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Abstract We present a modified method for solving nonlinear systems of equations
with order of convergence higher than other competitive methods. We generalize also
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1 Introduction

In this paper, we present a modified method for solving nonlinear systems of equa-
tions with higher order of convergence. We also generalize the efficiency index of
Ostrowski [1] generally used in the one-dimensional case to several variables. The
convergence order of the method is higher than that of other well-known competitive
methods [2]. The presented study of the efficiency index is new, and the numerical
results illustrate the connection between the efficiency index and the practical perfor-
mance of the method.

Two are the goals of this paper. Firstly, by conveniently modifying a well-known
result [3] that improves the efficiency index, we increase the local order of con-
vergence and the efficiency index. To do this, we use a variant of Chebyshev’s
method [3–5] instead of the variant of Newton’s method given in [3]. Secondly, we
present a new way to compute the efficiency of an iterative method which we call
computational efficiency index (CEI).

2 Preliminary Analysis

To approximate a simple root α of a system of nonlinear equations F(x) = 0, where
F : D ⊆ R

m −→ R
m is a vector function sufficiently differentiable in a neighborhood

I ⊆ D of α, we usually apply iterative methods of the form

xn+1 = Φ(xn), n ≥ 0, (1)

starting with a given initial approximation x0 of the root α, where Φ is a function
defined on a closed subset Ω of R

m that maps Ω into itself. It is well-known that the
choice of some methods depends on the local order of convergence and the computa-
tional cost. The classic efficiency index [1] of an iterative method is defined by

EI = ρ1/ν, (2)

where ρ is the local order of convergence of the method and ν represents the number
of the evaluations of the scalar component functions necessary to apply (1). Clearly,
we can improve (2) by increasing the local order of convergence with minimum com-
putational cost. Following this idea, a well-known result that improves the efficiency
index and adapted to R

m states [3]:

If the iterative method (1) has order of convergence ρ, then the iterative method
defined by {

zn = Φ(xn),

xn+1 = zn − [F ′(xn)]−1F(zn),
(3)

has order of convergence at least ρ + 1.

Notice that using an additional evaluation of the vectorial function F in (3), the order
of convergence of (1) has been increased by one.
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Hereafter, we consider iterative methods of the form (1) involving evaluations of
the function F and its derivatives up to ρ − 1 order. To obtain the efficiency indices
EI of (1) and (3), we compute the number of scalar functions that are used in the eval-
uation of the vectorial function and its derivatives. Namely, if F = (f1, f2, . . . , fm),
for (1), we have:

• m evaluations of fi(x), 1 ≤ i ≤ m, to obtain F(x);
• m2 evaluations of functions to obtain F ′(x) = (

∂fi (x)
∂xj

)i,j=1,2,...,m;

• The number of evaluations given by the combinations with repetition
(
m+1

2

)
for (

∂2fi(x)
∂xj ∂xk

)j,k=1,2,...,m, and the total number of evaluations m
(
m+1

2

) = m2(m+1)
2

needed to compute F ′′(x);
• The number of evaluations given by the combinations with repetition

(
m+2

3

)
for (

∂3fi (x)
∂xj ∂xk∂x�

)j,k,�=1,2,...,m, and the total number of evaluations m
(
m+2

3

) =
m2 (m+1)(m+2)

6 needed to compute F ′′′(x), and so on.

In general, we need

m

(
m + ρ − 2

ρ − 1

)

evaluations of functions to obtain F (ρ−1)(x). Taking into account the preceding, the
efficiency indices of the iterative methods (1) and (3) are given respectively by

EI(1) = ρ
(m−1)!(ρ−1)!

(m+ρ−1)! and EI(3) = (ρ + 1)
(m−1)!(ρ−1)!

m!(ρ−1)!+(m+ρ−1)! . (4)

In the above expressions, it is considered that the computational cost of all the evalua-
tions of the component functions and their partial derivatives is 1. Moreover, from (4),
we have that EI(3) > EI(1) for ρ > 2.

3 Main Result

In the following, we present theoretical results that improve the local order of con-
vergence (≥ 3) of a given iterative method. We also show numerical examples where
the previously obtained theoretical results are applied and how the efficiency index is
improved.

3.1 Theoretical Results

We begin with the iterative method (1), where we evaluate F(xn), F ′(xn), F ′′(xn),
and we consider the following two-step iterative algorithm{

zn = Φ(xn),

xn+1 = zn − (I + 1
2LF (xn, zn))U(zn),

(5)

where LF (xn, zn) = [F ′(zn)]−1F ′′(xn)U(zn) and U(zn) = [F ′(zn)]−1F(zn).
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Observe that in (3) an evaluation of the function F is computed while an evaluation
of the function and its derivative are computed in (5). We note that in the following

theorem F (k)(α) ∈ L (Rm×
k

˘· · · ×R
m,R

m), Γ ∈ L (Rm,R
m), Ak = 1

k!Γ F (k)(α) and

Akh
k = Ak(h,h,

k

˘. . . , h) ∈ R
m with h ∈ R

m, where L denotes the set of bounded
linear functions.

Theorem 3.1 If the errors in sequences xn and zn are respectively en = xn − α and

zn − α = C0e
ρ
n + O(e

ρ+1
n ), where C0 ∈ L (Rm×

ρ

˘· · · ×R
m,R

m), then the local order
of convergence of the iterative method defined in (5) is at least 2ρ +1. More precisely,
if Γ = [F ′(α)]−1 exists, then

en+1 = −3A3C
2
0e2ρ+1

n + O
(
e2ρ+2
n

)
,

where A3C
2
0e

2ρ+1
n = A3(C0e

ρ
n ,C0e

ρ
n , en).

Proof We will denote e = en and E = zn − α. Taking into account Taylor’s series of
F(zn) and F ′(zn) at α, we obtain

F(zn) = F(α + E) = F ′(α)
(
E + A2E

2 + O
(
E3)) (6)

and

F ′(zn) = F ′(α + E) = F ′(α)
(
I + 2A2E + O

(
E2)). (7)

From (6) and (7) and developing [F ′(zn)]−1 and U(zn) at α, we obtain[
F ′(zn)

]−1 = (
I − 2A2E + O

(
E2

))
Γ,

U(zn) = (
I − 2A2E + O

(
E2

))
Γ Γ −1

(
E + A2E

2 + O
(
E3

))
= E − A2E

2 + O
(
E3

)
.

(8)

Since

F(xn) = F ′(α)
(
e + A2 e2 + A3e

3 + O
(
e4)),

F ′(xn) = F ′(α)
(
I + 2A2e + 3A3e

2 + O
(
e3)),

F ′′(xn) = F ′(α)
(
2A2 + 6A3e + O

(
e2)),

where I is the identity operator and

LF (xn, zn) = [
F ′(zn)

]−1
F ′′(xn)U(zn)

= (
I − 2A2E + O

(
E2))(2A2 + 6A3e + O

(
e2))(E − A2E

2 + O
(
E3))

= 2A2E + 6A3eE + O
(
e2E

)
,

where LF (xn, zn) ∈ L (Rm,R
m), we have

LF (xn, zn)U(zn) = (
2A2E + 6A3eE + O

(
e2E

))(
E − A2E

2 + O
(
E3))

= 2A2E
2 + 6A3eE

2 + O
(
e2E2). (9)
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From (8) and (9), by subtracting α from the two sides of the definition of the
iterative function defined in (5), we get the following vectorial difference equation

en+1 = E − U(zn) − 1

2
Lf (xn, zn)U(zn)

= E − (
E − A2E

2 + O
(
E3)) − 1

2

(
2A2E

2 + 6A3eE
2 + O

(
e2E2))

= −3A3eE
2 + O

(
e2E2).

Replacing E by E = C0e
ρ + O(eρ+1), the proof is complete. �

Particularizing Theorem 3.1 for quadratic functions, the following result is ob-
tained.

Corollary 3.1 If F is a quadratic function, then the local order of convergence of the
iterative method defined in (5) is 3ρ. Moreover, if Γ = [F ′(α)]−1 exists, then

en+1 = 2A2
2C

3
0e3ρ

n + O
(
e3(ρ+1)
n

)
,

where A2
2C

3
0e

3ρ
n = (A2C0e

ρ
n)2C0e

ρ
n .

Proof Since Ak = 0, for k ≥ 3, and considering in (6) terms until the third order, we
obtain [

F ′(zn)
]−1 = (

I − 2A2E + 4A2
2E

2 + O
(
E3))Γ −1,

U(zn) = E − A2E
2 + 2A2

2E
3 + O

(
E4),

LF (xn, zn) = [
F ′(zn)

]−1
2A2U(zn)

= 2A2E − 6A2
2E

2 + 16A3
2E

3 + O
(
E4).

Therefore,

en+1 = E −
(

I + 1

2
LF (xn, zn)

)
U(zn)

= 2A2
2E

3 + O
(
E4),

and replacing E by E = C0e
ρ + O(eρ+1) in the last expression, it follows that the

local order of convergence is ≥ 3ρ. �

Note that the efficiency index of method (5) is:

EI(5) = (2ρ + 1)
(m−1)!(ρ−1)!

(m+1)!(ρ−1)!+(m+ρ−1)! . (10)

In Fig. 1, the efficiency index (10) of the iterative method defined in (5) is pre-
sented when the number of equations is m = 4,5, . . . ,12 and the local order of con-
vergence is ρ = 3,4,5. Notice that this index is greater than the ones obtained for the
methods (1) and (3) (see (4)).
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Fig. 1 Efficiency indices of
iterative methods (1), (3) and (5)

On the other hand, if we are interested in studying the efficiency, in the sense
defined by the authors, of the iterative methods based on the first order divided dif-
ferences, we can see [6], where the following k-step iterative method with memory
is presented:

x(k)
n = x(k−1)

n − [xn−1, xn;F ]−1F
(
x(k−1)
n

)
, k ≥ 1,

which has first been proposed in [7], where a semilocal analysis and sharp error
bounds are given. Some preliminary results of the efficiency index of the methods
from [7] can be found in [8].

3.2 Numerical Examples

In the following numerical examples, we compare the order and the efficiency of the
well-known Super-Halley method (SHM), whose iterative function is [2]:

Φ(x) = x −
(

I + 1

2
LF (x)

)(
I − LF (x)

)−1
U(x), (11)

with LF (x) = [F ′(x)]−1F ′′(x)U(x) and U(x) = [F ′(x)]−1F(x), and its correspond-
ing modification (MSHM) given by (5). To do this, we present two numerical exam-
ples where integral equations are involved.

Example 3.1 (Hammerstein’s equation) We consider the following mixed Hammer-
stein equation [9]:

x(s) = 1 + 1

5

∫ 1

0
G(s, t)x(t)3 dt, s ∈ [0,1],
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Table 1 Abscissas and weights
of the Gauss–Legendre formula
with m = 8

j tj 
j

1 0.0198 . . . 0.0506 . . .

2 0.1016 . . . 0.1111 . . .

3 0.2372 . . . 0.1568 . . .

4 0.4082 . . . 0.1813 . . .

5 0.5917 . . . 0.1813 . . .

6 0.7627 . . . 0.1568 . . .

7 0.8983 . . . 0.1111 . . .

8 0.9801 . . . 0.0506 . . .

where x ∈ C[0,1], t ∈ [0,1], and the kernel G is

G(s, t) =
{
(1 − s)t, t ≤ s,

s(1 − t), s ≤ t.

Firstly, we write the integral equation as F(x) = 0, where F : C[0,1] → C[0,1]
and

F(x)(s) = x(s) − 1 − 1

5

∫ 1

0
G(s, t)x(t)3 dt, s ∈ [0,1].

Then, we transform it into a finite-dimensional problem by using the following
Gauss–Legendre formula:

∫ 1

0
f (t) dt ≈

m∑
j=1


jf (tj ), (12)

where the abscissas tj and the weights 
j are known and presented in Table 1 for
m = 8.

Denoting the approximation of x(ti) by xi (i = 1,2, . . . ,8), we obtain the system
of nonlinear equations

xi − 1 − 1

5

8∑
j=1

aij x
3
j = 0, where aij =

{

j tj (1 − ti ) if j ≤ i,


j ti(1 − tj ) if j < i,
i = 1,2, . . . ,8.

(13)
Now, system (13) is written in matrix form as

F(x) = x − 1 − 1

5
Ax̂,

where F : R
8 −→ R

8, x = (x1, x2, . . . , x8)
T , 1 = (1,1, . . . ,1)T , A = (aij ) and x̂ =

(x3
1 , x3

2 , . . . , x3
8)T .

Observe that F ′(x) is the linear operator defined by

F ′(x)
y = y − 3

5
Adiag

{
x2

1 , x2
2 , . . . , x2

8

}
y



170 J Optim Theory Appl (2011) 151:163–174

Table 2 Initial approximations
x0, k iteration number, ρ̄

(COC), NFE for SHM and
MSHM methods and the
Hammerstein’s equation

SHM MSHM

x0 k ρ̄ NFE k ρ̄ NFE

1 5 3.00002 1800 3 6.42547 1296

3 6 2.99999 2160 4 7.00028 1728

Iterations 11 7

TNFE 3960 3024

and F ′′(x) is the bilinear operator defined by

F ′′(x)
yz = −6

5
A

(
x ⊗ y ⊗ z

)
,

where y = (y1, y2, . . . , y8)
T , z = (z1, z2, . . . , z8)

T and ⊗ denotes the componentwise
product on R

8.
The solution x∗ = (x∗

1 , x∗
2 , . . . , x∗

8 )T is

x∗
1 = x∗

8 = 1.0020 . . . , x∗
2 = x∗

7 = 1.0099 . . . ,

x∗
3 = x∗

6 = 1.0197 . . . , x∗
4 = x∗

5 = 1.0264 . . . .

Table 2 shows the initial approximations x0, the k iteration number necessary for
accomplishing the stopping criterion ‖xn − x∗‖ < 10−250, the Computational Order
of Convergence (COC) computed by the formula [10]

ρ̄ = ln
‖xn+1 − α‖
‖xn − α‖

/
ln

‖xn − α‖
‖xn−1 − α‖ , n ∈ N, (14)

and the Number of Function Evaluation (NFE) for SHM (11) and MSHM (5). Note
that in the last two rows we can see the total number of iterations and the total num-
ber of functions evaluations (TNFE) for nonlinear system (13) with two different
initial approximations x0 = 1 and x0 = 3. Table 2 shows the speed of convergence of
MSHM and how the total number of function evaluations decreases with respect to
SHM.

If we choose x0 = 1, we obtain the numerical solution x∗ = (x∗
1 , x∗

2 , . . . , x∗
8 )T af-

ter five iterations by SHM and after three iterations by MSHM. If we choose x0 = 3,
we obtain the numerical solution x∗ after six iterations by SHM and after four itera-
tions by MSHM.

We remark that in system (13) the number of scalar function evaluations is 360
for SHM and 432 for MSHM. The efficiency indices of SHM and MSHM are respec-

tively 3
1

360 ≈ 1.0031 and 7
1

432 ≈ 1.0045.

Example 3.2 (Chandrasekhar’s equation) Now, we consider a quadratic integral
equations related with Chandrasekhar’s work [11] of type

x(s) = f (s) + λx(s)

∫ 1

0
κ(s, t)x(t) dt, (15)
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which arise in the study of the radiative transfer theory, the transport of neutrons and
the kinetic theory of the gases. It is studied in [12] and, under certain conditions for
the kernel, in [13] and [14].

We consider the max-norm, the kernel κ(s, t) as a continuous function with s, t ∈
[0,1] and such that 0 < κ(s, t) < 1 and κ(s, t) + κ(t, s) = 1. Moreover, we suppose
that f (s) ∈ C[0,1] is a given function and λ is a real number.

Notice that finding a solution of (15) is equivalent to solving the equation F(x) =
0, where F : C[0,1] → C[0,1] and

F(x)(s) = x(s) − f (s) − λx(s)

∫ 1

0
κ(s, t)x(t) dt, x ∈ C[0,1], s ∈ [0,1].

In particular, we consider

F(x)(s) = x(s) − 1 − x(s)

4

∫ 1

0

s

s + t
x(t) dt, x ∈ C[0,1], s ∈ [0,1]. (16)

To approximate numerically a solution of F(x) = 0, where F is given in (16),
we approach the integral that appears in (16) by the Gauss–Legendre quadrature for-
mula given in (12) and Table 1. If we denote by xi the approximations of x(ti),
i = 1,2, . . . ,8, we obtain the following nonlinear system:

xi = 1 + xi

8∑
j=1

aij xj , where aij = ti
j

4(ti + tj )
, i = 1,2, . . . ,8. (17)

Now, if we denote x = (x1, . . . , x8)
T , 1 = (1, . . . ,1)T and A = (aij ), then we

write (17) in the matrix form:

F
(
x
) = x − 1 − x � Ax,

where � denotes the scalar product. Moreover, F ′(x) is then the linear operator given
by

F ′(x)
y = y − (

x � Ay + y � Ax
)
,

and F ′′(x) is the bilinear operator defined by

F ′′(x)
yz = −(

z � Ay + y � Az
)
.

The solution x∗ = (x∗
1 , x∗

2 , . . . , x∗
8 )T of the nonlinear system (17) is

x∗
1 = 1.0217 . . . , x∗

2 = 1.0731 . . . , x∗
3 = 1.1257 . . . , x∗

4 = 1.1697 . . . ,

x∗
5 = 1.2030 . . . , x∗

6 = 1.2264 . . . , x∗
7 = 1.2415 . . . , x∗

8 = 1.2494 . . . .

In Table 3, the stopping criterion ‖x∗ − xn‖ < 10−750 is used.
Notice that in system (17) the number of scalar function evaluations is again 360

for SHM and 432 for MSHM, exactly as in system (13). But the efficiency indices

are 4
1

360 ≈ 1.0039 for SHM and 12
1

432 ≈ 1.0058 for MSHM.
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Table 3 Initial approximations
x0, k iteration number, ρ̄

(COC), NFE for SHM and
MSHM methods and
Chandrasekhar’s equations

SHM MSHM

x0 k ρ̄ NFE k ρ̄ NFE

0 5 4.0077 1800 4 12.009 1728

3 6 4.0030 2160 4 12.011 1728

Iterations 11 8

TNFE 3960 3456

4 On the Computational Efficiency Index

In this section, the traditional way to present the computational efficiency index of
iterative methods (see [1, 3, 10]) is revisited and adapted for systems of nonlinear
equations. It will be presented in general form for SHM and MSHM, and some com-
parisons will be given. Finally, the preceding is particularized to the two integral
equations presented previously.

When dealing with a system of nonlinear equations, the total operational cost is
the sum of the evaluations of functions (the function and the derivatives involved) and
the operational cost of doing a step of the iterative method. Therefore, for nonlinear
systems with m equations and m unknowns, we suggest the following definition of the
computational efficiency index (CEI) of an iterative method of order of convergence
ρ as

CEI(μ,m) = ρ1/C(μ,m), (18)

where C(μ,m) is the computational cost given by

C(μ,m) = A(m)μ + P(m), (19)

A(m) represents the number of evaluations of the scalar functions, P(m) is the num-
ber of products to do an iteration and μ is a ratio between products and evaluations
required to express the value of C(μ,m) in terms of products. Notice that if μ = 1
and P(m) = 0, (18) is reduced to (2). When the computation of (19) is particularized
for a system, we can count the number of products that appear in the evaluation of
the corresponding scalar functions, and the notation A(m)μ = P̃ (m) is used.

According to the above, an estimation of the factor μ is claimed. To do this, we
express the cost of the evaluation of the elementary functions in terms of products [15,
16], which depends on the machine, the software and the used arithmetics. In Table 4,
an estimation of the cost of the elementary functions in product units is shown, where
running time of one product is measured in milliseconds.

In general, notice that the value of μ in (19) is of several units for polynomial
functions, while it is increased considerably for transcendental and trigonometric
functions, since it will be easily of several tens or hundreds.

Now, we illustrate the above-mentioned with the two examples previously given.

Example 4.1 (Hammerstein’s equation) Note that we have P̃1(m) = 4m2 + 2m for
SHM and P̃2(m) = 7m2 + 4m for MSHM. In Table 5, the computational costs is
shown in terms of products expressed as functions of m, where P̃j (m) + Pj (m) =
Gj(m), j = 1,2.
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Table 4 Estimation of computational cost of elementary functions computed with Maple 13 and using
an Intel(R) Core(TM)2 Duo CPU P8800 (32-bit machine) Microsoft Windows 7 Professional, where x =√

3 − 1 and y = √
5

Digits x ∗ y x/y
√

x exp(x) ln(x) sin(x) cos(x) arctan(x)

250 0.0052 ms 1 15 46 35 74 74 135

750 0.0257 ms 1 7 40 13 71 72 87

Table 5 Values of P̃ (m) and
P(m) for SHM and MSHM
corresponding to the
Hammerstein’s equation

SHM MSHM

ρ ρ1 = 3 ρ2 = 7

P̃j (m) 4m2 + 2m 7m2 + 4m

Pj (m) m
3 (2m2 + 12m + 4) m3 + 7m2 + 4m

Gj (m) m
3 (2m2 + 24m + 10) m(m2 + 14m + 8)

Table 6 Values of P̃ (m) and
P(m) for SHM and MSHM
corresponding to the
Chandrasekhar’s equation

SHM MSHM

ρ ρ1 = 4 ρ2 = 12

P̃j (m) 2m2 + m 4m2 + 2m

Pj (m) m
3 (2m2 + 15m − 2) m3 + 10m2 − m

Gj (m) m
3 (2m2 + 21m + 1) m(m2 + 14m + 1)

If we denote the computational efficiency indices of SHM and MSHM, respec-

tively, by C̃EI1(m) and C̃EI2(m), then from (18) we have C̃EIj (m) = ρ
1/Gj (m)

j ,
j = 1,2, and

R1 = log C̃EI2(m)

log C̃EI1(m)
= log 49

log 27

m2 + 12m + 5

m2 + 14m + 8
≥ 1 for m ≥ 2.97.

Therefore, for systems with m ≥ 3, it follows that C̃EI2 > C̃EI1.

Example 4.2 (Chandrasekhar’s equation) Notice that we have P̃1(m) = 2m2 + m for
SHM and P̃2(m) = 4m2 + 2m for MSHM. In Table 6, the computational costs is
shown in terms of products expressed as functions of m, where P̃j (m) + Pj (m) =
Gj(m), j = 1,2.

Following the same notation as in the previous example, we have C̃EIj (m) =
ρ

1/Gj (m)

j , j = 1,2, and

R2 = log C̃EI2(m)

log C̃EI1(m)
= log 12

log 64

2m2 + 21m + 1

m2 + 14m + 1
≥ 1 for m ≥ 0.27.

Therefore, for systems with m ≥ 2, it follows that C̃EI2 > C̃EI1.
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5 Conclusions

The main result of this paper is the presentation of a modified method for solving
nonlinear systems of equations whose order of convergence is higher than that of
other well-known competitive methods. Moreover, we analyze a generalization of
the efficiency index used in the scalar case to several variables. Numerical examples
that illustrate the theoretical results presented in this paper are also given.
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