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Abstract This paper deals with a class of chance constrained portfolio selection
problems in the fuzzy random decision making system. An integrated fuzzy random
portfolio selection model with a chance constraint is proposed on the basis of the
mean-variance model and the safety-first model. According to different definitions of
chance, we consider two types of fuzzy random portfolio selection models: one is for
the optimistic investors and the other is for the pessimistic investors. In order to deal
with the fuzzy random models, we develop a few theorems on the variances of fuzzy
random returns and the equivalent partitions of two types of chance constraints. We
then transform the fuzzy random portfolio selection models into their equivalent crisp
models. We further employ the ε-constraint method to obtain the efficient frontier. Fi-
nally, we apply the proposed models and approaches to the Chinese stock market as
an illustration.
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1 Introduction

Portfolio selection theory is concerned with how to allocate investment funds among
different assets to maximize the return of a portfolio and minimize its risk. There
are many sources of uncertainty including randomness and fuzziness in the stock
markets. So far, most portfolio selection models are set up by using the probability
theory. Recently, the existence of fuzziness in the stock markets has been gradually
recognized by some researchers. Several fuzzy portfolio selection models have been
proposed. However, both stochastic portfolio selection models and fuzzy portfolio
selection models have been considered with only one type of uncertainty. Therefore,
research on portfolio selection under both types of uncertainties is yet to be under-
taken.

By assuming the future return of a security to be a random variable, the portfo-
lio selection problem has been extensively studied using probability theory. In 1952,
Markowitz [1, 2] published his pioneering work, which served as the basis for the
development of the modern portfolio theory over the past several decades. The prin-
ciple of diversification is the core of this method, and it still has a wide application in
the financial industry. However, controlling (minimizing) the variance not only leads
to low deviation from the expected return on the downside, but also on the upside.
It thus may limit the potential profit as well. In 1952, Roy proposed the safety-first
portfolio model, which minimizes the probability of the downside risk only [3, 4]. In
addition, several researchers also analyzed the portfolio selection problem from other
angles; see e.g., [5–8].

Although Markowitz ignored the expert judgments in the derivation of the effi-
cient frontier, he emphasized the merit of combining the statistical techniques and
the judgment of experts in the portfolio selection process. Yet, Markowitz neither
proposed a method to tackle that issue, nor analysed the efficient set of portfolios for
the investors in the presence of fuzziness or any subjective information.

In the information age, a great deal of financial information on the economy, in-
dustries, and individual companies is available to investors. In fact, investors are often
faced with too many useful data that they find difficult or impossible to process. Their
opinions on the information are often fuzzy. This calls for the utilization of fuzzy set
theory [9, 10] in portfolio selection. By using the fuzzy approach, the expert judge-
ment and the investor subjective opinions can be better taken into account in a port-
folio selection model. Ramaswamy [11] presented a bond portfolio selection model
based on the fuzzy decision theory. A given target rate of return can be achieved for
an assumed market scenario through this approach. A similar approach for portfo-
lio selection, by using the fuzzy decision theory, was proposed by Leon et al. [12].
By using the fuzzy decision principle, Ostermark [13] proposed a dynamic portfolio
management model. Tanaka et al. [14] gave a special formulation of the fuzzy deci-
sion problems based on the possibility distributions. Watada [15] presented another
type of portfolio selection model based on the fuzzy decision principle. The model
is directly related to the mean-variance model, where the expected return and the
corresponding risk are described by the logistic membership functions.

It is well-known that there are both random uncertainty and fuzzy uncertainty in
the security markets; the future return of a security can be both random and fuzzy.
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Randomness is the uncertainty that whether the event will happen or not, which
means it is hard to predict whether the event will be happening or not. However,
the states of the event are clear. So randomness can be understood as external uncer-
tainty. Fuzziness is the uncertainty of the states, that is, the problem does not rest with
the event’s happening but rests with the states of the event being unclear. It leads to
different people having different feelings while observing the same event. So fuzzi-
ness can encapsulate subjective uncertainty. It is thus necessary to take both types of
uncertainty into account in a portfolio selection problem. Katagiri and Ishii [16] were
the first ones who supposed the security’s future return was a fuzzy random variable
and did some research on fuzzy random assets portfolio selection problem. Xu, Zhou
and Dash [17] use the λ mean and hybrid entropy to deal with the portfolio selection
with fuzzy random returns.

In this paper, we adopt the fuzzy random variable to describe the future return, and
propose a new multi-objective fuzzy random portfolio selection model with chance
constraints. This model enjoys the property to make satisfied personal portfolio selec-
tion according to the different investors’ attitudes, and experts’ opinions also could
be introduced, when we use this model.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
some basic portfolio selection models. In Sect. 3, we propose our models with chance
constraints and we give the equivalent crisp models. We present the solution method
in Sect. 4. In Sect. 5, an application to the Chinese stock market is given to illustrate
how to apply the proposed models. Conclusion is given in Sect. 6.

2 Basic Portfolio Selection Models

In this section, we briefly review the mean-variance model and the safety-first model
which are the basis of this paper.

2.1 Mean-Variance Model

Markowitz [1, 2] developed the famous mean-variance model for the portfolio selec-
tion problem. In the Markowitz portfolio theory, it is assumed that the future return
of a portfolio is a random variable, and the variance of the return is used to measure
the risk of a portfolio.

The basic idea of Markowitz [1, 2] is that investors search for the portfolio that
minimizes the risk under an expected return level R0, or maximize the return under a
risk level V0. Thus he proposed the following two equivalent models,

min xTV x,

s.t.

⎧
⎨

⎩

E(r̄)Tx ≥ R0,∑n
i=1 xi = 1,

xi ≥ 0, i = 1,2, . . . , n,

or

max E(r̄)Tx,

s.t.

⎧
⎨

⎩

xTV x ≤ V0,∑n
i=1 xi = 1,

xi ≥ 0, i = 1,2, . . . , n,

(1)

where n is the number of risky securities, xi is the proportion invested in Security i,
random variable r̄i is the future return of Security i, V = [σij ]n×n is the covariance
of the future returns on Securities i and j , R0 and V0 are the predetermined levels of
expected return and risk, respectively.
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2.2 Safety-First Models

In 1952, Roy [3] proposed the safety-first model for the portfolio selection problem,
which requires to minimize the probability that the return of the portfolio is less than
a predetermined “disaster level”. Based on this principle, Kataoka and Telser [4] later
proposed two other forms of the safety-first model.

Altogether, there are three forms of the safety-first model based on probability
theory as follows.

(1) Minimize the probability that the future return of the portfolio falls below a
given return level R, i.e.

min Pr
{
r̄Tx < R

}
, (2)

where Pr denotes the probability of a random event.
(2) Maximize the return level R with the probability that the future value of the

portfolio falls below R is not greater than α, i.e.

max R, s.t. Pr
{
r̄Tx ≤ R

} ≤ α. (3)

(3) Maximize the expected value of future return with the probability that the
future value of the portfolio falls below R is not greater than α, i.e.

max E(r̄)Tx, s.t. Pr
{
r̄Tx ≤ R

} ≤ α. (4)

Note that the above three models (2)–(4) are different from the mean-variance
model as the measure of risk is not the same. All the above safety-first models are
considered with the probability of loss, i.e., the downside risk, while Model (1) uses
variance to measure risk.

Moreover, when the future returns r̃j are considered as fuzzy variables, we have
another form of the safety-first model. Similar to Model (3), Inuiguchi and Tanino
[18] proposed the Fractile model:

max R, s.t. Nec
{
r̃Tx ≥ R

} ≥ h0, (5)

where h0 is the necessary confidence level, and Nec denotes the necessity of a fuzzy
event [19].

3 Model Formulation

It is well-known that both randomness and fuzziness exist in the security markets.
Thus, it is natural for us to assume that the future returns of risky securities are tri-
angular left-right type (LR) fuzzy random variables as shown in Fig. 1. The fuzzy
random returns are denoted by

˜̄rj (ω) = (
rj (ω),αj ,βj

)

LR
= (

rj (ω) − αj , rj (ω), rj (ω) + βj

)
, ω ∈ Ω,

where rj is a normally distributed random variable, i.e., rj ∼ N(μj ,σ
2
j ); μj is the

expected value of rj ; σ 2
j is the variance of rj ; αj and βj are the levels of tolerance
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Fig. 1 Triangular LR fuzzy random return ˜̄rj

of ˜̄rj (ω) according to the expert judgments; rj (ω) − αj and rj (ω) + βj represent
left-hand return and right-hand return, respectively.

3.1 Basic Knowledge of Fuzzy Random Variable

The fuzzy random variable used in this paper is defined on the real number set as
proposed by Puri and Ralescu [20]. Let R denote the set of all real numbers, Fc(R)

denote the set of all fuzzy variables, and Kc(R) denote all non-empty bounded close
intervals.

Definition 3.1 [20] For a probability space (Ω, F ,P ), a mapping ξ : Ω → Fc(R)

is a fuzzy random variable in (Ω, F ,P ), iff for ∀ α ∈]0,1], the set value function
ξα : Ω → Kc(R)

ξα(ω) := (
ξ(ω)

)

α
:= {

x|x ∈ R,μξ(ω)(x) ≥ α
}
, ∀ω ∈ Ω

is F measurable.

It has been proved [21] that if ξ is an fuzzy random variable, then the left and right
points of the α-level sets of ξ , denoted by (ξ)−α and (ξ)+α are real-valued random
variables for all α ∈]0,1].

Example 3.1 Suppose ξ = (m,α,β) is a triangular LR fuzzy variable, then ξ is a
fuzzy random variable if any one of m,α,β is a random variable.

3.1.1 Chance of Fuzzy Random Variables

We now give two definitions for the chance of a fuzzy random variable.

Definition 3.2 [22] Let ξ = (ξ1, ξ2, . . . , ξn) be a fuzzy random vector in a proba-
bility space (Ω, F ,P ), and fi : R

n → R, i = 1,2, . . . ,m be a real-valued continu-
ous function, then the chance measure Ch of the fuzzy random event fi(ξ) ≤ 0, i =
1,2, . . . ,m is defined as a function from ]0,1] to ]0,1],

Ch
{
fi(ξ) ≤ 0, i = 1,2, . . . ,m

}
(α)
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= sup
{
β|Pr

{
ω ∈ Ω|Pos

{
fi

(
ξ(ω)

) ≤ 0, i = 1,2, . . . ,m
} ≥ β

} ≥ α
}
, (6)

where α,β ∈]0,1] are predetermined confidence levels, Pr is the probability of a
random event, Pos is the possibility of a fuzzy event [19].

From Definition 3.2, we get

Ch
{
f (x, ξ) ≤ 0

}
(α) ≥ β ⇔ Pr

{
Pos

{
f (x, ξ) ≤ 0

} ≥ β
} ≥ α. (7)

Remark 3.1 Ch{fi(ξ) ≤ 0, i = 1,2, . . . ,m}(α) stands for the possibility that the
fuzzy random event in {·} when the probability level is α. Ch{fi(ξ) ≤ 0, i =
1,2, . . . ,m}(α) ≥ β stands for the possibility that the fuzzy random event in {·} is
no less than β when the probability level is α.

Remark 3.2 If the fuzzy random vector ξ degenerates to a random vector, then the
value of chance measure Ch{fi(ξ) ≤ 0, i = 1,2, . . . ,m}(α) is 0 or 1, that is,

Ch
{
fi(ξ) ≤ 0, i = 1,2, . . . ,m

}
(α) =

{
1, Pr{fi(ξ) ≤ 0, i = 1,2, . . . ,m} ≥ α,

0, otherwise.

Remark 3.3 If the fuzzy random vector ξ degenerates to a fuzzy vector, then the
chance measure Ch{fi(ξ) ≤ 0, i = 1,2, . . . ,m}(α) (α > 0) is actually the possibility
measure, that is,

Ch
{
fi(ξ) ≤ 0, i = 1,2, . . . ,m

}
(α) = Pos

{
fi(ξ) ≤ 0, i = 1,2, . . . ,m

}
.

Note that we can also use the necessity Nec to substitute the possibility Pos in
Definition 3.2 and get another definition of chance.

Definition 3.3 [22] The chance measure Ch of the fuzzy random event fi(ξ) ≤ 0, i =
1,2, . . . ,m can also be defined as

Ch
{
fi(ξ) ≤ 0, i = 1,2, . . . ,m

}
(α)

= sup
{
β|Pr

{
ω ∈ Ω|Nec

{
fi

(
ξ(ω)

) ≤ 0, i = 1,2, . . . ,m
} ≥ β

} ≥ α
}
, (8)

where α,β ∈]0,1] are predetermined confidence levels, Pr is the probability of a
random event, Nec is the necessity of a fuzzy event [19].

The relationship between Pos and Nec satisfies the following condition [19]:

Pos{A} ≥ Nec{A}. (9)

Following (9), we know that if a decision maker is optimistic (pessimistic), it
is better to use Definition 3.2(3.3) to measure the chance of an event under fuzzy
random environment.
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3.1.2 Variance of Fuzzy Random Variables

Note that the variance of a fuzzy random variable reflects the spread between the
fuzzy random variable and its mean, and the covariance of two fuzzy random vari-
ables reflects the degree of their linear correlation.

Definition 3.4 [23] Let (Ω, F ,P ) be a complete probability space, and ξ1, ξ2 be
fuzzy random variables that are quadratic defined in the space (Ω, F ,P ), then the
covariance of ξ1 and ξ2 is defined as

Cov(ξ1, ξ2) := 1

2

∫ 1

0

[
Cov

(
(ξ1)

−
α , (ξ2)

−
α

) + Cov
(
(ξ1)

+
α , (ξ1)

+
α

)]
dα (10)

and variance of ξ1 is defined as

Var(ξ1) := Cov(ξ1, ξ1) = 1

2

∫ 1

0

[
Var

(
(ξ1)

−
α

) + Var
(
(ξ1)

+
α

)]
dα. (11)

Lemma 3.1 [23, 24] Let (Ω, F ,P ) be a complete probability space, and ξ1, ξ2 be
quadratic fuzzy random variables defined in the space (Ω, F ,P ), λ,γ ∈ R, then

(i) Var(λξ1 + u) = λ2Var(ξ1);
(ii) Var(ξ1 + ξ2) = Var(ξ1) + Var(ξ2) + 2Cov(ξ1, ξ2);

(iii) Cov(λξ1 + u,γ ξ2 + v) = λγ Cov(ξ1, ξ2), where u,v are any fuzzy numbers,
λ,γ ≥ 0.

3.2 Modelling

The mean-variance approach encourages risk diversification, while the safety-first
approach discourages risk diversification sometimes. The mean-variance approach
not only controls the risk on the downside, but also bounds the possible gain on the
upside, while the mean safety-first approach only controls the risk on the downside.
Another limitation of both approaches is that the underlying distribution of the return
is not well understood, and there is no higher degree information available except for
means and covariances (variances). Based on the above considerations, we propose a
portfolio selection model combined by the mean-variance model and the safety-first
model.

3.2.1 Objectives

In this paper, we consider the following two objectives. The first one is about maxi-
mizing the expected return R of a portfolio, i.e.

max f1 = R. (12)

The second one is about minimizing the risk, i.e.

min f2 = Var

(
n∑

j=1

˜̄rj xj

)

. (13)
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3.2.2 Constraints

For the expected return, it should satisfy the following chance constraint:

Ch

{
n∑

j=1

˜̄rj xj ≥ R

}

(γ ) ≥ δ, (14)

where γ, δ ∈]0,1] are predetermined confidence levels, Ch is the chance measure of
the fuzzy random event.

By Definition 3.2, (14) can be written as

Pr

{

ω

∣
∣
∣
∣
∣
Pos

{
n∑

j=1

˜̄rj xj ≥ R

}

≥ δ

}

≥ γ. (15)

This Pr–Pos chance constraint can be used if the investor is relatively optimistic. It
means that the event

∑n
j=1

˜̄rj xj ≥ R holds at the confidence levels γ -Pr, δ-Pos. That

is, the possibility of the event
∑n

j=1
˜̄rj xj ≥ R is more than δ with the probability γ .

Remark 3.4 According to Remark 3.2 and Remark 3.3, if the fuzzy random variable
˜̄rj degenerates to a random variable r̄j , then the event

∑n
j=1 r̄j xj ≥ R is a random

event, for any ω ∈ Ω . As Pos{∑n
j=1 r̄j (ω)xj ≥ R} implies

∑n
j=1 r̄j (ω)xj ≥ R, the

constraint

Pr

{

ω

∣
∣
∣
∣
∣
Pos

{
n∑

j=1

r̄j (ω)xj ≥ R

}

≥ δ

}

≥ γ

is equivalent to

Pr

{

ω

∣
∣
∣
∣
∣

n∑

j=1

r̄j (ω)xj ≥ R

}

≥ γ.

Remark 3.5 If the fuzzy random variable ˜̄rj degenerates to a fuzzy variable r̃j , then

Pos

{
n∑

j=1

r̃j xj ≥ R

}

≥ δ

is a crisp event. In order to satisfy p := Pr{ω|Pos{∑n
j=1 r̃j xj ≥ R} ≥ δ} ≥ γi , the

probability p should be 1. So, the constraint

Pr

{

ω

∣
∣
∣
∣
∣
Pos

{
n∑

j=1

r̃j xj ≥ R

}

≥ δ

}

= 1 ≥ γ

is equivalent to

Pos

{
n∑

j=1

r̃j xj ≥ R

}

≥ δ.
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Similarly, by Definition 3.3, (14) can also be written as

Pr

{

ω

∣
∣
∣
∣
∣
Nec

{
n∑

j=1

˜̄rj xj ≥ R

}

≥ δ

}

≥ γ. (16)

This Pr–Nec chance constraint can be used if the investor is relatively pessimistic. It
means that the event

∑n
j=1

˜̄rj xj ≥ R holds at the confidence levels γ -Pr, δ-Nec. That

is, the necessity of the event
∑n

j=1
˜̄rj xj ≥ R is more than δ with the probability γ .

Remark 3.6 If the fuzzy random variable ˜̄rj degenerates to a random variable r̄j , then

Pr

{

ω

∣
∣
∣
∣
∣
Nec

{
n∑

j=1

r̄j (ω)xj ≥ R

}

≥ δ

}

≥ γ ⇔ Pr

{

ω

∣
∣
∣
∣
∣

n∑

j=1

r̄j (ω)xj ≥ R

}

≥ γ.

Remark 3.7 If the fuzzy random variable ˜̄rj degenerates to a fuzzy variable r̃j , then

Pr

{

ω

∣
∣
∣
∣
∣
Nec

{
n∑

j=1

r̃j xj ≥ R

}

≥ δ

}

= 1 ≥ γ ⇔ Nec

{
n∑

j=1

r̃j xj ≥ R

}

≥ δ.

In this situation, it is the same as the Fractile model (5) proposed by Inuiguchi and
Tanino [18].

In addition to the chance constraint, we also impose the capital budget constraint
as

n∑

j=1

xj = 1, (17)

and the no short-selling constraint as

xj ≥ 0, j = 1,2, . . . , n. (18)

3.2.3 Fuzzy Random Chance Constrained Multi-objective Model for Portfolio
Selection

Following the above discussion, we propose a model for the optimistic investors as
follows:

(OM) max f1 = R, min f2 = Var

(
∑n

j=1
˜̄rj xj

)

,

s.t.

⎧
⎨

⎩

Pr{ω|Pos{∑n
j=1

˜̄rj xj ≥ R} ≥ δ} ≥ γ,
∑n

j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n,
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and a model for the pessimistic investors as

(PM) max f1 = R, min f2 = Var

(
n∑

j=1

˜̄rj xj

)

,

s.t.

⎧
⎨

⎩

Pr{ω|Nec{∑n
j=1

˜̄rj xj ≥ R} ≥ δ} ≥ γ,
∑n

j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n.

Note that both (OM) and (PM) are fuzzy random multi-objective portfolio selec-
tion models.

4 Solution Method

In order to tackle the above (OM) and (PM) models, we first need to transform them
into their equivalent crisp models which can be solved by the ε-constraint method.

4.1 Equivalent Crisp Models

In this section, we derive the equivalent crisp models for (OM) and (PM). Based
on the above basic knowledge of fuzzy random variables, we show below how to
transform the fuzzy random objective and the chance constraint. Let us consider the
objective first.

Lemma 4.1 [25] Suppose the future return of security j be ˜̄rj , xj be the investment
proportion in security j (j = 1,2, . . . , n), then we have

Var

(
n∑

j=1

˜̄rj xj

)

=
n∑

i=1

n∑

j=1

σij xixj .

It should be noted that the variance of the fuzzy random return of portfolio
∑n

j=1
˜̄rj xj coincides with the variance in the Markowitz mean-variance model.

We now derive the crisp equivalent constraints of the chance constraints in (OM)
and (PM), respectively.

Lemma 4.2 [10] Suppose m̃ and ñ be non-interactive fuzzy numbers with continuous
membership function. For a deterministic confidence level α ∈]0,1], we have the
following conclusions:

Pos{m̃ ≥ ñ} ≥ α ⇔ mR
α ≥ nL

α, Nec{m̃ ≥ ñ} ≥ α ⇔ mL
1−α ≥ nR

α ,

where mL
α,mR

α (nL
α,nR

α ) denote the left and right endpoints of the α-cut of m̃ (ñ).
Pos{m̃ ≥ ñ} denotes the possibility measure of fuzzy event m̃ ≥ ñ, and Nec{m̃ ≥ ñ}
denotes the necessity measure of fuzzy event m̃ ≥ ñ.
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Theorem 4.1 Assume ˜̄rj is a triangular LR fuzzy random variable, denoted by
˜̄rj (ω) = (rj (ω) − αj , rj (ω), rj (ω) + βj ), ω ∈ Ω , the membership function is as fol-
lows:

μ ˜̄rj (ω)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t−rj (ω)+αj

αj
, rj (ω) − αj < t ≤ rj (ω),

1, t = rj (ω),
rj (ω)+βj −t

βj
, rj (ω) < t ≤ rj (ω) + βj ,

(19)

where rj is normally distributed, i.e., rj ∼ N(μj ,σ
2
j ), αj and βj (> 0) are the left

and right width of the ˜̄rj (ω), respectively.
Then

Pr

{

ω

∣
∣
∣
∣
∣
Pos

{
n∑

j=1

˜̄rj xj ≥ R

}

≥ δ

}

≥ γ

is equivalent to

R ≤
n∑

j=1

μjxj + (1 − δ)

n∑

j=1

βjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj ,

where Φ is standard normal distribution function, and δ, γ ∈]0,1] are predetermined
confidence levels.

Proof For ω ∈ Ω , ˜̄rj (ω) is a fuzzy number, the membership function is μ ˜̄rj (ω)
(t). By

the extension principle [9], we can get the membership function of the fuzzy number
∑n

j=1
˜̄rj (ω)xj as

μ∑n
j=1

˜̄rj (ω)xj
(t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−∑n
j=1(rj (ω)+αj )xj
∑n

j=1 αj xj
,

∑n
j=1(rj (ω) − αj )xj < t ≤ ∑n

j=1 rj (ω)xj ,

1, t = ∑n
j=1 rj (ω)xj ,∑n

j=1(rj (ω)+βj )xj −t
∑n

j=1 βj xj
,

∑n
j=1 rj (ω)xj < t ≤ ∑n

j=1(rj (ω) + βj )xj .

(20)

So we obtain

n∑

j=1

˜̄rj (ω) =
(

n∑

j=1

(rj − αj )(ω)xj ,

n∑

j=1

rj (ω)xj ,

n∑

j=1

(rj + βj )(ω)xj

)

.

Since rj ∼ N(μj ,σ
2
j ), we have

n∑

j=1

rj xj ∼ N

(
n∑

j=1

μjxj ,

n∑

i=1

n∑

j=1

σij xixj

)

.
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Using Lemma 4.2, we obtain

Pos

{
n∑

j=1

˜̄rj xj ≥ R

}

≥ δ ⇔
n∑

j=1

˜̄rj xj ≥ R − (1 − δ)

n∑

j=1

βjxj .

So, for predetermined confidence levels δ, γ ∈]0,1], there holds

Pr

{

ω

∣
∣
∣
∣
∣
Pos

{
n∑

j=1

˜̄rj xj ≥ R

}

≥ δ

}

≥ γ

⇔ Pr

{

ω

∣
∣
∣
∣
∣

n∑

j=1

˜̄rj xj ≥ R − (1 − δ)

n∑

j=1

βjxj

}

≥ γ

⇔ Pr

{

ω

∣
∣
∣
∣
∣

∑n
j=1

˜̄rj xj − ∑n
j=1 μjxj

√∑n
i=1

∑n
j=1 σij xixj

≥ R − ∑n
j=1 μjxj − (1 − δ)

∑n
j=1 βjxj

√∑n
i=1

∑n
j=1 σij xixj

}

≥ γ

⇔ Φ

(
R − ∑n

j=1 μjxj − (1 − δ)
∑n

j=1 βjxj
√∑n

i=1
∑n

j=1 σij xixj

)

≤ 1 − γ

⇔ R ≤
n∑

j=1

μjxj + (1 − δ)

n∑

j=1

βjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj .

The proof is completed. �

Theorem 4.2 Assume ˜̄rj is the same triangular LR fuzzy random variable defined in
Theorem 4.1. Then

Pr

{

ω

∣
∣
∣
∣
∣
Nec

{
n∑

j=1

˜̄rj xj ≥ R

}

≥ δ

}

≥ γ

is equivalent to

R ≤
n∑

j=1

μjxj − δ

n∑

j=1

αjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj ,

where Φ is standard normal distributed function, δ, γ ∈]0,1] are predetermined con-
fidence levels.

Proof The proof is similar to that of Theorem 4.1, and thus omitted. �
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Based on the Lemma 4.1 and Theorems 4.1, we can transform (OM) into the
following equivalent model:

max f1 = R, min f2 =
n∑

i=1

n∑

j=1

σij xixj ,

s.t.

⎧
⎪⎨

⎪⎩

R ≤ ∑n
j=1 μjxj + (1 − δ)

∑n
j=1 βjxj + Φ−1(1 − γ )

√∑n
i=1

∑n
j=1 σij xixj ,

∑n
j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n,

(21)
which is also equivalent to

max
n∑

j=1

μjxj + (1 − δ)

n∑

j=1

βjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj ,

min
n∑

i=1

n∑

j=1

σij xixj ,

s.t.

{∑n
j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n.

(22)

Similarly, based on Lemma 4.1 and Theorem 4.2, we can transform (PM) into the
following equivalent model:

max
n∑

j=1

μjxj − δ

n∑

j=1

αjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj ,

min
n∑

i=1

n∑

j=1

σij xixj ,

s.t.

{∑n
j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n.

(23)

Note that Models (22) and (23) are crisp models, which can be tackled as described
below.

4.2 ε-Constraint Method

In this section, we illustrate how to use the ε-constraint method to solve the equivalent
crisp models (22) and (23).

For a crisp multi-objective decision making model, we can use the ε-constraint
method to solve it. The ε-constraint method was proposed by Haimes [26, 27] in
1971. The essence of this method is that we choose a main referenced objective fi0,
and put the other objective functions into the constraints. Here we give a general
description of this method.

Let us consider the following general multi-objective model:

min fi(x), i = 1,2, . . . ,m, s.t. x ∈ X. (24)
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Using the ε-constraint method, we can get the single objective model:

min fi0(x), s.t.

{
fi(x) ≤ εi, i = 1,2, . . . ,m, i 	= i0,

x ∈ X,
(25)

where the parameter εi is predetermined by the decision maker and it represents the
threshold value that the decision maker can accept.

Let us denote the feasible domain of Model (25) as X1.

Theorem 4.3 If x̄ is the optimal solution of Model (25), then x̄ is a weak efficient
solution of Model (24).

Proof Here we prove this theorem by contradiction. Let x̄ be the optimal solution
of Model (25). If x̄ is not a weak efficient solution of Model (24), then there exists
x′ ∈ X1 such that for ∀i ∈ {1,2, . . . ,m}, fi(x

′) < fi(x̄) holds. And we obtain

fi0(x
′) < fi0(x̄), (26)

and

fi(x
′) < fi(x̄) ≤ εi, i = 1,2, . . . ,m, i 	= i0. (27)

It follows from (26) and (27) that x′ should be the optimal solution of Model (25),
which conflicts with the fact that x̄ is the optimal solution. So above all, we can
conclude that if x̄ is the optimal solution of Model (25), then there does not exist
any x′ ∈ X1 such that fi(x

′) < fi(x̄), ∀ i ∈ {1,2, . . . ,m}. That is, if x̄ is the optimal
solution of Model (25), then x̄ is a weak efficient solution of Model (24). Thus the
theorem is proved. �

Theorem 4.4 Let x̄ be an efficient solution of Model (24), then there exists a param-
eter εi (i = 1,2, . . . ,m, i 	= i0), such that x̄ is the optimal solution of Model (25).

Proof Set εi = fi(x̄) (i = 1,2, . . . ,m, i 	= i0). By the definition of efficient solution,
we can obtain that x̄ is an optimal solution of Model (25). �

The advantages of the ε-constraint method are as follows:

(1) Every efficient solution of Model (24) can be obtained by properly choosing
parameter εi (i = 1,2, . . . ,m, i 	= i0).

(2) The i0th objective must be satisfied, gives consideration to other objectives as
well.

Note that the above discussion is for a general multi-objective model. The specific
form of the ε-constraint method for Model (22) and (23) will be discussed in detail
in the next section.

5 Application in Chinese Stock Market

In this section, we illustrate the effectiveness of our approach by applying the
proposed models to the Chinese stock market. To this end, we choose the top
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Table 1 The expected values and the left-right spreads of the return of the 20 sample stocks (%)

No. Name Code μj αj βj

S1 China Petroleum 600028 0.1557 0.2000 0.2500

S2 Air China 601111 0.2372 0.2000 0.4000

S3 China Coal Energy 601898 0.1334 0.2500 0.5000

S4 China Life Insurance 601628 0.2292 0.4000 0.4000

S5 Bank of China 601988 0.1034 0.5000 0.5000

S6 Kweichow Moutai 600519 0.3030 0.2500 0.2500

S7 Shandong Gold Mine 600547 0.2632 0.2500 0.3000

S8 Heilongjiang Agricultural 600598 0.0284 0.0200 0.0600

S9 Daqin Railway 601006 0.0592 0.0100 0.0900

S10 Baoshan Iron 600019 0.0933 0.0300 0.0800

S11 Citic Securities 600030 0.0437 0.0350 0.0300

S12 Poly Real Estate 600048 0.0889 0.0200 0.0200

S13 Aluminum Corp China 601600 0.2535 0.1500 0.4000

S14 China South Locomotive 601766 0.0125 0.0200 0.0900

S15 Jinduicheng Molybdenum 601958 0.4576 0.0800 0.0500

S16 China United Network 600050 0.0157 0.0900 0.5000

S17 Tebian Electric 600089 0.1015 0.0500 0.0900

S18 Ping An insurance 601318 0.3943 0.2500 0.3500

S19 China Merchants Bank 600036 0.0518 0.0500 0.0900

S20 Saic Motor 600104 0.4867 0.0500 0.9000

20 stocks from the Shanghai Stock Exchange (SSE) Composite Index. One hun-
dred historical returns before November 1, 2009 are collected from Yahoo Finance
(http://finance.yahoo.com) for each of the 20 stocks. We use Excel to compute the
mean value of the return μj and the covariance σij . The values of αj , βj are chosen
according to some expert views. Note that the return μj can be positive, 0 or negative,
which means that if an investor gets positive (negative) return, then he or she wins
(loses) in a certain considered period; and if an investor gets 0 return, then he breaks
even in the period.

Table 1 shows the names, the transaction codes, the mean values and the left−right
spreads of the future returns of the sample stocks. Table 2 presents the covariance
matrix.

5.1 Portfolio Selection for Optimistic Investors

For an optimistic investor, we use Pr–Pos chance based (OM) to get efficient portfo-
lios. According to the ε-constraint method, we can solve the bi-objective crisp equiv-
alent optimistic portfolio selection model (22) by splitting it into two single objective

http://finance.yahoo.com
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models (28) and (29):

max
n∑

j=1

μjxj + (1 − δ)

n∑

j=1

βjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj ,

s.t.

⎧
⎨

⎩

∑n
i=1

∑n
j=1 σij xixj ≤ V0,∑n

j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n,

(28)

and

min
n∑

i=1

n∑

j=1

σij xixj ,

s.t.

⎧
⎪⎨

⎪⎩

∑n
j=1 μjxj + (1 − δ)

∑n
j=1 βjxj + Φ−1(1 − γ )

√∑n
i=1

∑n
j=1 σij xixj ≥ R0,

∑n
j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n,

(29)
where V0 and R0 are given risk level and return level, respectively.

Following Theorem 4.4, we know the optimal solutions of (28) and (29) are the
efficient solutions of Model (22). Thus we can get the efficient frontier using the
ε-constraint method.

Next, we discuss the value ranges of R0 and V0. Consider the following two single
objective models:

max R =
n∑

j=1

μjxj + (1 − δ)

n∑

j=1

βjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj ,

s.t.

{∑n
j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n,

(30)

and

min V =
n∑

i=1

n∑

j=1

σij xixj , s.t.

{∑n
j=1 xj = 1,

xj ≥ 0, j = 1,2, . . . , n.
(31)

The optimal objective value of Model (30) is Rmax, the solution is xR . We use xR

to compute the corresponding Vmax. Similarly, The optimal objective value of Model
(31) is Vmin, the solution is xV , and we use xV to get the corresponding Rmin.

Here we suppose that an optimistic investor sets the probability confidence level
γ to be 0.6, and the possibility δ of that the portfolio’s return is more than R to be
no less than 0.8. In the following, we show the detailed process to obtain efficient
portfolios for the investor under the confidence level (0.6-Pr,0.8-Pos).

First, we solve Models (30) and (31) to get the return level range and the risk level
range, respectively:

[Rmin,Rmax] = [0.29%,0.819%], [Vmin,Vmax] = [0.0166%,0.0422%].
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Table 3 Optimal portfolios

Maximizing return Minimizing risk Portfolio under
portfolio portfolio risk level V1

Proportion of S1 47.61% 6.68% 41.80%

Proportion of S2 0 0 0.96%

Proportion of S3 0 0 0

Proportion of S4 0 8.71% 2.46%

Proportion of S5 0 20.35% 6.58%

Proportion of S6 6.43% 16.40% 19.95%

Proportion of S7 0 0 0

Proportion of S8 0 6.25% 0

Proportion of S9 0 6.53% 0

Proportion of S10 0 0 0

Proportion of S11 0 0 0

Proportion of S12 0 0 0

Proportion of S13 0 0 0

Proportion of S14 0 17.37% 0

Proportion of S15 0 0 0

Proportion of S16 0 1.43% 0

Proportion of S17 0 8.37% 0

Proportion of S18 0 0 0

Proportion of S19 0 7.91% 0

Proportion of S20 45.96% 0 28.25%

Total 1 1 1

Return 0.819% 0.29% 0.77%

Risk 0.0422% 0.0166% 0.03%

When we consider Model (30), we just maximize the return without considering
the risk, and we can obtain the optimal portfolio as reported in the second column of
Table 3; When we consider Model (31), we just minimize the risk without consider-
ing the return, and we can obtain the optimal portfolio given in the third column of
Table 3.

Suppose the investor sets a risk level V1 = 0.03%, the optimal portfolio for this
investor is reported in the fourth column of Table 3, and the chance return of this
portfolio is 0.77% per day.

When R0 gets all of the values in the range [Rmin,Rmax], we can get all of the
efficient matches of Model (22); Similarly, when V0 gets all of the values in the range
[Vmin,Vmax], we can obtain all of the efficient matches of Model (22). Then by using
the ε-constraint method we can obtain the efficient frontier (EF) under the confidence
level (0.6-Pr,0.8-Pos) for this optimistic investor as shown in Fig. 1.

We set the same Pr confidence level as γ = 0.6, and change the Pos confidence
level from δ = 0.8 to δ = 0.5 with a step of 0.1. Using the ε-constraint method, we
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Fig. 2 EFs for optimistic
investors under different Pos
confidence levels

Fig. 3 EFs for optimistic investors under different Pr confidence levels

can obtain the EFs under the confidence levels (0.6-Pr,0.8-Pos), (0.6-Pr,0.7-Pos),
(0.6-Pr,0.6-Pos) and (0.6-Pr,0.5-Pos), respectively. They are shown in Fig. 2.

From Fig. 2 we make the following remarks:

(a) With the same Pr confidence level, the minimal risks of all EFs are the same;
(b) With the same Pr confidence level, the maximal chance return increases when

Pos decreases;
(c) With the same Pr confidence level and under a certain risk level, the chance return

increases when Pos decreases.

We set the same Pos confidence level as δ = 0.6, and adjust the Pr confidence
level from γ = 0.8 to γ = 0.5 with a step of 0.1. Then we can obtain the EFs un-
der the confidence levels (0.8-Pr,0.6-Pos), (0.7-Pr,0.6-Pos), (0.6-Pr,0.6-Pos) and
(0.5-Pr,0.6-Pos), respectively. The results are depicted in Fig. 3.

Figure 3 shows the following:
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(a) With the same Pr confidence level, the minimal risks of all EFs are the same;
(b) With the same Pos confidence level, the maximal chance return increases when

the when Pr decreases;
(c) With the same Pos confidence level and under a certain risk level, the chance

return is bigger when Pr decreases;
(d) With the same Pos confidence level, when Pr decreases, the investor can obtain

more choices of portfolio, that is, the investor can get more return-risk matches
by selecting different portfolios.

Note that the conclusions are coincident with our insights. The EFs obtained by
solving (OM) have the same characteristics as the traditional EF, i.e., all of the EFs
are the curves sloping upward to the right, which reflects as the high return-high risk
principle. Furthermore, all of the EFs are convex, and there is no cupped segment on
the EFs.

5.2 Portfolio Selection for Pessimistic Investors

For a pessimistic investor, we use Pr–Nec based portfolio selection model (PM) to
get efficient portfolios. By the ε-constraint method, we get the following two models:

max
n∑

j=1

μjxj − δ

n∑

j=1

αjxj + Φ−1(1 − γ )

√
√
√
√

n∑

i=1

n∑

j=1

σij xixj

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑n
i=1

∑n
j=1 σij xixj ≤ V0

∑n
j=1 xj = 1

xj ≥ 0, j = 1,2, . . . , n

(32)

and

min
n∑

i=1

n∑

j=1

σij xixj

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 μjxj − δ

∑n
j=1 αjxj + Φ−1(1 − γ )

√∑n
i=1

∑n
j=1 σij xixj ≥ R0

∑n
j=1 xj = 1

xj ≥ 0, j = 1,2, . . . , n.

(33)

Similar to Sect. 5.1, we present the EFs for the pessimistic investors under different
confidence levels in Figs. 4 and 5.

From Fig. 4, we can draw the following observations:

(a) With the same Pr confidence level, the minimal risks of all EFs are the same;
(b) With the same Pr confidence level, the maximal chance return increases when

Nec decreases;
(c) With the same Pr confidence level and under a certain risk level, the chance return

increases when Nec decreases;
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Fig. 4 EFs for pessimistic
investors under different Nec
confidence levels

Fig. 5 EFs for pessimistic
investors under different Pr
confidence levels

(d) With the same Pr confidence level, when Nec decreases, the investor will ob-
tain more choices of portfolio. We note that the differences are obvious in this
situation.

It is worth noting that, if Nec is too big, then there are very few portfolios for
a pessimistic investor with such high confidence levels, that is, the efficient frontier
under the high confidence levels is rather short.

From Fig. 5, we have the following remarks:

(a) With the same Pr confidence level, the minimal risks of all EFs are the same;
(b) With the same Nec confidence level, the maximal chance return increases when

the when Pr decreases;
(c) With the same Nec confidence level and under a certain risk level, the chance

return increases when Pr decreases;
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Above all, we can draw the following conclusions which are consistent with our
expectations in practice:

(1) Different investors have different EFs, and the anticipant chance returns are dif-
ferent when the investors hold different levels of optimistic-pessimistic attitude:
the EF under the lower confidence levels is longer and higher than the EF under
the higher confidence levels;

(2) For the optimistic investors, the difference caused by the external probability is
greater than that caused by the internal possibility. It shows that, to a larger extent,
the optional portfolios for the optimistic investors are influenced by the objective
factor;

(3) For the pessimistic investors, the difference caused by the internal necessity is
greater than that caused by the external probability. It indicates that, to a larger
extent, the optional portfolios for the pessimistic investors are determined by the
subjective factor.

6 Conclusion

In this paper, a portfolio selection problem with fuzzy random parameters is studied.
On the basis of the mean-variance model and the safety-first model, we provide a new
type of fuzzy random multi-objective model with a chance constraint. We introduce
a few theorems about the variance of fuzzy random portfolio, and develop the equiv-
alent partition of two kinds of chance constraint: one is for the optimistic investor
and the other is for the pessimistic investor. We transform the proposed fuzzy ran-
dom portfolio selection models into their equivalent crisp models. We further use the
ε-constraint method to obtain the efficient frontier of the portfolio selection problem.
We also apply the proposed models to the Chinese stock market to illustrate the effec-
tiveness of our approach. Our research reveals that the decision for portfolio selection
problem is dependent on the expert advice, the risk attitude of the investor, and the
confidence level of the investor.
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