ν∗
k ) ≥ η1 from the definition of ν∗

k ,

f
(

xk
) − f

(

xk+1) ≥ η1
(

f
(

xk
) − fk

(

dk
(

ν∗
k

)

, ν∗
k

)) ≥ η1‖J T
k Fk‖2

2(‖Jk‖2 + ν∗
k ‖Fk‖δ)

, (11)

where the last inequality follows from Lemma 3.1. On the other hand, Assumption 4.3
implies that ‖J T

k Fk‖2 ≥ σ‖Fk‖2. It then follows from (11) that

f
(

xk
) − f

(

xk+1) ≥ η1‖J T
k Fk‖2

2(‖Jk‖2 + ν∗
k ‖Fk‖δ)

≥ η1σ

2(‖Jk‖2 + ν∗
k ‖Fk‖δ)

‖Fk‖2

≥ η1σ

2(U2
J + UνF )

‖Fk‖2

= η1σ

U2
J + UνF

f
(

xk
)

,
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where the third inequality follows from (4) and Lemma 4.3, and the last equality
follows from the definition of f . Therefore, we have

f
(

xk
) ≤

(

1 − η1σ

U2
J + UνF

)

f
(

xk−1) ≤
(

1 − η1σ

U2
J + UνF

)k

f
(

x0),

and hence if

k ≥ log 2f (x0)

ε̂2

log(1 − η1σ

U2
J +UνF

)−1

then f (xk) ≤ ε̂2/2, i.e., ‖Fk‖ ≤ ε̂. Thus, we have K̂outer = O(log ε̂−1), where K̂outer
is the total number of outer iterations of the modified LMM. It then follows from
Theorem 4.2 that K̂total = O(log ε̂−1). �

When F is continuously differentiable, Ueda and Yamashita [17] also give the
global complexity bound K̂total under the same regularity assumption. However, their
result is K̂total = O(ε̂−2). Therefore, the result in Theorem 4.3 is much better than
that of [17].

5 Application to the Nonlinear Complementarity Problem

We apply the results obtained in the previous section to the nonlinear complementar-
ity problem (NCP(G)) [1]: Find x ∈ R

n such that

x ≥ 0, G(x) ≥ 0, xT G(x) = 0,

where G : R
n → R

n. In this section, we assume that the mapping G satisfy the fol-
lowing assumptions.

Assumption 5.1

(a) The vector mapping G is continuously differentiable.
(b) ∇G is locally Lipschitz continuous.

By using the Fischer–Burmeister function, we can reformulate NCP(G) into the
following nonsmooth equations [24].

F(x) :=
⎛

⎜
⎝

ψ(x1,G1(x))

...

ψ(xn,Gn(x))

⎞

⎟
⎠ = 0, (12)

where ψ : R
2 → R is the Fischer–Burmeister function defined by

ψ(a, b) :=
√

a2 + b2 − a − b.
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Note that ψ is not differentiable at (0,0). Therefore, if there exists i such that xi =
Gi(x) = 0, then F is not differentiable at x. Nevertheless, F is locally Lipschitz
continuous under Assumption 5.1 [25]. Moreover, the least squares merit function
f (x) := 1

2‖F(x)‖2 has the following properties [26].

Lemma 5.1 Suppose that Assumption 5.1 holds. Then

(a) F is locally Lipschitz continuous.
(b) f is continuously differentiable.
(c) ∇f is locally Lipschitz continuous.

Lemma 5.1(c) implies that ∇f is Lipschitz continuous on any compact set.
By using Lemma 5.1, we get the global complexity bound of the LMM for (12)

equivalent to the NCP as a direct application of Theorem 4.2.

Theorem 5.1 Suppose that Assumption 5.1 holds. Suppose also that δ ≤ 1 and a
sequence generated by the LMM is bounded. Then the global complexity bound of
the LMM for the NCP is O(ε−2).

Remark 5.1 A sequence generated by the LMM is bounded if the level set of f is
compact. The level set of f is compact if G is a uniformly P-function [25] (see As-
sumption 5.2 for the definition). The level set of f is also compact if G is monotone,
NCP(G) has a strictly feasible solution and the Fischer–Burmeister function is re-
placed with the penalized Fischer–Burmeister function

ψτ (a, b) := τψ(a, b) + (1 − τ)max(0, a)max(0, b),

where τ ∈ (0,1) is an arbitrary but fixed constant [27].

Remark 5.2 Note that the bound in Theorem 5.1 is not for a solution of NCP(G) but
for a stationary point of f . However, a stationary point of f is a solution of NCP(G)
if G is P0-function, i.e., there exists i such that xi 
= yi and (xi − yi)(Gi(x) −
Gi(y)) ≥ 0, ∀x, y ∈ R

n [25].

Next, as related to Assumption 4.3, we further make the following assumption
on G.

Assumption 5.2 G is a uniformly P-function, i.e., there exists a positive constant
α > 0 such that

max
1≤i≤n

(xi − yi)
(

Gi(x) − Gi(y)
) ≥ α‖x − y‖2, ∀x, y ∈ R

n.

When G is a uniformly P-function, it is well known that the following properties
hold [25, 28–30].

Lemma 5.2 Suppose that Assumptions 5.1 and 5.2 hold. Then

(a) The level set Ω of the merit function f is compact.
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(b) For any J ∈ ∂F (x) and x ∈ R
n, J is nonsingular.

(c) The NCP(G) has a unique solution x∗.
(d) There exists a positive constant c such that ‖x − x∗‖ ≤ c‖F(x)‖ for any x ∈ Ω .

From Lemma 5.2(a), (b), and the upper semicontinuity of the generalized Jacobian
∂F , there exists a positive constant σ such that λmin(JJ T ) ≥ σ for any J ∈ ∂F (x)

and x ∈ Ω . Therefore, Assumption 4.3 holds.
Now, we get the bound for the NCP(G) as a direct application of Theorem 4.3.

Theorem 5.2 Suppose that Assumptions 5.1 and 5.2 hold. Suppose also that δ ≤ 1.
Then the global complexity bound of the modified LMM defined in Sect. 4 is
O(log ε̂−1). Moreover, for an approximate solution x̂ such that ‖F(x̂)‖ ≤ ε̂, the dis-
tance ‖x̂ − x∗‖ = O(ε̂).

Proof The first part of the theorem directly follows from Theorem 4.3. The second
part of the theorem follows from Lemma 5.2(d) and the assumption on x̂. �

6 Concluding Remarks

In this paper, we have investigated the global complexity bound of the LMM for
the nonsmooth equations. We have shown that the bound is O(ε−2) without any
regularity or convex assumptions. We have also shown that the bound is O(log ε−1)

under the regularity assumption of the generalized Jacobian. Moreover, by applying
these results to the NCP, we have obtained the same global complexity bounds of the
LMM for the NCP. In this paper, we have assumed that the mapping G involved in
the NCP is a uniformly P-function for the regularity assumption of the generalized
Jacobian. By using other assumption such as the monotonicity of G, we may have
a better global complexity bound. Furthermore, it would be worth estimating global
complexity bounds of other solution methods for the NCP such as the generalized
Newton’s method [28, 31].
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