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Abstract In this paper, we study the solvability and optimal controls of a class of
fractional integrodifferential evolution systems with infinite delay in Banach spaces.
Firstly, a more appropriate concept for mild solutions is introduced. Secondly, exis-
tence and continuous dependence of mild solutions are investigated by utilizing the
techniques of a priori estimation and extension of step by steps. Finally, existence
of optimal controls for system governed by fractional integrodifferential evolution
systems with infinite delay is proved.
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1 Introduction

Fractional differential equations have recently been proved to be valuable tools in
the modeling of many phenomena in various fields of engineering, physics, and
economics. We can find numerous applications in viscoelasticity, electrochemistry,
control, and electromagnetic. There has been a significant development in fractional
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differential equations. One can see the monographs of Kilbas et al. [1], Miller and
Ross [2], Podlubny [3], Lakshmikantham et al. [4], and the survey of Agarwal et al.
[5, 6]. Recently, some authors focused on fractional functional differential equations
and inclusions in Banach spaces [7–16].

To study the theory of abstract fractional evolution equations involving the Caputo
derivative in Banach spaces, the nature of the difficulties is how to introduce a concept
of a mild solution. A pioneering work has been reported by El-Borai [17, 18]. Hernán-
dez et al. [19] pointed that some recent works [6, 8, 12, 14–16] of abstract fractional
evolution equations in Banach spaces were incorrect and used another approach to
treat abstract equations with fractional derivatives based on the well developed the-
ory of resolvent operators for integral equations. Particularly, we investigated some
fractional evolution equations and optimal controls [20–30], introduced an appropri-
ate definition for mild solutions based on the well-known theory of Laplace transform
and probability density functions.

Fractional order semilinear integrodifferential evolution equations with infinite de-
lay have been studied by Ren et al. [14]. Let us mention, however, that the definition
of mild solutions (see Definition 3.1, [14]) is not appropriate enough. Thus, it is nec-
essary to revisit the work and give a more appropriate definition for mild solutions. To
our knowledge, optimal control problems of system, governed by fractional evolution
equations with infinite delay, has not been studied extensively.

The aim of this paper is to investigate the solvability of fractional integrodiffer-
ential evolution systems with infinite delay. Meanwhile, optimal controls for system
governed by fractional integrodifferential evolution systems with infinite delay and
control terms is studied. Comparing with the literature [14], an appropriate definition
for mild solutions is introduced (see Sect. 3, Definition 3.1). Different techniques
are used here, including a priori estimation of mild solutions and extension of the
mild solutions from local interval to global interval. More details can be found in
our proof. Furthermore, we discuss the continuous dependence of mild solutions and
optimal controls problem, which extend the existence results for mild solutions to the
existence result for optimal controls.

The rest of this paper is organized as follows. In Sect. 2, some notations and prepa-
ration results are given. In Sect. 3, the existence and uniqueness results of mild so-
lutions for system (1) are given. In Sect. 4, continuous dependence of mild solutions
is discussed. In Sect. 5, the Lagrange problem (P) of system (1) is formulated and
existence result for optimal controls are presented. Finally, an example is given to
illustrate the results.

2 Preliminaries

We investigate the solvability and optimal controls of fractional integrodifferential
evolution systems with infinite delay:

{
CD

q
t x(t) = Ax(t) + f (t, xt ,

∫ t

0 g(t, s, xs) ds) + B(t)u(t), t ∈ J := [0, T ],
x(t) = ϕ(t) ∈ B, −∞ < t ≤ 0,

(1)
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where CD
q
t denotes the Caputo fractional derivative of order q ∈ (0,1), A is the

infinitesimal generator of a strongly continuous semigroup {S(t), t ≥ 0} (see Defini-
tions 2.1 and 2.2) on a separable reflexive Banach space X, f, and g are X-value func-
tions specified latter, u takes value from another separable reflexive Banach space Y ,
B is a linear operator from Y into X. The histories xt : ]−∞,0] → X, xt = x(t + s),
belong to some abstract phase space B, that will be introduced later.

Throughout this paper, Lb(X,Y ) denotes the space of bounded and linear opera-
tors from X to Y and Lb(X) denotes the space of bounded and linear operators in X.
Let {S(t), t ≥ 0} be a family of bounded and linear operators in X, that is, for each
t ≥ 0, S(t) ∈ Lb(X).

Definition 2.1 The family of bounded and linear operators {S(t), t ≥ 0} is said to be
a semigroup of operators in X if and only if (i) S(0) = I ; (ii) S(t + s) = S(t)S(s) =
S(s)S(t) for all t, s ≥ 0.

Definition 2.2 A semigroup {S(t), t ≥ 0} in X is called a strongly continuous semi-
group if and only if limt→0 S(t)x = x for each x ∈ X.

Definition 2.3 A linear operator A, defined by

(i) D(A) := {x ∈ X : limt→0 Atx = limt→0
S(t)x−x

t
exists};

(ii) Ax := limt→0 Atx for all x ∈ D(A), is called the infinitesimal generator of the
semigroup {S(t), t ≥ 0} in X.

Suppose that A be the infinitesimal generator of a strongly continuous semigroup
{T (t), t ≥ 0} in a Banach space X. Denote M := supt∈J ‖S(t)‖Lb(X), which is a finite
number. Let C(J,X), be the Banach space of continuous functions from J to X with
the usual supreme norm ‖x‖C := supt∈J {‖x(t)‖}.

We employ an axiomatic definition of the phase space B introduced by Hale and
Kato [31]. Let B be a linear space of functions mapping ]−∞,0] to X endowed with
seminorm ‖ · ‖B and satisfy the following axioms:

(S1) If x: ]−∞,0] → X, is such that x0 ∈ B, then for every t ∈ J , the following
conditions hold:

(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B ,

(iii) ‖xt‖B ≤ K(t) sup{‖x(s)‖ : 0 ≤ s ≤ t} + M(t)‖x0‖B ,
where H ≥ 0 is a constant, K : J → [0,+∞[ is continuous, M : [0,+∞[→
[0,+∞[ is locally bounded and H,K,M are independent of x.

(S2) For the functions x in (S1), xt is a B-valued function in J .
(S3) The space B is compete.

Define B C := {x :]−∞,0] → X,x|]−∞,0] ∈ B and x|J ∈ C(J,X)} and let ‖ · ‖B C
be the seminorm in B C defined by ‖x‖B C = ‖x0‖B + sups∈J {‖x(t)‖}. It is easy to
see (B C,‖ · ‖B C ) is a Banach space.

We also set B C 0 := {y ∈ B C : y0 = 0 ∈ B} and let ‖ · ‖B C 0 be the seminorm in B C 0

defined by ‖y‖B C 0 := ‖y0‖B + sups∈J {‖y(t)‖} = sups∈J {‖y(t)‖}. It is easy to see
that (B C 0,‖ · ‖B C 0) is a Banach space.
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Let us recall the following known definitions. For more details, see [1].

Definition 2.4 The fractional integral of the order γ with the lower limit zero for a
function f is defined as

I γ f (t) := 1

Γ (γ )

∫ t

0

f (s)

(t − s)1−γ
ds, t > 0, γ > 0,

provided the right hand be point-wise defined on [0,∞[, where Γ (·) is the Gamma
function, which is defined by Γ (γ ) := ∫ ∞

0 tγ−1e−t dt .

Definition 2.5 The Riemann–Liouville derivative of the order γ with the lower limit
zero for a function f : [0,∞[→ R can be written as

LDγ f (t) := 1

Γ (n − γ )

dn

dtn

∫ t

0

f (s)

(t − s)γ+1−n
ds, t > 0, n − 1 < γ < n.

Definition 2.6 The Caputo derivative of order γ for a function f : [0,∞[→ R can
be written as

CDγ f (t) := LDγ

(
f (t) −

n−1∑
k=0

tk

k!f
(k)(0)

)
, t > 0, n − 1 < γ < n.

Remark 2.1

(i) If f (t) ∈ Cn[0,∞[, then

CDγ f (t) := 1

Γ (n − γ )

∫ t

0

f (n)(s)

(t − s)γ+1−n
ds = In−γ f (n)(t),

t > 0, n − 1 < γ < n.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X, then integrals which appear in

Definitions 2.4 and 2.5 are taken in Bochner’s sense.

In what follows, we collect the Henry–Gronwall inequality (see Lemma 7.1.1, [32]).

Lemma 2.1 Let z, ω : J → [0,+∞[ be continuous functions. If ω is nondecreasing
and there are constants κ ≥ 0 and q > 0 such that

z(t) ≤ ω(t) + κ

∫ t

0
(t − s)q−1z(s) ds, t ∈ J,

then

z(t) ≤ ω(t) +
∫ t

0

[ ∞∑
n=1

(κΓ (q))n

Γ (nq)
(t − s)nq−1ω(s)

]
ds, t ∈ J.
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If ω(t) := ā, constant on J , then the above inequality is reduce to

z(t) ≤ āEq

(
κΓ (q)tq

)
, t ∈ J,

where Eq is the Mittag-Leffler function [1] defined by

Eq(y) :=
∞∑

k=0

yk

Γ (kq + 1)
, y ∈ C, Re(q) > 0.

For more generalized Henry–Gronwall inequalities see Ye et al. [33].

Lemma 2.2 A measurable function V : J → X is Bochner integrable, if ‖V ‖ is
Lebesgue integrable.

3 Solvability of System

We make the following assumptions.

[HF]: f : J × B × X → X satisfies:
(i) f is measurable for t ∈ J .

(ii) For arbitrary ξ1, ξ2 ∈ B, η1, η2 ∈ X satisfying ‖ξ1‖B , ‖ξ2‖B , ‖η1‖,
‖η2‖ ≤ ρ, there exists a Lf (ρ) > 0 such that

∥∥f (t, ξ1, η1) − f (t, ξ2, η2)
∥∥ ≤ Lf (ρ)

(‖ξ1 − ξ2‖B + ‖η1 − η2‖
)
,

for all t ∈ J.

(iii) There exists a af > 0 such that
∥∥f (t, ξ, η)

∥∥ ≤ af

(
1 + ‖ξ‖B + ‖η‖), for all ξ ∈ B, η ∈ X and t ∈ J.

[HG]: g : D := {(t, s) ∈ J × J | 0 ≤ s ≤ t} × B → X satisfies:
(i) g is continuous for (t, s) ∈ D.

(ii) For arbitrary (t, s) ∈ D and ξ1, ξ2 ∈ B satisfying ‖ξ1‖B , ‖ξ2‖B ≤ ρ, there
exists a Lg(ρ) > 0 such that

∥∥g(t, s, ξ1) − g(t, s, ξ2)
∥∥ ≤ Lg(ρ)‖ξ1 − ξ2‖B.

(iii) There exists a Mg > 0 such that
∥∥g(t, s, ξ)

∥∥ ≤ Mg

(
1 + ‖ξ‖B

)
for all ξ ∈ B.

[HB]: Let Y be a separable reflexive Banach space from which the control u take the
values. Operator B ∈ L∞(J,L(Y,X)), ‖B‖∞ stands for the norm of operator B

on Banach space L∞
(
J,L(Y,X)

)
.

[HU]: Multivalued maps U(·) : J ⇒ 2Y \{Ø} has closed, convex, and bounded val-
ues. U(·) is graph measurable and U(·) ⊆ 
 where 
 is a bounded set of Y .
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Set the admissible set

Uad = {
v(·) | J → Y strongly measurable, v(t) ∈ U(t) a.e.

}
.

Obviously, Uad 	= Ø (Theorem 2.1, [34]) and Uad ⊂ Lp(J,Y )(1 < p < +∞) is
bounded, closed, and convex. It is obvious that Bu ∈ Lp(J,X) for all u ∈ Uad.

Based on Lemma 3.1 and Definition 3.1 of our earlier work [29], we can introduce
the following definition.

Definition 3.1 If for every u ∈ Uad there exists a T = T (u) > 0 and x ∈ B C such that

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (t)ϕ(0)

+ ∫ t

0 (t − s)q−1S(t − s)f (s, xs,
∫ s

0 g(s, τ, xτ )dτ) ds

+ ∫ t

0 (t − s)q−1S(t − s)B(s)u(s) ds, 0 ≤ t ≤ T ,

ϕ(t), −∞ < t ≤ 0,

(2)

then system (1) is called mildly solvable with respect to u on ]−∞, T ], where

T (t) =
∫ ∞

0
ξq(θ)S

(
tqθ

)
dθ, S(t) = q

∫ ∞

0
θξq(θ)S

(
tqθ

)
dθ,

ξq(θ) = 1

q
θ

−1− 1
q 
q

(
θ

− 1
q
) ≥ 0,


q(θ) = 1

π

∞∑
n=1

(−1)n−1θ−qn−1 Γ (nq + 1)

n! sin(nπq), θ ∈]0,∞[,

ξq is a probability density function defined on ]0,∞[, that is,

ξq(θ) ≥ 0, θ ∈]0,∞[ and
∫ ∞

0
ξq(θ) dθ = 1.

The following properties of the operators T and S have been proved in our earlier
work (see Lemmas 3.2–3.4, [29]).

Lemma 3.1 The operators T and S have the following properties:

(i) For any fixed t ≥ 0, T (t) and S(t) are linear and bounded operators, i.e., for
any x ∈ X,

∥∥T (t)x
∥∥ ≤ M‖x‖ and

∥∥S(t)x
∥∥ ≤ qM

Γ (1 + q)
‖x‖.

(ii) {T (t), t ≥ 0} and {S(t), t ≥ 0} are strongly continuous.
(iii) For every t > 0, T (t) and S(t) are also compact operators if T (t) is compact.
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In order to discuss the solvability of system (1), we need the following important
a priori estimation.

Lemma 3.2 Let ϕ(0) ∈ X, [HF](iii) and [HG](iii) hold. Suppose system (1) is mildly
solvable on ]−∞, T ] with respect to u ∈ Uad, then there exists a constant ρ > 0 such
that ∥∥x(t)

∥∥ ≤ ρ for all t ∈ J.

Proof Since system (1) is mildly solvable on ]−∞, T ] with respect to u ∈ Uad, by
Definition 3.1, we can suppose x is a mild solution of system (1) with respect to u on
]−∞, T ], then x satisfies the form (2). Let x(t) = y(t) + ϕ̃(t) where ϕ̃: ]−∞, T ] →
X be function given by

ϕ̃(t) =
{

ϕ(t), −∞ < t ≤ 0,

T (t)ϕ(0), t ∈ J.
(3)

It is obvious that x satisfies the form (2) if and only if
⎧⎪⎨
⎪⎩

y0 = 0, −∞ < t ≤ 0,

y(t) = ∫ t

0 (t − s)q−1S(t − s)f (s, ys + ϕ̃s ,
∫ s

0 g(s, τ, yτ + ϕ̃τ )dτ ) ds,

+ ∫ t

0 (t − s)q−1S(t − s)B(s)u(s) ds, t ∈ J.

(4)

For t ∈ J , directly calculation gives that

∥∥y(t)
∥∥ ≤

∫ t

0
(t − s)q−1

∥∥∥∥S(t − s)f

(
s, ys + ϕ̃s ,

∫ s

0
g(s, τ, yτ + ϕ̃τ ) dτ

)∥∥∥∥ds

+
∫ t

0
(t − s)q−1

∥∥S(t − s)B(s)u(s)
∥∥ds

≤ qM

Γ (1 + q)

∫ t

0
(t − s)q−1af

(
1 + ‖ys + ϕ̃s‖B + MgT

(
1 + ‖yτ + ϕ̃τ‖B

))
ds

+ qM‖B‖∞
Γ (1 + q)

∫ t

0
(t − s)q−1

∥∥u(s)
∥∥

Y
ds

≤ a + af qM(1 + MgT )

Γ (1 + q)

∫ t

0
(t − s)q−1‖ys + ϕ̃s‖B ds, (5)

where

a = af (1 + MgT )MT q

Γ (1 + q)
+ qM‖B‖∞

Γ (1 + q)

(
p − 1

pq − 1

) p−1
p

T
q− 1

p ‖u‖Lp(J,Y ).

Let KT = max{K(t) : t ∈ J } and MT = max{M(t) : t ∈ J }. Then

‖ys + ϕ̃s‖B ≤ ‖ys‖B + ‖ϕ̃s‖B

≤ K(t) sup
{∥∥y(s)

∥∥ : 0 ≤ s ≤ t
} + M(t)‖y0‖B
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+ K(t) sup
{∥∥ϕ̃(s)

∥∥ : 0 ≤ s ≤ t
} + M(t)‖ϕ̃0‖B

≤ KT sup
{∥∥y(s)

∥∥ : 0 ≤ s ≤ t
} + KT M

∥∥ϕ(0)
∥∥ + MT ‖ϕ‖B.

Set

z(t) = KT sup
{∥∥y(s)

∥∥ : 0 ≤ s ≤ t
} + KT M

∥∥ϕ(0)
∥∥ + MT ‖ϕ‖B,

then

‖ys + ϕ̃s‖B ≤ z(t),

which implies that (5) can be written as

∥∥y(t)
∥∥ ≤ a + af qM(1 + MgT )

Γ (1 + q)

∫ t

0
(t − s)q−1z(s) ds. (6)

Note that (6) and the definition of z, we can obtain

z(t) ≤ KT M
∥∥ϕ(0)

∥∥ + MT ‖ϕ‖B + KT a

+ KT af qM(1 + MgT )

Γ (1 + q)

∫ t

0
(t − s)q−1z(s) ds.

Applying Lemma 3.2, there is a constant M̂ > 0 such that

z(t) ≤ M̂
(
KT M

∥∥ϕ(0)
∥∥ + MT ‖ϕ‖B + KT a

) := M̃, t ∈ J.

Then we have

∥∥y(t)
∥∥ ≤ a + af qM(1 + MgT )

Γ (1 + q)

∫ t

0
(t − s)q−1M̃ ds,

which implies that

∥∥y(t)
∥∥ ≤ a + af M(1 + MgT )T q

Γ (1 + q)
M̃ := M∗.

As a result, for t ∈ J ,

∥∥x(t)
∥∥ ≤ ∥∥y(t)

∥∥ + ∥∥T (t)ϕ(0)
∥∥ ≤ M∗ + M

∥∥ϕ(0)
∥∥ := ρ.

The proof is completed. �

Remark 3.1 By the definition of the seminorm in B C , it is not difficult to see ‖x‖B C ≤
‖ϕ‖B + ρ := ρ∗.

Theorem 3.1 Suppose [HF], [HG], [HB], and [HU] hold, ϕ(0) ∈ X. Then for each
u ∈ Uad and for some p ∈]1,∞[ such that pq > 1, system (1) is mildly solvable on
]−∞, T ] with respect to u, and the mild solution is unique.
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Proof Let B C|T1 := {x : ]−∞,0] → X,x|]−∞,0] ∈ B and x|[0,T1] ∈ C([0, T1],X)}
and

S(1, T1) :=
{
x ∈ B C|T1

∣∣∣ max
s∈[0,T1]

∥∥x(s) − ϕ(0)
∥∥ ≤ 1, x(s) = ϕ(s) for − ∞ < s ≤ 0

}
.

Then S(1, T1) ⊆ B C|T1 is a closed convex subset of B C|T1 . According to [HF](i) and
[HG](i), it is easy to obtain that f (s, xs,

∫ s

0 g(s, τ, xτ ) dτ) is a measurable function
for s ∈ [0, t], t ∈ [0, T1]. Let x ∈ S(1, T1), there exists a constant ρ∗ := ‖ϕ(0)‖+ 1 +
‖ϕ‖B > 0 such that ‖x‖B C|T1

≤ ρ∗. Using [HF](iii) and [HG](iii), we have

∥∥∥∥f

(
s, xs,

∫ s

0
g(s, τ, xτ ) dτ

)∥∥∥∥
≤ af

(
1 + ‖xs‖B + MgT

(
1 + ‖xτ‖B

))
≤ af

(
1 + ρ∗ + MgT

(
1 + ρ∗)) ≡ K∗, for t ∈ [0, T1]. (7)

In light of Lemma 3.1(i) and (7), we obtain that

∫ t

0
(t − s)q−1

∥∥∥∥S(t − s)f

(
s, xs,

∫ s

0
g(s, τ, xτ ) dτ

)∥∥∥∥ds ≤ MK∗T q

1

Γ (1 + q)
.

Thus, (t − s)q−1S(t − s)f (s, xs,
∫ s

0 g(s, τ, xτ ) dτ) is Bochner integrable with respect
to s ∈ [0, t] for all t ∈ [0, T1] due to Lemma 2.2.

On the other hand, by Lemma 3.1(i), [HB], [HU] and pq > 1, we have

∫ t

0
(t − s)q−1

∥∥S(t − s)B(s)u(s)
∥∥ds

≤ qM‖B‖∞
Γ (1 + q)

∫ t

0
(t − s)q−1

∥∥u(s)
∥∥

Y
ds

≤ qM‖B‖∞
Γ (1 + q)

(∫ t

0
(t − s)

p
p−1 (q−1)

ds

) p−1
p

(∫ t

0

∥∥u(s)
∥∥p

Y
ds

) 1
p

≤ qM‖B‖∞
Γ (1 + q)

(
p − 1

pq − 1

) p−1
p

T
q− 1

p ‖u‖Lp(J,Y ). (8)

Thus, (t − s)q−1S(t − s)B(s)u(s) is also Bochner integrable with respect to s ∈ [0, t]
for all t ∈ [0, T1] due to Lemma 2.2 again.

Now we can define P : S(1, T1) → B C|T1 by

(Px)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (t)ϕ(0)

+ ∫ t

0 (t − s)q−1S(t − s)f (s, xs,
∫ s

0 g(s, τ, xτ ) dτ) ds

+ ∫ t

0 (t − s)q−1S(t − s)B(s)u(s) ds, 0 < t ≤ T1,

ϕ(t), −∞ < t ≤ 0.

(9)
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Let x(t) = y(t)+ ϕ̃(t) where ϕ̃: ]−∞, T ] → X be the function given by (3). Then
x satisfies (2), if and only if y0 = 0 and

y(t) =
∫ t

0
(t − s)q−1S(t − s)f

(
s, ys + ϕ̃s ,

∫ s

0
g(s, τ, yτ + ϕ̃τ ) dτ

)
ds

+
∫ t

0
(t − s)q−1S(t − s)B(s)u(s) ds, t ∈ J.

Define

B C|0T1
:= {y ∈ B C|T1 : y0 = 0 ∈ B}

and let ‖ · ‖B C|0T1
be the seminorm in B C|0T1

defined by

‖y‖B C|0T1
:= ‖y0‖B + sup

s∈[0,T1]
{∥∥y(t)

∥∥} = sup
s∈[0,T1]

{∥∥y(t)
∥∥}

.

Then (B C|0T1
,‖ · ‖B C|0T1

) is a Banach space.

Set

S 0(1, T1) :=
{
y ∈ B C|0T1

∣∣∣ max
s∈[0,T1]

∥∥y(s)
∥∥ ≤ 1, y(s) = 0 for − ∞ < s ≤ 0

}
.

Then S 0(1, T1) ⊆ B C|0T1
is a closed convex subset of B C|0T1

.

Define P 0: S 0(1, T1) → B C|0T1
by

(
P 0y

)
(t) =

⎧⎪⎨
⎪⎩

∫ t

0 (t − s)q−1S(t − s)f (s, ys + ϕ̃s ,
∫ s

0 g(s, τ, yτ + ϕ̃τ ) dτ ) ds

+ ∫ t

0 (t − s)q−1S(t − s)B(s)u(s) ds, 0 < t ≤ T1,

0, −∞ < t ≤ 0.

(10)

Next, we verify that P 0 is a contraction mapping on S 0(1, T1) with chosen T1 > 0.
For t ∈ [0, T1], it is not difficult to see

∥∥(
P 0y

)
(t)

∥∥ ≤
∫ t

0
(t − s)q−1

∥∥∥∥S(t − s)f

(
s, ys + ϕ̃s ,

∫ s

0
g(s, τ, yτ + ϕ̃τ ) dτ

)∥∥∥∥ds

+
∫ t

0
(t − s)q−1

∥∥S(t − s)B(s)u(s)
∥∥ds

≤ MK∗

Γ (1 + q)
tq + qM‖B‖∞‖u‖Lp(J,Y )

Γ (1 + q)

(
p − 1

pq − 1

) p−1
p

t
q− 1

p . (11)

Let

T11 =
[

Γ (1 + q)

M(K∗ + q‖B‖∞‖u‖Lp(J,Y ))(
p−1
pq−1 )

p−1
p

] p
pq−1

,
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then for all t ≤ T11, it comes from (11) that
∥∥(

P 0y
)
(t)

∥∥ ≤ 1.

On the other hand, for −∞ < t ≤ 0, (P 0y)(t) = 0.
Hence, P 0(S 0(1, T1)) ⊆ S 0(1, T1).
For each t ∈ [0, T1], y, ŷ ∈ S 0(1, T1) and ‖y‖B C|0T1

, ‖ŷ‖B C|0T1
≤ ρ∗. For t ∈ [0, T1],

using Lemma 3.1(i), [HF](ii), and [HG](ii), we also obtain
∥∥(

P 0y
)
(t) − (

P 0ŷ
)
(t)

∥∥
≤

∫ t

0
(t − s)q−1

∥∥∥∥S(t − s)

[
f

(
s, ys + ϕ̃s ,

∫ s

0
g(s, τ, yτ + ϕ̃τ ) dτ

)

− f

(
s, ŷs + ϕ̃s ,

∫ s

0
g(s, τ, ŷτ + ϕ̃τ ) dτ

)]∥∥∥∥ds

≤ qMLf (ρ∗)
Γ (1 + q)

∫ t

0
(t − s)q−1‖ys − ŷs‖B ds

+ qMLf (ρ∗)Lg(ρ
∗)T

Γ (1 + q)

∫ t

0
(t − s)q−1‖yτ − ŷτ‖B ds

≤ qMLf (ρ∗)(1 + Lg(ρ
∗)T )

Γ (1 + q)

∫ t

0
(t − s)q−1‖ys − ŷs‖B ds,

≤ qMLf (ρ∗)(1 + Lg(ρ
∗)T )KT

Γ (1 + q)

∫ t

0
(t − s)q−1 sup

s∈J

∥∥y(s) − ŷ(s)
∥∥ds,

which implies that

sup
t∈J

∥∥(
P 0y

)
(t) − (

P 0ŷ
)
(t)

∥∥ ≤ MLf (ρ∗)(1 + Lg(ρ
∗)T )KT

Γ (1 + q)
tq sup

s∈J

∥∥y(s) − ŷ(s)
∥∥.

Thus,

∥∥P 0y − P 0ŷ
∥∥

B C|0T1
≤ MLf (ρ∗)(1 + Lg(ρ

∗)T )KT

Γ (1 + q)
tq‖y − ŷ‖B C|0T1

.

Let

T12 = 1

2

[
Γ (1 + q)

MLf (ρ∗)(1 + Lg(ρ∗)T )KT

] 1
q

, T1 = min{T11, T12},

then P 0 is a contraction mapping on S 0(1, T1). It follows from the contraction map-
ping principle that P 0 has a unique fixed point y ∈ S 0(1, T1). Therefore, x(t) =
y(t) + ϕ̃(t) is just the unique mild solution of system (1) with respect to u on
(−∞, T1].

Let T21 = T1 + T11, T22 = T1 + T12,�T = min{T21 − T1, T12} > 0. Similarly, one
can verify that system (1) has an unique mild solutions on (−∞,�T ]. Repeating
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the above procedures in each interval [�T,2�T ], [2�T,3�T ], . . . , and using the
methods of steps, we immediately obtain the global existence of mild solutions for
the system (1). �

4 Continuous Dependence

In this section, we discuss the continuous dependence of mild solutions for sys-
tem (1).

Theorem 4.1 Suppose ϕi(0) ∈ Π , where Π be a bounded subset of X, ϕi ∈ B and
ui ∈ Uad, i = 1,2. Let

xi(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (t)ϕi(0)

+ ∫ t

0 (t − s)q−1S(t − s)f (s, xi
s,

∫ s

0 g(s, τ, xi
τ ) dτ) ds

+ ∫ t

0 (t − s)q−1S(t − s)B(s)ui(s) ds, 0 ≤ t ≤ T ,

ϕi(t), −∞ < t ≤ 0.

Then there exists a constant C∗ > 0 such that
⎧⎪⎨
⎪⎩

‖x1(t) − x2(t)‖ ≤ C∗(‖ϕ1(0) − ϕ2(0)‖ + ‖ϕ1 − ϕ2‖B
+ ‖u1 − u2‖Lp(J,Y )), t ∈ J,

‖x1(t) − x2(t)‖ = ‖ϕ1(t) − ϕ2(t)‖, −∞ < t ≤ 0.

Proof Let xi(t) = yi(t) + ϕ̃i (t) where ϕ̃i : ]−∞, T ] → X, i = 1,2, be function de-
fined by

ϕ̃i (t) =
{

ϕi(t), −∞ < t ≤ 0,

T (t)ϕi(0), t ∈ J,
(12)

where
⎧⎪⎨
⎪⎩

yi
0 = 0, −∞ < t ≤ 0,

yi(t) = ∫ t

0 (t − s)q−1S(t − s)f (s, xi
s + ϕ̃i

s ,
∫ s

0 g(s, τ, xi
τ + ϕ̃i

τ ) dτ ) ds

+ ∫ t

0 (t − s)q−1S(t − s)B(s)ui(s) ds, 0 ≤ t ≤ T .

By Lemma 3.2 and [HG](iii), one can check that there exists a constant ρ > 0 such
that

∥∥yi
s + ϕ̃i

s

∥∥
B ≤ ρ and

∥∥∥∥
∫ s

0
g
(
s, τ, yi

τ + ϕ̃i
τ

)
dτ

∥∥∥∥ ≤ ρ.

For t ∈ J , by virtue of Lemma 3.1(i), [HF](ii), [HG](ii), [HB], [HU], and Hölder
inequality, we have
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∥∥y1(t) − y2(t)
∥∥

≤
∫ t

0
(t − s)q−1

∥∥∥∥S(t − s)

[
f

(
s, y1

s + ϕ̃1
s ,

∫ s

0
g
(
s, τ, y1

τ + ϕ̃1
τ

)
dτ

)

− f

(
s, y2

s + ϕ̃2
s ,

∫ s

0
g
(
s, τ, y2

τ + ϕ̃2
τ

)
dτ

)]∥∥∥∥ds

+
∫ t

0
(t − s)q−1

∥∥S(t − s)
[
B(s)u1(s) − B(s)u2(s)

]∥∥ds

≤ qMLf (ρ)

Γ (1 + q)

∫ t

0
(t − s)q−1(∥∥y1

s − y2
s

∥∥
B + ∥∥ϕ̃1

s − ϕ̃2
s

∥∥
B
)
ds

+ qMLf (ρ)Lg(ρ)T

Γ (1 + q)

∫ t

0
(t − s)q−1(∥∥y1

τ − y2
τ

∥∥
B + ∥∥ϕ̃1

τ − ϕ̃2
τ

∥∥
B
)
ds

+ qM‖B‖∞
Γ (1 + q)

∫ t

0
(t − s)q−1

∥∥u1(s) − u2(s)
∥∥

Y
ds

≤ qM‖B‖∞
Γ (1 + q)

(∫ t

0
(t − s)

p
p−1 (q−1)

ds

) p−1
p

(∫ t

0

∥∥u1(s) − u2(s)
∥∥p

Y
ds

) 1
p

+ qMLf (ρ)(1 + Lg(ρ)T )

Γ (1 + q)

∫ t

0
(t − s)q−1(∥∥y1

s − y2
s

∥∥
B + ∥∥ϕ̃1

s − ϕ̃2
s

∥∥
B
)
ds

≤ qM‖B‖∞
Γ (1 + q)

(
p − 1

pq − 1

) p−1
p

T
q− 1

p
∥∥u1 − u2

∥∥
Lp(J,Y )

+ qMLf (ρ)(1 + Lg(ρ)T )

Γ (1 + q)

∫ t

0
(t − s)q−1(∥∥y1

s − y2
s

∥∥
B + ∥∥ϕ̃1

s − ϕ̃2
s

∥∥
B
)
ds.

It is easy to obtain

∥∥y1
s − y2

s

∥∥
B + ∥∥ϕ̃1

s − ϕ̃2
s

∥∥
B

≤ K(t) sup
{∥∥y1(s) − y2(s)

∥∥ : 0 ≤ s ≤ t
} + M(t)

∥∥y1
0 − y2

0

∥∥
B

+ K(t) sup
{∥∥ϕ̃1(s) − ϕ̃2(s)

∥∥ : 0 ≤ s ≤ t
} + M(t)

∥∥ϕ̃1
0 − ϕ̃2

0

∥∥
B

≤ V (t),

where

V (t) := KT sup
{∥∥y1(s) − y2(s)

∥∥ : 0 ≤ s ≤ t
} + KT M

∥∥ϕ1(0) − ϕ2(0)
∥∥

+ MT

∥∥ϕ1 − ϕ2
∥∥

B.

Thus,

V (t) ≤ a′ + KT c′
∫ t

0
(t − s)q−1V (s) ds,
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where

a′ = KT M
∥∥ϕ1(0) − ϕ2(0)

∥∥ + MT

∥∥ϕ̃1 − ϕ̃2
∥∥

B + KT b′∥∥u1 − u2
∥∥

Lp(J,Y )
,

b′ = qM‖B‖∞
Γ (1 + q)

(
p − 1

pq − 1

) p−1
p

T
q− 1

p ,

c′ = qMLf (ρ)(1 + Lg(ρ)T )

Γ (1 + q)
.

By Lemma 2.1 again, there exists a constant M̂ > 0 such that

V (t) ≤ M̂a′ for all t ∈ J.

Thus, for all t ∈ J ,
∥∥y1(t) − y2(t)

∥∥
≤ b′∥∥u1 − u2

∥∥
Lp(J,Y )

+ c′M̂ T q

q
a′

≤ c′M̂ T q

q
KT M

∥∥ϕ1(0) − ϕ2(0)
∥∥

+ c′M̂ T q

q
MT

∥∥ϕ̃1 − ϕ̃2
∥∥

B +
(

c′M̂ T q

q
KT + 1

)
b′∥∥u1 − u2

∥∥
Lp(J,Y )

,

which implies that
∥∥x1(t) − x2(t)

∥∥
≤

(
c′M̂ T q

q
KT + 1

)
M

∥∥ϕ1(0) − ϕ2(0)
∥∥ + c′M̂ T q

q
MT

∥∥ϕ̃1 − ϕ̃2
∥∥

B

+
(

c′M̂ T q

q
KT + 1

)
b′∥∥u1 − u2

∥∥
Lp(J,Y )

.

Let

C∗ := max

{(
c′M̂ T q

q
KT + 1

)
M,c′M̂ T q

q
MT ,

(
c′M̂ T q

q
KT + 1

)
b′

}
> 0.

Then, one can obtain
∥∥x1(t) − x2(t)

∥∥
≤ C∗(∥∥ϕ1(0) − ϕ2(0)

∥∥ + ∥∥ϕ1 − ϕ2
∥∥

B + ∥∥u1 − u2
∥∥

Lp(J,Y )

)
, for t ∈ J.

Note that,
∥∥x1(t) − x2(t)

∥∥ ≤ ∥∥ϕ1(t) − ϕ2(t)
∥∥, for − ∞ < t ≤ 0.

This completes the proof. �
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5 Existence of Optimal Controls

In the following, we consider the Lagrange problem (P):
Find a control u0 ∈ Uad such that

J
(
u0) ≤ J (u), for all u ∈ Uad

where

J (u) :=
∫ T

0
L

(
t, xu

t , xu(t), u(t)
)
dt,

and xu denotes the mild solution of system (1) corresponding to the control u ∈ Uad.
For the existence of solution for problem (P), we shall introduce the following

assumption:

[HL]: (i) The functional L : J × B × X × Y −→ R ∪ {∞} is Borel measurable.
(ii) L(t, ·, ·, ·) is sequentially lower semicontinuous on B × X × Y for almost

all t ∈ J .
(iii) L(t, x, y, ·) is convex on Y for each x ∈ B, y ∈ X and almost all t ∈ J .
(iv) There exist constants d , e ≥ 0, j > 0, μ is nonnegative and μ ∈ L1(J,R)

such that

L(t, x, y,u) ≥ μ(t) + d‖x‖B + e‖y‖ + j‖u‖p
Y .

Now, we can give the following result on existence of optimal controls for prob-
lem (P).

Theorem 5.1 Let assumptions of Theorem 3.1 and [HL] hold. Suppose that B be a
strongly continuous operator. Then Lagrange problem (P) admits at least one optimal
pair, that is there exists an admissible control u0 ∈ Uad such that

J
(
u0) =

∫ T

0
L

(
t, x0

t , x0(t), u0(t)
)
dt ≤ J (u), for all u ∈ Uad.

Proof If inf{J (u) | u ∈ Uad} = +∞, there is nothing to prove. Without loss of
generality, we assume that inf{J (u) | u ∈ Uad} = ε < +∞. Using [HL], we have
ε > −∞. By definition of infimum there exists a minimizing sequence feasible pair
{(xm,um)} ⊂ Aad ≡ {(x,u) | x is a mild solution of system (1) corresponding to
u ∈ Uad}, such that J (xm,um) → ε as m → +∞. Since {um} ⊆ Uad, m = 1,2, . . . ,
{um} is a bounded subset of the separable reflexive Banach space Lp(J,Y ), there
exists a subsequence, relabeled as {um}, and u0 ∈ Lp(J,Y ) such that um w−→
u0 in Lp(J,Y ). Since Uad is closed and convex, thanks to Marzur lemma, u0 ∈ Uad.

Let {xm} ⊂ B C denote the corresponding sequence of solutions of the integral
equation

xm(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (t)ϕ(0)

+ ∫ t

0 (t − s)q−1S(t − s)f (s, xm
s ,

∫ s

0 g(s, τ, xm
τ ) dτ) ds

+ ∫ t

0 (t − s)q−1S(t − s)B(s)um(s) ds, 0 ≤ t ≤ T ,

ϕ(t), −∞ < t ≤ 0.
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For Lemma 3.2 and Remark 3.1, there exists a ρ > 0 such that
∥∥xm

∥∥
B C ≤ ρ, m = 0,1,2, . . . .

Let xm(t) = ym(t) + ϕ̃(t) where ym ∈ B C 0 and ϕ̃: ]−∞, T ] → X be the function
given by (3). For t ∈ J , we have

∥∥ym(t) − y0(t)
∥∥

≤
∫ t

0
(t − s)q−1

∥∥∥∥S(t − s)

[
f

(
s, ym

s + ϕ̃s ,

∫ s

0
g
(
s, τ, ym

τ + ϕ̃τ

)
dτ

)

− f

(
s, y0

s + ϕ̃s ,

∫ s

0
g
(
s, τ, y0

τ + ϕ̃τ

)
dτ

)]∥∥∥∥ds

+
∫ t

0
(t − s)q−1

∥∥S(t − s)
[
B(s)um(s) − B(s)u0(s)

]∥∥ds

≤ qMLf (ρ)(1 + Lg(ρ)T )

Γ (1 + q)

∫ t

0
(t − s)q−1

∥∥ym
s − y0

s

∥∥
B ds

+ qM

Γ (1 + q)

∫ t

0
(t − s)q−1

∥∥B(s)um(s) − B(s)u0(s)
∥∥ds

≤ qM

Γ (1 + q)

(
p − 1

pq − 1

) p−1
p

t
(q− 1

p
)

(∫ t

0

∥∥B(s)um(s) − B(s)u0(s)
∥∥p

ds

) 1
p

+ qMLf (ρ)(1 + Lg(ρ)T )

Γ (1 + q)

∫ t

0
(t − s)q−1 sup

s∈J

∥∥ym(s) − y0(s)
∥∥

B ds,

which implies that there exists a constant M∗ > 0 such that

sup
t∈J

∥∥ym(t) − y0(t)
∥∥ ≤ M∗∥∥Bum − Bu0

∥∥
Lp(J,Y )

, for t ∈ J. (13)

Since B is strongly continuous, we have

∥∥Bum − Bu0
∥∥

Lp(J,Y )

s−→ 0 as m → ∞. (14)

Then we have ∥∥ym − y0
∥∥

B C 0
s−→ 0 as m → ∞,

which is equivalent to

∥∥xm − x0
∥∥

B C
s−→ 0 as m → ∞.

This yields that

xm s−→ x0 in B C as m → ∞.

Note that [HL] implies the assumptions of Balder (see Theorem 2.1, [35]). Hence,
by Balder’s theorem, we can conclude that (xt × x,u) −→ ∫ T

0 L(t, xt , x(t), u(t)) dt
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is sequentially lower semicontinuous in the weak topology of Lp(J,Y ) ⊂ L1(J,Y ),
and strong topology of L1(J, B × X). Hence, J is weakly lower semicontinuous on
Lp(J,Y ), and since by [HL](iv), J > −∞, J attains its infimum at u0 ∈ Uad, that
is,

ε = lim
m→∞

∫ T

0
L

(
t, xm

t , xm(t), um(t)
)
dt ≥

∫ T

0
L

(
t, x0

t , x0(t), u0(t)
)
dt = J

(
u0) ≥ ε.

This completes the proof. �

6 An Example

At last, an example is given to illustrate our theory. Consider the following problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CD
q
t x(t, y) − ∂2

∂y2 x(t, y)

= μ
(
t,

∫ t

−∞ μ1(s − t)x(s, y) ds,
∫ t

0

∫ 0
−∞ μ2(s, y, τ − s)x(τ, y) dτ ds

)
,

+ ∫
[0,1] K(y, s)u(s, t) ds, q ∈ ( 1

2 ,1), y ∈ [0,1], t ∈ J,

x(t,0) = x(t,1) = 0, t ≥ 0,

x(t, y) = ϕ(t, y), −∞ < t ≤ 0, y ∈ [0,1],

(15)

where ϕ is continuous and satisfies certain smoothness conditions, u ∈ L2(J ×[0,1]),
and K : [0,1] × [0,1] → R is continuous. Moreover, we assume that:

(h1) μ1(s) ≥ 0 is continuous in ]−∞,0] and
∫ 0
−∞ μ2

1(s) ds < ∞.
(h2) μ is continuous in J × [0,1] × [0,1] and there exists a Lμ > 0 such that

∥∥μ(t, v1,w1) − μ(t, v2,w2)
∥∥ ≤ Lμ

(
δ‖v1 − v2‖ + ‖w1 − w2‖

)
, for all t ∈ J.

where δ = (−1
2ν

∫ 0
−∞ μ2

1(s) ds)− 1
2 .

(h2′) μ is continuous in J × [0,1] × [0,1] and there exists a aμ > 0 such that
∥∥μ(t, v,w)

∥∥ ≤ aμ

(
δ‖v‖ + ‖w‖), for all t ∈ J.

(h3) μ2(t, y, s) ≥ 0 is continuous in J × [0,1]×]−∞,0] and
∫ 0
−∞ μ2(t, y, s) ds =

β(t, y) < ∞ and ag = max{β(t, y) : t ∈ J, y ∈ [0,1]}.
Let X = Y = L2(0,1) be endowed with the usual norm ‖ · ‖L2 , and D(A) :=

W 2,2(0,1) ∩ W
1,2
0 (0,1), and Ax := − ∂2x

∂y2 for x ∈ D(A). Then A can generate
a strongly continuous semigroup {S(t), t ≥ 0} in X. The controls are functions
u : Sx([0,1]) → R, such that u ∈ L2(Sx([0,1])). This claim is that t → u(·, t) go-
ing from J into Y is measurable. Set U(t) := {u ∈ Y : ‖u‖Y ≤ 
 }, where 
 ∈
L2(J,R

+). We restrict the admissible controls Uad to be all u ∈ L2(Sx([0,1])) such
that ‖u(·, t)‖L2([0,1]) ≤ 
(t), a.e.

Let ν < 0, defined the phase space

B :=
{
φ ∈ C

(]−∞,0],X) : lim
s→−∞ eνsφ(s) exists in X

}
,
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and let

‖φ‖B := sup
−∞<s≤0

{
eνs

∥∥φ(s)
∥∥}

.

Then (B,‖ · ‖B) is a Banach space which satisfies (S1)–(S3) with H = 1, K(t) =
max{1, e−νt }, M̄(t) = e−νt .

For (t, φ) ∈ [0,1] × B, where φ(s)(y) = ϕ(s, y), (s, y) ∈]−∞,0] × [0,1], let

x(t)(y) = x(t, y),

g(t, φ)(y) =
∫ 0

−∞
μ2(t, y, s)φ(s)(y) ds,

f

(
t, φ,

∫ t

0
g(s,φ)ds

)
(y) = μ

(
t,

∫ 0

−∞
μ1(s)φ(s)(y) ds,

∫ t

0
g(s,φ)(y) ds

)
,

B(t)u(t)(y) =
∫

[0,1]
K(y, s)u(s, t) ds.

Then the system (1) can be abstracted as the problem (15).
Now, consider the following cost function:

J (u) :=
∫ T

0
L

(
t, xu

t , xu(t), u(t)
)
dt,

where L : J × C1,0(]−∞,0] × [0,1]) × L2(J × [0,1]) → R ∪ {+∞} for x ∈
C1,0(]−∞, T ] × [0,1]) and u ∈ L2([0,1] × J ),

L
(
t, xu

t , xu(t), u(t)
)
(y)

:=
∫

[0,1]

∫ 0

−∞
∣∣xu(t + s, y)

∣∣2
ds dy +

∫
[0,1]

∣∣xu(t, y)
∣∣2

dy +
∫

[0,1]
∣∣u(y, t)

∣∣2
dy.

It is easy to see that all the assumptions in Theorem 5.1 are satisfied; the problem
(15) has at least one optimal pair.

7 Conclusions

This paper contains the existence, uniqueness, and continuous dependence of mild
solutions for the fractional integrodifferential evolution systems with infinite delay in
Banach spaces by utilizing the techniques of a priori estimation, extension of step by
steps via the Banach fixed point principle. Also, we discussed the existence of optimal
control problems of the fractional integrodifferential evolution controlled systems
with infinite delay. The result shows that the priori estimation, extension of step by
steps via the Banach fixed point principle can effectively be used in existence and
control problems to obtain sufficient conditions. Here, it is proved that, under some
hypotheses, the Lagrange problem admits at least one optimal pair.
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