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Abstract Rollout algorithms are heuristic algorithms that can be applied to solve
deterministic and stochastic dynamic programming problems. The basic idea is to
use the cost obtained by applying a well known heuristic, called the base policy, to
approximate the value of the optimal cost-to-go. We develop a theoretical approach
to prove, for the 0-1 knapsack problem, that the minimum performance ratio of the
rollout algorithms tends to be significantly greater when the performance ratio of
the corresponding base policy is poor and that the worst-case performance ratio is
significantly better than the one of the corresponding base policies.

Keywords Rollout algorithms · Minimum performance ratio · Worst-case
performance ratio

1 Introduction

Rollout algorithms are a class of heuristic algorithms more and more frequently ap-
plied to solve deterministic and stochastic dynamic programming problems. The ba-
sic idea is to use, in a one-step lookahead policy, the cost of a well known heuristic,
called base policy, to approximate the value of the optimal cost-to-go.

These algorithms have been originally proposed in the context of Neuro-Dynamic
Programming/Reinforcement Learning (see [1] and [2]). They have been applied to
stochastic scheduling by [3], to vehicle routing problems with stochastic demand by
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[4–6] and [7]. Computational papers related to rollout algorithms can be found in [8]
and [9]. They have been proposed for the solution of combinatorial problems by [1,
10] and [11]. They have been applied to multi–dimensional knapsack problems by
[12]. Based on the breakthrough problem, [13] provides interesting insights into the
nature of cost improvement of rollout algorithms.

These algorithms are very appealing from the practical point of view, as they are
easy to be implemented and guarantee a not worse, and usually much better, per-
formance than the corresponding base policies (see [13]). In all previous papers, the
performance of the rollout algorithms has been evaluated on the basis of computa-
tional experiments. The computational results typically show that these algorithms
are very effective on average with respect to the corresponding base policy. However,
no theoretical results are available to show the performance of rollout algorithms,
given the performance of the corresponding base policy.

Theoretical results are based on the concept of performance ratio and worst-case
performance ratio. Consider a maximization problem. The performance ratio of a
given algorithm in a given instance is the ratio between the profit obtained by the
algorithm and the optimal profit, while the worst-case performance ratio of the algo-
rithm is the infimum of this ratio over all instances.

Two questions are of particular interest when the performance of a rollout algo-
rithm is studied from the theoretical point of view. The first is the following. Suppose
to know the performance ratio of the base policy in a given instance. The question
is: Is it possible to prove a minimum performance ratio of the corresponding rollout
algorithm in the same instance? The answer to this question is very important, even
from a practical point of view, as it allows one to estimate the minimum guaranteed
performance of the rollout algorithm. The second question concerns the worst-case
performance of the rollout algorithm. Suppose to know the worst-case performance
of the base policy. The question is: Which is the worst-case performance of the corre-
sponding rollout algorithm? The answer to this question is important, as it allows us
to evaluate the improvement of the rollout algorithm with respect to the correspond-
ing base policy, in the worst case. Given that the computational times of a rollout
algorithm are greater than the ones of the corresponding base policy, the answer to
this question allows us to evaluate ‘costs and benefits’ of the application of the rollout
algorithm with respect to the corresponding base policy.

Our aim is to give an answer to these two questions for an ‘easy’ classical com-
binatorial problem: The 0-1 Knapsack Problem. Therefore, our aim is not to propose
a new heuristic algorithm for the solution of this problem, but to improve our under-
standing about why and when rollout algorithms perform well with respect to their
base policy. In this paper, we develop a theoretical approach to provide some answers
to this issue in the context of the 0-1 Knapsack Problem, with the hope that this
theory may have relevance for more difficult combinatorial problems. We first show
how to obtain a minimum performance ratio for the generic rollout algorithm for the
0-1 knapsack problem. Then, we select some of the known heuristic algorithms as
base policies. For each of the corresponding rollout algorithms, we prove a specific
minimum performance ratio and the worst-case performance ratio.

The paper is organized as follows. In Sect. 2, we recall the 0-1 knapsack problem,
some of the classical heuristic algorithms proposed for its solution and some variants.
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For each of these algorithms, we recall the worst-case performance ratio, if known.
Otherwise, we prove it. In Sect. 3, we describe the generic rollout algorithm for the
solution of the 0-1 knapsack problem. In Sect. 4, we show the minimum performance
ratio for the generic rollout algorithm and, then, specific minimum performance ra-
tios for specific rollout algorithms. Finally, in Sect. 5, we prove the worst-case per-
formance ratio of these rollout algorithms.

2 The 0-1 Knapsack Problem

The 0-1 knapsack problem is one of the most studied combinatorial optimization
problems. A set U of n items and a knapsack of capacity b are available. Each item
i ∈ U has a positive weight wi , with wi ≤ b, and a positive profit pi . The aim is to find
a subset of U that maximizes the total profit and satisfies the capacity of the knapsack.
Let U∗ and z∗ = ∑

i∈U∗ pi be an optimal subset of U and the corresponding profit,
respectively. Very effective exact algorithms are known as well as several heuristics,
approximation algorithms and schemes (we refer to [14] and [15]).

Let us recall the concept of performance ratio and worst-case performance ratio of
a heuristic algorithm. Consider a maximization problem. Let I be the set of instances
of this problem, I ∈ I a given instance, zA(I) be the profit obtained by applying an
algorithm A to the instance I , and z∗(I ) be the corresponding optimal profit. The
performance ratio of the algorithm A in the instance I is the ratio between zA(I) and
z∗(I ), while the worst-case performance ratio of the algorithm A is:

W(A) = inf I∈I

{
zA(I)

z∗(I )

}

.

Obviously, 0 ≤ W(A) ≤ 1 and the closer W(A) is to one, the better is the worst-case
performance of A. To prove that W(A) = ρ, for some ρ, two phases have to be carried

out. In the first, we have to prove that zA(I)
z∗(I )

≥ ρ for any instance I ∈ I . In the second,

we have to prove either that there exists a specific instance I ′ ∈ I such that zA(I ′)
z∗(I ′) = ρ

or that there exists a series of instances for which the performance ratio tends to be
arbitrarily close to ρ. In this case, the worst-case performance ratio is tight. In the
reminder of the paper, for the sake of simplicity, we will omit the reference to the
instance I .

We consider the following heuristics as base policies of rollout algorithms.

The pi -Greedy Algorithm The items are inserted on the basis of the non-increasing
order of pi . Following this ordering, each item is inserted if its weight is not greater
than the residual capacity. Let zPG be the profit obtained by applying this algorithm.

The following instance shows that zPG

z∗ → 0. Instance: n = 1 + 1/ε, where ε → 0,
p1 = w1 = 1 and pi = 1 − ε and wi = ε, respectively, for the remaining 1/ε items.
Note that this instance can be also used to prove that the algorithm in which the item
with maximum profit only is inserted in the knapsack has a worst-case performance
ratio which tends to 0.
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The Greedy Algorithm First the items are ordered in the non-increasing order of
pi/wi and then, following this ordering, the items are inserted in the knapsack, until
the first item for which the capacity is not satisfied if inserted. It is well known that
the Greedy Algorithm has a tight worst-case performance ratio of 0 (see [14] and
[15]).

The Improved Greedy Algorithm It is an improved version of the Greedy Algorithm
in which the items are ordered in the non-increasing order of pi/wi and then, fol-
lowing this ordering, each item is inserted in the knapsack if its weight is not greater
than the residual capacity. We now prove that this algorithm has the same worst-case
performance of the Greedy Algorithm. Let zIG be the profit obtained by applying

this algorithm. The following instance shows that zIG

z∗ → 0. Instance: n = 2, p1 = 2,
p2 = M , w1 = 1 and w2 = M , where M ≥ 2, and capacity b = M .

The Ext-Greedy Algorithm The solution given by this algorithm is the best between
the solution of the Greedy Algorithm and the solution obtained by inserting in the
knapsack the item with maximum profit only. This algorithm has a well known tight
worst-case performance ratio of 1/2 (see [14] and [15]).

The Improved Ext-Greedy Algorithm The solution given by this algorithm is the
best between the following two solutions. The first is the one obtained by applying
the Improved Greedy Algorithm. The second is obtained by applying the pi -Greedy
Algorithm. We prove that the Improved Ext-Greedy Algorithm has the same worst-
case performance ratio of the Ext-Greedy Algorithm. Let zIEG be the profit obtained

by applying this algorithm. Then, since zIEG

z∗ ≥ zEG

z∗ , zIEG

z∗ ≥ 1
2 . The following instance

shows that this bound is tight. Instance: n = 4, profits and weights

i 1 2 3 4

pi 2 M M M + 1
M

wi 1 M M 2M

where M ≥ 2, and capacity b = 2M .
These algorithms are easy to be implemented and require low computational times.

For the sake of completeness, we recall that several Polynomial Time Approximation
Schemes (PTASs) and Fully Polynomial Time Approximation Schemes (FPTASs)
are also known. Any PTAS for the knapsack problem is based on the idea of guessing
a set of items included in the optimal solution by going through all possible candidate
sets and then filling the remaining capacity by applying a greedy algorithm. We recall
the classical PTAS in [16] and the PTAS in [17], which improves the PTAS by [16] in
terms of running time. Any FPTAS is based on the idea of scaling the profit values and
then applying dynamic programming on the resulting instance. We recall the earliest
FPTAS in [18], the classical FPTAS in [19] and the best known FPTAS in [20] and
[21].
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3 Rollout Algorithms for the 0-1 Knapsack Problem

In this section, we describe the generic rollout algorithm for the 0-1 Knapsack Prob-
lem. Let Ak be a heuristic algorithm for the 0-1 Knapsack Problem with worst-case
performance ratio 0 ≤ k < 1, zAk (S, c) be the profit obtained by applying the algo-
rithm Ak on the set S ⊆ U when the residual capacity is c. The corresponding rollout
algorithm AkR, with total profit zAkR , can be described as follows.

Algorithm AkR

1. Set S := I , c := b and zAkR :=0.
2. Determine the set S̄ = {i ∈ S : wi ≤ c}. If S̄ = ∅, then stop. Otherwise:

(a) For each item i ∈ S̄, compute the estimated total profit obtained by inserting
i in the knapsack and then applying Ak on the residual set of items S̄\{i} and
on the residual capacity c − wi , that is,

Πi = pi + zAk (S̄\{i}, c − wi).

(b) Select the item î such that Π
î
= maxj∈S̄ Πj .

(c) Set S := S\{î}, c := c − w
î

and zAkR := zAkR + p
î

and go to 2.

4 Minimum Performance Ratios

In this section, we aim at answering to our first question. Suppose that the base policy
of a rollout algorithm has a performance ratio in a given instance equal to α, where
0 ≤ α ≤ 1. The question is: Is it possible to prove a minimum performance ratio
for the corresponding rollout algorithm in the same instance? The minimum perfor-
mance ratios that we now prove are obtained by running only the first iteration of the
corresponding rollout algorithm, and therefore with a computational time which is
at most n times the one of the corresponding base policy. Our aim is to show that,
even if only one iteration is run, rollout algorithms are able to significantly improve
the performance of the corresponding base policy. Moreover, we show that, for the
generic rollout algorithm and for all the specific rollout algorithms we study, there
exists an instance in which the worst-case performance ratio of the rollout algorithm
is obtained at the first iteration. Therefore, in the worst-case, no further improvement
can be obtained by running more than one iteration.

4.1 A Minimum Performance Ratio for the Generic Rollout Algorithm

We now prove a minimum performance ratio obtained by applying the generic rollout

algorithm AkR for any instance, such that zAk

z∗ = α, with k ≤ α ≤ 1. Let UAk be the
set of items selected by the algorithm Ak , U∗ be the set of items in the optimal
solution and Û∗ = {i ∈ U∗ : i /∈ UAk }. We denote by n∗ the cardinality of the set Û∗,
by j the item in the set Û∗ with maximum profit, by Uj = U −{j} the set of all items
but item j and by bj = b − wj the residual capacity when the item j is inserted in
the knapsack. Finally, we denote by z∗(S, c) the optimal profit on a given set S ⊆ U

when the capacity is c.
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Theorem 4.1 For any instance such that zAk

z∗ = α, then zAkR

z∗ ≥ max{α,
1−α

n
(1 − k) + k}.

Proof If z∗ = pj , then zAkR = z∗. Otherwise, since z∗ = pj + z∗(Uj , bj ) and
zAk (Uj ,bj )

z∗(Uj ,bj )
≥ k, then

zAkR

z∗ ≥ max

{
zAk

z∗ ,
pj + zAk (Uj , bj )

pj + z∗(Uj , bj )

}

≥ max

{

α,
pj + kz∗(Uj , bj )

pj + z∗(Uj , bj )

}

.

Let us define 0 < β < 1 such that pj = βz∗. Since z∗ = pj + z∗(Uj , bj ), then pj =
β(pj + z∗(Uj , bj )), that is, pj = β

1−β
z∗(Uj , bj ). Therefore,

zAkR

z∗ ≥ max

{

α,

β
1−β

z∗(Uj , bj ) + kz∗(Uj , bj )

β
1−β

z∗(Uj , bj ) + z∗(Uj , bj )

}

= max
{
α,β(1 − k) + k

}
.

Since zAk

z∗ = α, then
∑

i∈Û∗ pi ≥ (1 − α)z∗. Therefore, pj ≥
∑

i∈Û∗ pi

n∗ ≥ (1−α)z∗
n∗ and

β ≥ (1−α)
n∗ .

zAkR

z∗ ≥ max

{

α,
1 − α

n∗ (1 − k) + k

}

≥ max

{

α,
1 − α

n
(1 − k) + k

}

.

�

Note that in the worst case, when k = 0, α → 0 and n → ∞, this minimum per-
formance ratio tends to 0.

To better understand the values of the minimum performance ratio of the AkR

algorithm, we consider the case with k = 0 and the case with k = 1/2 and show the
value of the minimum performance ratio for different values of α and n.

Let us first consider the case with k = 0. The following corollary shows that for
α ≥ 1

2 , the corresponding rollout algorithm A0R has a performance identical to the
one of its base policy.

Corollary 4.1 For k = 0 and α ≥ 1
2 , max{α, 1−α

n
(1 − k) + k} = α, ∀n ≥ 1.

Proof

1 − α

n
(1 − k) + k = 1 − α

n
≤ 1 − (1/2)

n
≤ 1

2
≤ α, ∀n ≥ 1.

�

Figure 1 shows the value of the minimum performance ratio of the A0R (on the
y-axis) for different values of α (on the x-axis) and n, when k = 0.

The results show that the A0R algorithm is able to significantly improve the per-
formance of the A0 algorithm, especially when A0 does not perform well, that is,
when α is small and when n is small.
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Fig. 1 Value of the minimum performance ratio of the A0R

Fig. 2 Value of the minimum performance ratio of the A1/2R

Let us now consider the case with k = 1/2. The following lemma shows that for
α ≥ 2

3 , the corresponding rollout algorithm A1/2R has a performance identical to the
one of its base policy.

Corollary 4.2 For k = 1/2 and α ≥ 2/3, max{α, 1−α
n

(1 − k) + k} = α, ∀n ≥ 1.

Proof

1 − α

n
(1 − k) + k = 1 − α

2n
+ 1

2
≤ 1 − (2/3)

2n
+ 1

2
= 1

6n
+ 1

2
≤ 1

6
+ 1

2
= 2

3
≤ α.

�

Figure 2 shows the value of the minimum performance ratio on the performance
of the A1/2R (on the y-axis) for different values of α (on the x-axis) and n.

The results show that, even in this case, the A1/2R algorithm is able to significantly
improve the performance of the A1/2 algorithm, especially when the A1/2 algorithm
does not perform well and when n is small.

The following theorem shows that the minimum performance ratio of the generic
rollout algorithm stated in Theorem 4.1 is tight, as there exists an instance such that
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the rollout algorithm in which the pi -Greedy Algorithm is applied as base policy
has performance ratio equal to 0. Let zPGR be the profit obtained by applying this
algorithm, referred to as PGR.

Theorem 4.2 There exists an instance such that zPGR

z∗ → 0.

Proof Consider the following instance: n = 3 + 2/ε, where ε → 0. The profits and
weights of the first three items are:

i 1 2 3

pi 7ε 6ε 3ε

wi 2 2 − ε 2 − 2ε

while each of the remaining 2/ε items has profit 2ε and weight ε. The capacity of the
knapsack is b = 2.

Let us apply the PGR algorithm. The following table shows the first iteration. The
estimated future profit is the profit obtained by applying the pi -Greedy Algorithm
on the residual set of items and capacity. The number(s) in parentheses is(are) the
corresponding inserted items.

i 1 2 3 4 5 . . . n

pi 7ε 6ε 3ε 2ε 2ε . . . 2ε

Estimated future profit 0 2ε (4) 4ε (4,5) 6ε (2) 6ε (2) . . . 6ε (2)

Total estimated profit 7ε 8ε 7ε 8ε 8ε . . . 8ε

In the second iteration, if the item 2 has been inserted in the first iteration, one of
the items with profit 2ε and weight ε is inserted, with a total profit of 8ε. Otherwise,
if one of the items with profit 2ε and weight ε, say item 4, has been inserted in the
first iteration, we have

i 1 2 3 4 5 . . . n

Profit of the first iteration 2ε 2ε 2ε – 2ε . . . 2ε

pi – 6ε 3ε – 2ε . . . 2ε

Estimated future profit – 0 2ε (4) – 3ε (3) . . . 3ε (3)

Total estimated profit 2ε 8ε 7ε – 7ε . . . 7ε

Therefore, the profit generated by the PGR algorithm is 8ε. The optimal profit is
given by the solution in which the 2/ε items with profit 2ε and weight ε are inserted in

the knapsack, that is, z∗ = 4. Therefore, on this instance zPGR

z∗ = 8ε
4 → 0, for ε → 0. �

4.2 Specific Minimum Performance Ratios

We now prove a specific minimum performance ratio for the rollout algorithm based
on the Greedy Algorithm, referred to as GR, and the rollout algorithm based on the
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Fig. 3 Value of the minimum performance ratio of the GR

Ext-Greedy Algorithm, referred to as EGR. Let zGR be the profit of the rollout algo-
rithm based on the Greedy Algorithm.

Theorem 4.3 For any instance such that zG

z∗ = α, then zGR

z∗ ≥ max {α,1 − α}.

Proof Consider the LP relaxation of the 0-1 knapsack problem. Assume that the set
of items U be ordered on the basis of the ratio pi/wi . Let s be the critical item,
that is, the item s such that s = min(τ ∈ U : ∑τ

i=1 wi > b). It is well known that
zLP ≤ ∑s

i=1 pi and that the solution obtained by inserting in the knapsack the items
i = 1,2, . . . , s − 1 is identical to the solution obtained by the Greedy Algorithm. The
corresponding profit is zG = ∑s−1

i=1 pi . Therefore,

ps ≥ zLP − zG ≥ z∗ − zG = z∗ − αz∗ = (1 − α)z∗.

Therefore, zGR

z∗ ≥ max{ zG

z∗ ,
ps

z∗ } ≥ max{α,1 − α}. �

From Fig. 3, it is easy to see that this minimum performance ratio is equal to 1 for
α = 0, then it linearly decreases until α = 1/2, where it is equal to 1/2, and then it
linearly increases until α = 1, where it is again equal to 1. Note that this minimum
performance ratio does not depend on the value of n. By comparing the minimum
performance of GR with the corresponding performance of the Greedy Algorithm, we
can conclude that the GR significantly dominates the Greedy Algorithm for α < 1/2,
in particular when α is small. Obviously, this result holds also for the rollout based
on the Improved Greedy Algorithm, referred to as IGR.

Let zEGR be the profit of the rollout algorithm based on the Ext-Greedy Algorithm.

Theorem 4.4 For any instance such that zEG

z∗ = α, zEGR

z∗ ≥ max{α, 2
3 }.

Proof Let j∗ be the item with maximum profit in the optimal solution, Uj∗ be the set
of all items but the item j∗, that is, Uj∗ = U −{j∗}, and bj∗ = b −w∗

j be the residual
capacity when the item j∗ is inserted in the knapsack. Finally, recall that we denote
by z∗(S, c) and zEG(S, c) the optimal profit and the profit obtained by applying the
Ext-Greedy Algorithm, respectively, on a given set S ⊆ U when the capacity is c.
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We distinguish the following two cases.

Case 1: pj∗ ≥ 1
3z∗

zEGR

z∗ ≥ max

{

α,
pj∗ + zEG(Uj∗ , bj∗)

pj∗ + z∗(Uj∗ , bj∗)

}

≥ max

{

α,
pj∗ + 1

2z∗(Uj∗ , bj∗)

pj∗ + z∗(Uj∗ , bj∗)

}

.

Let us define β ≥ 1
3 such that pj∗ = βz∗.

Since z∗ = pj∗ + z∗(Uj∗ , bj∗), then pj∗ = β(pj∗ + z∗(Uj∗ , bj∗)), that is, pj∗ =
β

1−β
z∗(Uj∗ , bj∗). Therefore,

zEGR

z∗ ≥ max

{

α,

β
1−β

z∗(Uj∗ , bj∗) + 1
2z∗(Uj∗ , bj∗)

β
1−β

z∗(Uj∗ , bj∗) + z∗(Uj∗ , bj∗)

}

= max

{

α,
β + 1

2

}

≥ max

{

α,
2

3

}

.

Case 2: pj∗ < 1
3z∗ Assume that the set of items U be ordered on the basis of the

ratio pi

wi
and that the item j∗ be inserted in the knapsack by the EGR algorithm. Let

UG
j∗ be the set of items selected by applying the Greedy Algorithm to the residual

capacity and items. Let k∗ be the first item in the optimal solution not selected by the
Greedy Algorithm, UI

j∗ and UN
j∗ be the set of items in the optimal solution selected

and not selected, respectively, by the Greedy Algorithm and UGN
j∗ the set of items

selected by the Greedy Algorithm but not in the optimal solution. Then,

z∗ = pj∗ +
∑

i∈UI
j∗

pi +
∑

i∈UN
j∗

pi ≤ pj∗ +
∑

i∈UI
j∗

pi + pk∗

wk∗

(

b − wj∗ −
∑

i∈UI
j∗

wi

)

.

Now, the total volume
∑

i∈UGN
j∗ wi of the items selected by the Greedy Algorithm,

but not in the optimal solution is not lower than b−wj∗ −∑
i∈UI

j∗ wi −w∗
k . Moreover,

each item in this set has a unit profit not lower than pk∗
wk∗ . Therefore,

pk∗

wk∗

(

b − wj∗ −
∑

i∈UI
j∗

wi

)

≤ pk∗

wk∗

∑

i∈UGN
j∗

wi + wk∗
pk∗

wk∗
≤

∑

i∈UGN
j∗

pi + pk∗ .

Therefore,

z∗ ≤ pj∗ +
∑

i∈UI
j∗

pi +
∑

i∈UGN
j∗

pi + pk∗ < pj∗ + zG(Uj∗ , bj∗) + 1

3
z∗,

as pk∗ ≤ pj∗ < 1
3z∗. Therefore, z∗ ≤ 3

2 (pj∗ + zG(Uj∗ , bj∗)).
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Fig. 4 Value of the minimum performance ratio of the EGR

Since zEGR ≥ max{αz∗,pj∗ + zEG(Uj∗ , bj∗)} ≥ max{αz∗,pj∗ + zG(Uj∗ , bj∗)},
then

zEGR

z∗ ≥ max

{

α,
pj∗ + zG(Uj∗ , bj∗)

3
2 (pj∗ + zG(Uj∗ , bj∗))

}

= max

{

α,
2

3

}

. �

Note that this proof has a structure similar to the one used in [15] to prove the
worst-case performance of the PTAS algorithm Hε . However, the proof is different,
mainly because, every time one item is considered, the rollout algorithm applies the
Ext-Greedy algorithm to all the items not already inserted in the knapsack. Instead,
every time one item is considered, the algorithm Hε with l = 1 applies the Ext-
Greedy algorithm only to the items not already inserted with profit not greater than
the one of the considered item.

From Fig. 4, it is easy to see that this minimum performance ratio is equal to
2
3 for 1

2 ≤ α ≤ 2
3 , then it linearly increases until α = 1, where it is equal to 1. By

comparing the minimum performance of EGR with the corresponding performance
of the Ext-Greedy Algorithm, we can conclude that the EGR significantly dominates
the Ext-Greedy Algorithm. Obviously, this result also holds for the rollout based on
the Improved Ext-Greedy Algorithm, referred to as IEGR.

5 Worst-Case Performance Ratios

In this section, we provide a worst-case analysis of the rollout algorithms that use, as
base policies, the algorithms described and analyzed in Sect. 2. We do not study the
rollout algorithm based on the pi -Greedy Algorithm, as we have already shown in the
previous section that its worst-case performance ratio is 0.

5.1 The Rollout Algorithm Based on the Greedy Algorithm

We now show that, while the Greedy Algorithm has a worst-case performance ratio
of 0, the GR rollout algorithm has a tight worst-case performance ratio of 1/2.

Theorem 5.1 zGR

z∗ ≥ 1
2 and the ratio is tight.
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Proof The performance ratio holds thanks to Theorem 4.3, as max{α,1 − α} ≥ 1
2

for 0 ≤ α ≤ 1. We now show that this ratio is tight. Consider the following instance:
n = 4, profits and weights

i 1 2 3 4

pi 2ε 1 + 2ε 1 1

wi ε 1 + ε 1 1

where ε → 0, and capacity b = 2.
The following table shows the first iteration of the GR algorithm.

i 1 2 3 4

pi 2ε 1 + 2ε 1 1
Estimated future profit 1 + 2ε (2) 2ε (1) 2ε (1) 2ε (1)

Total estimated profit 1 + 4ε 1 + 4ε 1 + 2ε 1 + 2ε

In the second iteration, if item 1 has been inserted in the first iteration, then item
2 is inserted with a total profit of 1 + 4ε. Instead, if item 2 has been inserted in the
first iteration, then item 1 is inserted with a total profit of 1 + 4ε. Therefore, the
profit generated by the GR algorithm is zGR = 1 + 4ε. The optimal profit is given by
the solution in which the items 3 and 4 are inserted in the knapsack, that is, z∗ = 2.

Therefore, on this instance zGR

z∗ = 1+4ε
2 → 1

2 , for ε → 0. �

5.2 The Rollout Algorithm Based on the Improved Greedy Algorithm

We now consider the improved version of the Greedy Algorithm, referred to as Im-
proved Greedy Algorithm. The items are ordered in the non-increasing order of pi/wi

and then, following this ordering, each item is inserted in the knapsack if its weight is
not greater than the residual capacity. We now show that, while the Improved Greedy
Algorithm has a worst-case performance ratio of 0, the IGR rollout algorithm has a
tight worst-case performance ratio of 1/2. Let zIGR be the profit obtained by applying
this algorithm.

Theorem 5.2 zIGR

z∗ ≥ 1
2 and the ratio is tight.

Proof Since zIGR ≥ zGR, then zIGR

z∗ ≥ zGR

z∗ ≥ 1
2 . To prove that the ratio is tight, we

consider the instance used in the proof of Theorem 5.1. Since the GR and the IGR

algorithms give the same solution in this instance, then zIGR

z∗ → 1
2 , for ε → 0. �

5.3 The Rollout Algorithm Based on the Ext-Greedy Algorithm

The simplest known approximation algorithm with worst-case performance ratio
greater than 0 is the so called Ext-Greedy Algorithm. We now consider the EGR
rollout algorithm.
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Theorem 5.3 zEGR

z∗ ≥ 2
3 and the ratio is tight.

Proof The performance ratio holds thanks to Theorem 4.4.
To prove that the ratio is tight, consider the following instance: n = 5, profits and

weights

i 1 2 3 4 5

pi 2ε 1 + ε 1 + ε 1 2 + 3ε

wi ε 1 1 1 3 − ε

where ε < 1/4, and capacity b = 3.
Let us now apply the EGR algorithm. The following table shows the first iteration.

i 1 2 3 4 5

pi 2ε 1 + ε 1 + ε 1 2 + 3ε

Estimated future 2 + 3ε (5) 1 + 3ε (1,3) 1 + 3ε (1,2) 1 + 3ε (1,2) 2ε (1)

profit

Total estimated 2 + 5ε 2 + 4ε 2 + 4ε 2 + 3ε 2 + 5ε

profit

In the second iteration, if the item 1 has been inserted in the first iteration, we have

i 1 2 3 4 5

Profit of the first iteration – 2ε 2ε 2ε 2ε

pi – 1 + ε 1 + ε 1 2 + 3ε

Estimated future profit – 1 + ε (3) 1 + ε (2) 1 + ε (2) 0

Total estimated profit – 2 + 4ε 2 + 4ε 2 + 3ε 2 + 5ε

If the item 5 has been inserted in the first iteration, then the item 1 is inserted in
the second iteration with a total profit of 2 + 5ε and no residual capacity. Therefore,
the profit generated by the EGR algorithm is zEGR = 2 + 5ε. The optimal profit is
given by the solution in which the items 2, 3 and 4 are inserted in the knapsack, that

is, z∗ = 3 + 2ε. Hence, on this instance zEGR

z∗ = 2+5ε
3+2ε

→ 2
3 , for ε → 0. �

5.4 The Rollout Algorithm Based on the Improved Ext-Greedy Algorithm

We now consider the IEGR rollout algorithm. Let zIEGR be the profit obtained by
applying this algorithm.

Theorem 5.4 zIEGR

z∗ ≥ 2
3 and the ratio is tight.
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Proof Since zIEGR ≥ zEGR, then zIEGR

z∗ ≥ zEGR

z∗ ≥ 2
3 . To prove that the ratio is tight,

consider the following instance: n = 6, profits and weights

i 1 2 3 4 5 6

pi 2ε 1 + ε 1 + ε 1 2 + 3ε 1 + 2ε

wi ε 1 1 1 3 − ε 2

where ε < 1/4, and capacity b = 3.
Let us now apply the EGR algorithm. The following table shows the first iteration.

i 1 2 3 4 5 6

pi 2ε 1 + ε 1 + ε 1 2 + 3ε 1 + 2ε

Estimated 2 + 3ε (5) 1 + 3ε (1,3) 1 + 3ε (1,2) 1 + 3ε (1,2) 2ε (1) 1 + ε (2)

future profit

Total 2 + 5ε 2 + 4ε 2 + 4ε 2 + 3ε 2 + 5ε 2 + 3ε

estimated
profit

In the second iteration, if the item 1 has been inserted in the first iteration, we have

i 1 2 3 4 5 6

Profit of the first iteration – 2ε 2ε 2ε 2ε 2ε

pi – 1 + ε 1 + ε 1 2+3ε 1 + 2ε

Estimated future profit – 1 + ε (3) 1 + ε (2) 1 + ε (2) 0 0

Total estimated profit – 2 + 4ε 2 + 4ε 2 + 3ε 2 + 5ε 1 + 4ε

If the item 5 has been inserted in the first iteration, then the item 1 is inserted
in the second iteration with a total profit of 2 + 5ε and no residual capacity. There-
fore, the profit generated by the IEGR algorithm is zIEGR = 2 + 5ε. The optimal
profit is given by the solution in which the items 2, 3 and 4 are inserted in the

knapsack, that is, z∗ = 3 + 2ε. Therefore, on this instance zIEGR

z∗ = 2+5ε
3+2ε

→ 2
3 for

ε → 0. �

6 Conclusions

The analysis carried out in this paper is the first theoretical analysis proposed to
evaluate the performance of rollout algorithms given the performance of the corre-
sponding base policy. An ‘easy’ classical combinatorial problem, the 0-1 Knapsack
Problem, has been used to introduce the methodology. This analysis allows us to
state that rollout algorithms for the 0-1 knapsack problem are able to significantly
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improve the performance of the corresponding base policies. In particular, the worst-
case performance ratios have been improved from 0 to 1/2 for the Greedy Algo-
rithm and the Improved Greedy Algorithm and from 1/2 to 2/3 for the Ext-Greedy
Algorithm and the Improved Ext-Greedy Algorithm. We also showed that, for each
of these rollout algorithms, there exists an instance in which the worst-case perfor-
mance ratio is obtained at the first iteration. This is interesting because the worst-
case performance of the rollout algorithm is guaranteed even if an algorithm with
time complexity only n times greater than the one of the base policy is run. More-
over, we also showed how it is possible to formally prove a minimum performance
ratio of the rollout algorithms for any instance and, therefore, to estimate a mini-
mum improvement of the rollout algorithms with respect to their base policies. It
has been shown that, even if only the first iteration of the rollout algorithm is run,
the minimum performance ratio of the rollout algorithms tends to be significantly
greater when the performance ratio of the corresponding base policy is poor. There-
fore, rollout algorithms are very appealing and tend to significantly improve the av-
erage performance of their base policies. Future research can be devoted to quantify
the improvement of the minimum performance ratio when more than one iteration is
run.
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