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Abstract The aim of this paper is to study the Walrasian equilibrium problem when
the data are time-dependent. In order to have a more realistic model, the excess
demand function depends on the current price and on previous events of the mar-
ket. Hence, a memory term is introduced; it describes the precedent states of the
equilibrium. This model is reformulated as an evolutionary variational inequality in
the Lebesgue space L2([0, T ],R), and, thanks to this characterization, existence and
qualitative results on equilibrium solution are given.

Keywords Economic equilibrium problem · Evolutionary variational inequality ·
Memory term · Lagrangean theory

1 Introduction

This paper is concerned with a general economic equilibrium problem, and since we
are interested in the evolution of the system with respect to time, we assume that all
data are time-dependent. As a consequence, a dynamic Walrasian price equilibrium
problem is studied. The advantage of the time-dependent approach lies in the fact that
it allows us to examine a reliable model. Leon Walras, already in 1874, recognized
the importance of dealing with models closer to reality and provided a sequence of
models, each taking into account more aspects of a real economy. Then, in order
to link this equilibrium model to the real world, he introduced a price-adjustment
mechanism, called tâtonement. With this process Walras modeled the law of supply
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and demand: the price of a commodity will increase when demand for that commodity
exceeds supply, and the price will decrease if supply exceeds demand.

This paper aims at exploring the dynamics of market adjustment processes in pres-
ence of a continuous lag response. Volterra [1–3] was the first who introduced some
hereditary coefficients in the form of integral term in the constitutive equations for an
elastic body with memory. Later, starting from the 1960s, the idea that a body is able
to recollect only its recent past was suggested. As a result, the memory term repre-
sents only its recent history, and all the previous events can be neglected. Since then,
several applications in different fields have been studied, ranging from economics to
engineering problems, see, for instance, [4, 5] and [6]. In [7] authors generalize the
Walrasian price equilibrium problem to the dynamic case and characterize the price
equilibrium as a solution to a suitable evolutionary variational inequality. Further-
more, the same authors propose to consider the effects of the delay in a Walrasian
price equilibrium problem. Following this idea, we introduce a memory term that is
able to represent the history of the market. From an economic point of view, we are
led to consider a memory term in the excess demand function. Consequently, this ad-
justment factor affects the equilibrium condition. Namely, in the tâtonnement process
we take into account the contribution of the equilibrium price from the initial time
of the observation time, and this contribution represents an adjustment factor. The
mathematical framework chosen for the study of the model is that of evolutionary
variational inequalities (see, e.g., [8–18] for both theory and applications of evolu-
tionary variational inequalities). The paper is structured as follows. In Sect. 2, we
present the Walrasian equilibrium problem with memory term and characterize the
equilibrium as a solution to a suitable evolutionary variational inequality. In Sect. 3,
by using the variational theory we give existence and Lipschitz continuity results. In
Sect. 4, we characterize the dynamic equilibrium in terms of the Lagrange multipli-
ers. Finally, in Sect. 5, an example concludes the paper.

2 Equilibrium Conditions

During a period of time [0, T ], a pure exchange economy with l > 1 different com-
modities has been considered; at time t and at each commodity j , a nonnegative price
pj (t) is associated, where

pj : [0, T ] → R, j = 1, . . . , l, pj ∈ L2([0, T ],R
)
.

Hence, the price vector p = (p1,p2, . . . , pl) ∈ L2([0, T ],R
l ) = L. Let us denote by

zj the aggregate excess demand function relative to the commodity j :

zj : [0, T ] × R
l → R, j = 1, . . . , l,

(
t, p(t)

) → zj
(
t, p(t)

)
,

and z(t,p(t)) = (z1(t,p(t)), . . . , zl(t,p(t))) represents the aggregate excess demand
vector.

As usual in economy, we assume that z is homogeneous of degree zero in p, that is,
for all p, z(t, αp(t)) = z(t,p(t)) with α > 0 a.e. in [0, T ]. Because of homogeneity,
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the prices may be normalized, so that they take values in the set

S0 :=
{

p ∈ L : pj (t) ≥ 0, j = 1, . . . , l,

l∑

j=1

pj (t) = 1 a.e. in [0, T ]
}

.

In order to avoid that in such market there is some “free” commodity, it is conve-
nient to fix a minimum price for each commodity j . In this model, it is convenient
to fix, for each commodity j , a minimal price pj (t) at the time t . We suppose that

p : [0, T ] → R belongs to L and it is such that a.e. in [0, T ], pj (t) > 0 and for all

j = 1, . . . , l, pj (t) < 1
l
. Then the feasible set becomes:

S :=
{

p ∈ L : pj (t) ≥ pj (t), j = 1, . . . , l,

l∑

j=1

pj (t) = 1 a.e. in [0, T ]
}

.

Since our aim is to provide a model closer to reality, for a Walrasian pure exchange
equilibrium problem, we suppose that the price trend at time t be affected to the
previous events of the market. So, we introduce the aggregate excess demand function
with memory term:

Z : [0, T ] × R
l → R

l ,

Z
(
t, p(t)

) = z
(
t, p(t)

) +
∫ t

0
I (t − s)p(s) ds,

where I is a nonnegative definite l × l matrix with entries in L2([0, T ],R). It is
worth emphasizing the role of the matrix I . The entries of the matrix I represent the
information of past trade of the market, and they act on equilibrium solutions on the
current time. Then, the new aggregate excess demand function takes into account a
memory expressed in an integral form, and it can also be interpreted as adjustment
factor of prices. The meaning of the integral term is that it expresses the equilib-
rium distribution in which the commodity price incur at time t and, hence, the effect
of the previous situation on the present one. Moreover, the memory term is strictly
connected with the concept of delay: the integral term represents the delay of the
equilibrium solution, due to the previous equilibrium state.

We suppose that Z satisfies the Walras’ law:
〈
Z
(
t, p(t)

)
,p(t) − p(t)

〉 = 0 a.e. in [0, T ] ∀p ∈ S. (1)

We require that the following growth condition holds: there exist B ∈ L2([0, T ])
and A ∈ L∞([0, T ]) such that for t ∈ [0, T ]:

∥∥z
(
t, p(t)

)∥∥ ≤ A(t)
∥∥p(t)

∥∥ + B(t) ∀p(t) ∈ S(t),

where

S(t) :=
{

p(t) ∈ R
l+ : p(t) ≥ pj (t),

l∑

j=1

pj (t) = 1

}

.
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Taking into account that matrix entries are in L2, it is easy to prove that
∫ t

0 I (t −
s)p(s) ds is in L2. The definition of a Walrasian equilibrium with memory term is
now stated:

Definition 2.1 A price vector p̂ ∈ S is a dynamic Walrasian equilibrium vector for a
pure exchange model with memory term if and only if

Z
(
t, p̂(t)

) ≤ 0 a.e. in [0, T ].

We observe that, since Z satisfies the Walras’ law, the equilibrium condition can
be rewritten in the following way:

Definition 2.2 A price vector p̂ ∈ S is a dynamic Walrasian equilibrium vector for a
pure exchange model with memory term if and only if a.e. in [0, T ],

Zj
(
t, p̂(t)

)
{

≤ 0 if p̂j (t) = pj (t),

= 0 if p̂j (t) > pj (t).

Now, we can characterize the equilibrium as a solution to an evolutionary varia-
tional inequality:

Theorem 2.1 A price vector p̂ ∈ S is a dynamic Walrasian equilibrium with memory
term if and only if p̂ is a solution to the following evolutionary variational inequality:

〈
Z(p̂),p − p̂

〉
L

≤ 0 ∀p ∈ S. (2)

Proof We observe that, by Walras’ law,

〈
Z(p̂),p − p̂

〉
L

= −〈
Z(p̂), p̂ − p

〉
L

+ 〈
Z(p̂),p − p

〉
L

= 〈
Z(p̂),p − p

〉
L
;

then the evolutionary variational inequality (2) is equivalent to

〈
Z(p̂),p − p

〉
L

≤ 0. (3)

If p̂ is a dynamic Walrasian equilibrium with memory term, i.e., Zj (t,p(t)) ≤ 0 and
p̂ j (t) > pj (t) a.e. in [0, T ], then p̂ is a solution to evolutionary variational inequality
(3) (or (2)).

Vice-versa, let p̂ be a solution to the evolutionary variational inequality (2); we
prove that p̂ is a dynamic Walrasian equilibrium. We suppose ad absurdum that there
exist E ⊂ [0, T ] and j ∈ J such that μ(E) > 0 and

Zj
(
t, p̂(t)

)
> 0 for all t ∈ E. (4)

We set:

J− = {
j ∈ J : Zj

(
t, p̂(t)

) ≤ 0 in E
}
, J+ = {

j ∈ J : Zj
(
t, p̂(t)

)
> 0 in E

}
.
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Since J−, J+ 	= ∅ , it results 1 ≤ |J−| ≤ 1 − l and 1 ≤ |J+| ≤ 1 − l. We consider:

p̃j (t) =

⎧
⎪⎨

⎪⎩

p̂j (t) in [0, T ] \ E ∀j ∈ J,

ε in E ∀j ∈ J−,

(1 − |J−|ε) 1
|J+| in E ∀j ∈ J+,

with 0 < ε < min{ 1
|J−| ,−A

B
}, where

A =
∫

E

∑

j∈J+
Zj

(
t, p̂(t)

)( 1

|J+| − pj (t)

)
dt,

B =
∫

E

(∑

j∈J−
Zj

(
t, p̂(t)

) −
∑

j∈J+

Zj (t, p̂(t))|J−|
|J+|

)
dt.

We observe that, since pj (t) < 1
l

for all j = 1, . . . , l and |J+| ≤ 1− l, we have A > 0
and B < 0. It results p̃ ∈ S. We replace p̃ in (3):

〈
Z(p̂), p̃ − p

〉
L

=
∫

[0,T ]\E

∑

j∈J

Zj
(
t, p̂(t)

)(
p̂ j (t) − p j (t)

)
dt

+
∫

E

∑

j∈J−
Zj

(
t, p̂(t)

)(
ε − p j (t)

)
dt

+
∫

E

∑

j∈J+
Zj

(
t, p̂(t)

)((
1 − |J−|ε) 1

|J+| − p j (t)

)
dt

= ε

∫

E

(∑

j∈J−
Zj

(
t, p̂(t)

) −
∑

j∈J+
Zj

(
t, p̂(t)

) |J−|
|J+|

)
dt

+
∫

E

∑

j∈J+
Zj

(
t, p̂(t)

) 1

|J+| dt

−
∫

E

∑

j∈J−
Zj

(
t, p̂(t)

)
p j (t) dt −

∫

E

∑

j∈J+
Zj

(
t, p̂(t)

)
p j (t) dt

= ε

∫

E

(∑

j∈J−
Zj

(
t, p̂(t)

) −
∑

j∈J+
Zj

(
t, p̂(t)

) |J−|
|J+|

)
dt

−
∫

E

∑

j∈J−
Zj

(
t, p̂(t)

)
p j (t) dt

+
∫

E

∑

j∈J+
Zj

(
t, p̂(t)

)( 1

|J+| − pj (t)

)
dt ≤ 0.
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Since

−
∫

E

∑

j∈J−
Zj

(
t, p̂(t)

)
p j (t) dt ≥ 0,

replacing A and B , one has:

εB + A ≤ 0.

But, by choosing ε this results in that this estimate is false. Then (4) cannot occur,
and we obtain Zj (t, p̂(t)) ≤ 0 a.e. in [0, T ] for all j ∈ J .

Then p̂, solution to the evolutionary variational inequality (2), is a dynamic Wal-
rasian equilibrium whit memory term. �

3 Existence and Lipschitz Continuity Results

Thanks to the characterization of the dynamic Walrasian price equilibrium with mem-
ory term in terms of an evolutionary variational inequality, we can apply the varia-
tional inequality theory to give the existence and Lipschitz continuity of equilibrium
solution. To this aim, it is worth noting that the evolutionary variational inequality
problem (2) is equivalent to the following pointwise formulation:

〈
Z
(
t, p̂(t)

)
,p(t) − p̂(t)

〉 ≤ 0 ∀p ∈ S(t), ∀t ∈ [0, T ]. (5)

Theorem 3.1 (Existence) Let Z : S → R
n be a continuous and strictly monotone

function on S. Then there exists at least one dynamic Walrasian equilibrium with
memory term.

Proof We fix t ∈ [0, T ] and consider the pointwise problem (5). Z being continuous
and strictly monotone and S(t) compact, there exists a unique solution of variational
inequality (5). Following [8] (see also [13] and [14]), the solution p̂(t) is continuous
in [0, T ], then p̂(t) is also a solution to evolutionary variational inequality (2). �

Now we can adapt to our variational inequality problem a Lipschitz continuity
result given in [6]. To this aim, we remark that in our case the following assumption,
required in [6], holds:

there exists κ ≥ 0 such that, for t1, t2 ∈ [0, T ],
∥∥PS(t2)(q) − PS(t1)(q)

∥∥ ≤ κ|t2 − t1| ∀q ∈ R
n,

where PS(t)(q) = arg minx∈S(t) |q − x|, t ∈ [0, T ], denotes the projection onto the set
S(t).

Theorem 3.2 Let the following assumptions be satisfied:

(a) z is strongly monotone, i.e., there exists α > 0 such that, for t ∈ [0, T ],
〈
z(t,p1) − z(t,p2),p1 − p2

〉 ≥ α‖p1 − p2‖2 ∀p1,p2 ∈ R
n;
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(b) z is Lipschitz continuous with respect to p, i.e., there exists β > 0 such that, for
t ∈ [0, T ],

∥∥z(t,p1) − z(t,p2)
∥∥ ≤ β‖p1 − p2‖ ∀p1,p2 ∈ R

n;
(c) z is Lipschitz continuous with respect to t , i.e., there exists M > 0 such that, for

t1, t2 ∈ [0, T ],
∥∥z(t2,p) − z(t1,p)

∥∥ ≤ M‖p‖|t2 − t1| ∀p ∈ R
n;

(d) I is Lipschitz continuous on [0, T ], namely there exists L > 0 such that, for
t1, t2 ∈ [0, T ],

∥∥I (t2) − I (t1)
∥∥ ≤ L|t2 − t1|.

Moreover, I is nonnegative definite for any t ∈ [0, T ]. Then, the unique solution p̂(t),
t ∈ [0, T ], to (5) is Lipschitz continuous on [0, T ]. Moreover, for any couple t1, t2 ∈
[0, T ], t1 	= t2, the following estimate holds:

‖p̂(t2) − p̂(t1)‖2

|t2 − t1|2 ≤ γ

(
‖p̂‖2

C0([0,T ];Rn)
+ sup

t1,t2∈[0,T ]
t1 	=t2

∥∥
∥∥
PS(t2)(q) − PS(t1)(q)

t2 − t1

∥∥
∥∥

2)
(6)

with γ = γ (α,β,M,T ,L,‖I‖C0([0,T ];Rn×n)).

Remark 3.1 The unique solution p̂ to problem (5) belongs to W 1,∞([0, T ]). In
fact, from the Lipschitz continuity of the solution and, by Rademacher’s theorem
(see [19]), we immediately obtain the existence of bounded solution derivatives al-
most everywhere in [0, T ]. In addition, by applying Sobolev embedding theorems, it
follows that W 1,∞([0, T ]) can be compactly embedded in C([0, T ]).

4 Lagrangean Theory

Now, our purpose is to characterize a dynamic Walrasian price equilibrium with mem-
ory term by means of the Lagrangean multipliers. In particular, we will prove the
following result:

Theorem 4.1 p̂ ∈ S is a solution to the variational problem (2) if and only if there
exist α̂ ∈ L2([0, T ],R

l ) and β̂ ∈ L2([0, T ],R) such that a.e. in [0, T ]:
(i) α̂j (t) ≥ 0, ∀j = 1, . . . , l;

(ii) α̂j (t)(p̂j (t) − pj (t)) = 0 ∀j = 1, .., l;

(iii)

{
z(t, p̂(t)) + ∫ t

0 I (t − s)p̂(s) ds = −α̂(t),

β̂(t) = 0.

In order to prove Theorem 4.1, it is necessary to introduce some results (see, e.g.,
[20–26]). First of all, we recall the following definitions.
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Definition 4.1 Let C be a nonempty subset of a real linear space X. Then, the set

cone(C) := {λx : x ∈ C, λ ∈ R+}
is called the cone generated by C.

Definition 4.2 Let X denote a real normed space, and C ⊆ X. The set

TC(x) :=
{
h ∈ X : h = lim

n→∞λn(xn − x), λn ∈ R and λn > 0, ∀n ∈ N,

xn ∈ C ∀n ∈ N and lim
n→∞xn = x

}

is called the tangent cone to C at x.

Definition 4.3 Let C be a convex subset of a real linear space X. The quasi-relative
interior of C, denoted by qriC, is the set of those x ∈ C for which TC(x) is a linear
subspace of X.

Now the following assumptions are made:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

let X be a linear topological space, and Z be a real normed space;

let Y be a real normed space ordered by a convex cone C;

let S be a convex and nonempty subset of X;

let f : S → R, g : S → Y , and h : X → Z be given;

let the constraint set be given as K = {x ∈ S : g(x) ∈ −C, h(x) = θZ} 	= ∅.

(7)

Under these assumptions, we consider the constraint optimization problem

min
x∈K

f (x), (8)

and we associate it with the Lagrangean functional

L : S × C∗ × Z∗ → R,

L(x,u, v) := f (x) + 〈
u,g(x)

〉 + 〈
v,h(x)

〉
,

where C∗ = {u ∈ Y ∗ : 〈u,y〉 ≥ 0 ∀y ∈ C} is the dual cone of C, and Z∗ is the dual
space of Z. We consider the dual problem

max
(u,v)∈C∗×Z∗ inf

x∈S
L(x,u, v). (9)

Definition 4.4 Given three functions f,g,h and a set K as in (7), we say that As-
sumption S is fulfilled at a point x0 ∈ K if and only if

(Assumption S) TM̃(0, θY , θZ) ∩ ]−∞,0[ × {θY } × {θZ} = ∅, (10)

where

M̃ = {(
f (x) − f (x0) + α,g(x) + y,h(x)

) : x ∈ S \ K, α ≥ 0, y ∈ C
}
.



72 J Optim Theory Appl (2011) 151:64–80

Theorem 4.2 Assume that the functions f : S → R, g : S → Y are convex and that
h : S → Z is an affine-linear mapping. Assume that Assumption S is fulfilled at the
optimization solution x0 ∈ K to (8). Then also problem (9) is solvable, and if u ∈
C∗, v ∈ Z∗ are the extremal points of problem (9), then

〈
u,g(x0)

〉 = 0,

and the extremes of the two problems are equal.

Proof See, e.g., [24]. �

Using Theorem 4.2, let us characterize a solution of constraint optimization prob-
lem (8) as a saddle point of Lagrangean functional.

Theorem 4.3 Let the assumptions of Theorem 4.2 be satisfied. Then x0 ∈ K is a
minimal solution to problem (8) if and only if there exist u ∈ C∗ and v ∈ Z∗ such that
(x0, u, v) is a saddle point of the Lagrangean functional, namely:

L(x0, u, v) ≤ L(x0, u, v) ≤ L(x,u, v) ∀x ∈ S, u ∈ C∗, v ∈ Z∗,

and, moreover,
〈
u,g(x0)

〉 = 0.

Proof See, e.g., [24]. �

Now, Theorem 4.1 can be proven.

Proof of Theorem 4.1 Let p̂ ∈ S be a solution to evolutionary variational inequal-
ity (2); then p̂ is a solution to the optimization problem

min
p∈S

〈
Z(p̂), p̂ − p

〉
L

= 0. (11)

The minimal problem (11) is a constrained optimization problem of the kind (8); in
fact, we have:

X = Y = L, Z = L2([0, T ],R
)
,

C = C∗ = {
α ∈ L : α(t) ≥ 0 a.e. in [0, T ]},

f : L → R, f (p) = 〈
Z(p̂), p̂ − p

〉
L
,

g : L → L, g(p) = p − p ∈ L, and

h : L → Z, h(p) = 1 −
l∑

j=1

pj ∈ Z,

K = {
p ∈ L : g(p) ∈ −C, h(p) = θZ

}
.
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We associate to the problem (11) the Lagrangean functional

L : L × C∗ × Z∗ → R

such that

L(p,α,β) = 〈
Z(p̂), p̂ − p

〉
L

− 〈α,p − p〉L −
〈

β,

l∑

j=1

pj − 1

〉

Z

=
∫ T

0

〈
z
(
t, p̂(t)

)
, p̂(t) − p(t)

〉
dt

+
∫ T

0

〈∫ t

0
I (t − s)p̂(s) ds, p̂(t) − p(t)

〉
dt

−
∫ T

0

〈
α(t),p(t) − p(t)

〉
dt −

∫ T

0

〈

β(t),

l∑

j=1

pj (t) − 1

〉

dt.

We consider the dual problem

max
(α,β)∈C∗×Z∗ inf

p∈S
L(p,α,β).

We verify that the assumptions of Theorem 4.3 are satisfied. S is a convex set, f, g

are convex, and h is an affine-linear mapping; we have to verify Assumption S. We
have:

M̃ =
{(

f (p) − f (p̂) + k,p − p + y,

l∑

j=1

pj − 1

)

: p ∈ L \ S, k ≥ 0, y ∈ C

}

and

TM̃(0, θL, θZ)

=
{

y : y = lim
n→+∞λn

(

f (pn) − f (p̂) + kn,p − pn + yn,

l∑

j=1

p
j
n(t) − 1

)

with λn > 0, lim
n→+∞

(
f (pn) − f (p̂) + kn

) = 0,

lim
n→+∞(p − pn + yn) = θL, lim

n→+∞

l∑

j=1

p
j
n − 1 = θZ, pn ∈ L \ S,

kn ≥ 0, yn ∈ C

}

.
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In order to achieve Assumption S (10), we prove that if (l, θL, θZ) belongs to
TM̃(0, θL, θZ), then l ≥ 0. We have:

λn

(
f (pn) − f (p̂) + kn

) = λn

(〈
Z(p̂), p̂ − pn

〉
L

+ kn

)

= λn

〈
Z(p̂), p̂ − p

〉
L

+ 〈
Z(p̂), λn(p − pn + yn)

〉
L

+ 〈
Z(p̂),−λnyn

〉
L

+ λnkn

≥ 〈
Z(p̂), λn(p − pn + yn)

〉
L
,

because
〈
Z(p̂), p̂ − p

〉
L

= 0, Z(p̂) ≤ 0, λnyn ≥ 0;
passing to the limit, one has

l = lim
n→+∞λn

(
f (pn) − f (p̂) + kn

) ≥ lim
n→+∞

〈
Z(p̂), λn(p − pn + yn)

〉
L

= 0.

Hence assumption (10) holds.
By Theorem 4.3 there exists (̂α, β̂) ∈ C∗ ×Z∗ such that (p̂, α̂, β̂) is a saddle point

of the Lagrangean functional L:

L(p̂, α,β) ≤ L(p̂, α̂, β̂) ≤ L(p, α̂, β̂) ∀(α,β) ∈ C∗ × Z∗,p ∈ L, (12)

and furthermore:

〈̂α, p̂ − p〉L = 0. (13)

From (13), since α̂ ∈ C∗ and p̂ ∈ S, we derive

α̂j (t)
(
p̂j (t) − pj (t)

) = 0 a.e. in [0, T ] ∀j = 1, . . . , l (14)

and L(p̂, α̂, β̂) = 0. From right-hand side of (12) we have:

L(p, α̂, β̂) ≥ 0 ∀p ∈ L. (15)

Assuming in (15) p1 = p̂ + ε and p2 = p̂ − ε ∀ε ∈ D([0, T ]), we have:

L(p1, α̂, β̂) = 〈
Z(p̂), p̂ − p1

〉
L

− 〈̂α,p1 − p〉L −
〈

β̂,

l∑

j=1

p
j

1 − 1

〉

= 〈
Z(p̂),−ε

〉
L

− 〈̂α, p̂ − p〉L − 〈̂α, ε〉L

−
〈

β̂,

l∑

j=1

p̂j − 1

〉

−
〈

β̂,

l∑

j=1

εj

〉

= −〈
Z(p̂) + α̂, ε

〉
L

−
〈

β̂,

l∑

j=1

εj

〉

≥ 0, (16)
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L
(
p2, α̂, β̂

) = 〈
Z(p̂) + α̂, ε

〉
L

+
〈

β̂,

l∑

j=1

εj

〉

≥ 0. (17)

Hence, from (16) and (17) we have that, for all ε = {εj }j=1,...,l ∈ D([0, T ],R
l ),

〈
Z(p̂) + α̂, ε

〉
L

+
〈

β̂,

l∑

j=1

εj

〉

Z

=
∫ T

0

l∑

j=1

(
Zj

(
p̂(t)

) + α̂j (t) + β̂(t)
)
εj (t) dt = 0.

Taking

εj

{
= 0 for j = 1, . . . , l, j 	= h,

	= 0 for j = h,

we get:

for all h = 1, . . . , l, α̂h(t) = −Zh
(
p̂(t)

) − β̂(t) a.e. in [0, T ]. (18)

By (14), (18), and Walras’ law (1), we have a.e. in [0, T ]:

0 =
l∑

j=1

α̂j (t)
(
p̂j (t) − pj (t)

) =
l∑

j=1

(−Zj
(
t, p̂(t)

) − β̂(t)
)(

p̂j (t) − pj (t)
)

= 〈−Z
(
t, p̂(t)

)
, p̂(t) − p(t)

〉 −
l∑

j=1

β̂(t)
(
p̂j (t) − pj (t)

)

= −β̂(t)

l∑

j=1

(
p̂j (t) − pj (t)

)
.

From the last equality it follows that β̂(t) = 0 a.e. in [0, T ]. In fact, if there exists
E ⊂ [0, T ] with μ(E) > 0 such that β̂(t) 	= 0 for all t ∈ E, we have

∑l
j=1(p̂

j (t) −
pj (t)) = 0 in E; then, since p̂ ∈ S, by assumption on p we get:

1 =
l∑

j=1

p̂j (t) =
l∑

j=1

pj (t) < 1 in E.

Then β̂(t) = 0 and α̂(t) = −Z(p̂(t)) a.e. in [0, T ].
Conversely, if there exist p̂ ∈ S, α̂ ∈ L2([0, T ],R

l ), and β̂ ∈ L2([0, T ],R) that
satisfy conditions (i), (ii), and (iii), then (p̂, α̂, β̂) is a saddle point of the Lagrangean
functional L. Then, from Theorem 4.3 it follows that p̂ is a solution to the evolution-
ary variational inequality (2). �
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Remark 4.1 The dynamic Walrasian price equilibrium problem with memory term
can be expressed in the following way:

{
M(p̂)B(p̂) = 0,

M(p̂) ≥ 0, B(p̂) ≥ 0, p̂ ∈ S,
(19)

where S = L, and M, B are the operators

M(p) = −z
(
t, p(t)

) −
∫ t

0
I (t − s)p(s) ds and B(p) = p − p.

Many equilibrium problems arising from various fields of science may be ex-
pressed in a unified way under general conditions (19) (see, e.g., [23]).

5 Example

During the trading session represented by the time interval [0, T ], we consider an
economy with two commodities, with typical commodity denoted by j , and two
agents, with typical agent denoted by a. The typical agent has a demand function

x
j
a (t) = γ (t)

∑2
j=1 pj (t)e

j
a(t)

pj (t)
, j = 1,2,

with e
j
a(t), j = 1,2, is the initial endowment, and γ (t) ∈ L2([0, T ]), γ (t) ≥ 0 a.e. in

[0, T ]. The excess aggregate demand is then given by

zj
(
p(t)

) =
2∑

a=1

x
j
a (t) −

2∑

a=1

e
j
a(t), j = 1,2.

Now, we want to focus on the price formation for informed agents, where infor-
mation is meant as memory of past trade and is represented as an integral term that
leads to the price adjustment. Thus, in order to study the effective behavior of the
excess aggregate demand function, we introduce a memory term of the form

∫ t

0
I (t − s)p(s) ds = β(t)

∫ t

0
e−α(t−s)p(s) ds,

namely an exponentially weighted average of past prices, given by an exponentially
distributed adjustment. Here α(t), β(t) ∈ L2([0, T ]) represent the duration and inten-
sity of memory, respectively.

Exponential decay, the decrease at a rate proportional to its value, is a feature that
appears in many fields to describe the decay of a perturbation. In such a way it is
quite natural to consider a decay of memory of an exponential form. Of course, other
functions could be considered.
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The effective excess aggregate demand is

Zj
(
t, p(t)

) = zj
(
t, p(t)

) + β(t)

∫ t

0
e−α(t−s)pj (s) ds, j = 1,2,

where α(t), β(t) ∈ L2([0, T ]) and α(t), β(t) > 0 a.e. in [0, T ].
We set A = ∑2

a=1 e1
a(t), B = ∑2

a=1 e2
a(t), and D = 1

α
(e−αt − 1), where we suppose

that A − B − βD > 0 and 2B + βD > 0, and we fix the minimum prices

p1(t) = −2B − βD + √
(βD)2 + 4AB

2(A − B − 3βD)
,

p2(t) = 2A − βD + √
(βD)2 + 4AB

2(A − B − 3βD)
.

Thus, we are led to consider the following variational inequality:

∫ T

0

[
Z1(t, p̂(t)

)(
p1(t) − p̂1(t)

) + Z2(t, p̂(t)
)(

p2(t) − p̂2(t)
)]

dt ≤ 0 ∀p ∈ S,

where

S = {
p ∈ L2([0, T ],R

2) : p(t) ≤ p(t),p1(t) + p2(t) = 1 a.e. in [0, T ]}.

In virtue of the continuity of solutions, we are entitled to solve

Z1(t, p̂(t)
)(

p1(t) − p̂1(t)
) + Z2(t, p̂(t)

)(
p2(t) − p̂2(t)

) ≤ 0

∀p ∈ S(t), ∀t ∈ [0, T ].

By applying the direct method we have to equate the aggregate excess demands of
consumers

Z1(t, p̂(t)
) − Z2(t, p̂(t)

) = 0

with p̂2(t) = 1 − p̂1(t) and p1(t) < p̂1(t) < 1, namely

0 =
2∑

a=1

[(
x1
a(t) − e1

a(t)
) − (

x2
a(t) − e2

a(t)
)

+ β(t)

∫ t

0
e−α(t−s)p̂1(s) ds − β(t)

∫ t

0
e−α(t−s)p̂2(s) ds

]

=
2∑

a=1

[(
γ (t)

∑2
j=1 p̂j (t)e

j
a(t)

p̂1(t)
− e1

a(t)

)
−

(
γ (t)

∑2
j=1 p̂j (t)e

j
a(t)

1 − p̂1(t)
− e2

a(t)

)

+ β(t)

∫ t

0
e−α(t−s)p̂1(s) ds − β(t)

∫ t

0
e−α(t−s)

(
1 − p̂1(s)

)
ds

]
.
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After some steps, we find

2∑

a=1

(
2γ (t) − 1

)(
e1
a(t) − e2

a(t)
) = γ (t)

2∑

a=1

e1
a(t)

1 − p̂1(t)
− γ (t)

2∑

a=1

e2
a(t)

p̂1(t)

− 2β

∫ t

0
e−α(t−s)p̂1(s) ds + β

α

(
e−αt − 1

)
.

Setting γ (t) = 1, we are led to solve the equation
(

A − B + 2β

∫ t

0
e−α(t−s)p̂1(s) ds − β

α

(
e−αt − 1

))(
p̂1(t)

)2

+
(

2B − 2β

∫ t

0
e−α(t−s)p̂1(s) ds + β

α

(
e−αt − 1

))
p̂1(t) − B = 0,

whose solution is

p̂1(t) = −2B + 2βC − βD + √
(2βC − βD)2 + 4AB

2(A − B + 2βC − βD)
,

where C = ∫ t

0 e−α(t−s)p̂1(s) ds is in turn a solution to the equation

16β2C4 + (
16βA − 32β2D − 16βB

)
C3

+ (
20β2D2 − 16βAD − 8AB + 4B2 + 32βBD + 4A2)C2

+ (−20βBD2 − 8B2D + 8ABD − 4β2D3 + 4βAD2)C

+ 4βBD3 + 4B2D2 − 4ABD2 = 0.

Finally, it is easy to verify that if A−B +2βC −βD > 0, then p1(t) < p̂1(t) < 1.
Then we find the following equilibrium price for a pure exchange economy with
memory term:

p̂ 1(t) = −2B + 2βC − βD + √
(2βC − βD)2 + 4AB

2(A − B + 2βC − βD)
,

p̂ 2(t) = 2A + 2βC − βD + √
(2βC − βD)2 + 4AB

2(A − B + 2βC − βD)
.

6 Concluding Remarks

In [7] the Walrasian price equilibrium problem was generalized to the dynamic case,
and the price equilibrium was characterized as a solution to a suitable evolutionary
variational inequality. In this paper, in order to have a model closer to reality, it was
supposed that the excess demand function depends on the current price and on pre-
vious events of the market. Hence, a memory term was introduced in the excess de-
mand function; it is able to represent the history of the market. Namely, we took into
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account of the contribution of the equilibrium price from the initial time of the obser-
vation time, and this contribution represents an adjustment factor. It has been shown
that a time-dependent Walrasian price equilibrium problem with memory term can
be characterized by a suitable evolutionary variational inequality. By means of this
mathematical formulation the existence of the dynamic Walrasian price equilibrium
solution was given, and the Lipschitz continuity of price solution was studied. Fur-
thermore the dynamic equilibrium with memory term was characterized in terms of
the Lagrange multipliers.
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