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Abstract We address the route selection problem for Unmanned Air Vehicles (UAV)
under multiple objectives. We consider a general case for this problem, where the
UAV has to visit several targets and return to the base. We model this problem as a
combination of two combinatorial problems. First, the path to be followed between
each pair of targets should be determined. We model this as a multi-objective short-
est path problem. Additionally, we need to determine the order of the targets to be
visited. We model this as a multi-objective traveling salesperson problem (MOTSP).
The overall problem is a combination of these two problems, which we define as a
generalized MOTSP. We develop an exact interactive approach to identify the best
paths and the best tour of a decision maker under a linear utility function.

Keywords Multi-objective decision making · Combinatorial optimization ·
Interactive method · Multi-objective shortest path · Multi-objective traveling
salesperson problem · Unmanned Air Vehicle

Mathematics Subject Classification (2000) 90C29 · 90C27

1 Introduction

Unmanned Air Vehicles (UAVs) are unpiloted aircrafts that are used for both military
and civilian purposes. In the military context, finding the “best” route that the UAV
should follow through a defended area is critically important. This “best” route can be
determined based on several criteria such as total distance traveled, fuel consumption,
total flight time, detection threat avoidance, and navigation performance. Some of
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these criteria are related and they are typically represented by two main criteria: total
distance traveled and radar detection threat [1].

The route planning problem for UAVs could take one of the following two forms:

• Route planning with a single target, where the aim is to find the “best” path(s)
between the starting point and the target.

• Route planning with multiple targets, where the aim is to find the “best” tour(s)
that starts from the starting point, visits all targets and returns to the starting point.

This problem has been studied by several researchers using heuristic approaches.
Gudaitis [1] assumes that the aircraft starts from an initial point and visits a single
target in a three dimensional terrain, while minimizing the total travel distance and the
radar detection threat. He combines these two objectives linearly and minimizes the
resulting single objective problem using the A∗ algorithm that has been developed to
solve the shortest path problems efficiently. Olsan [2] considers the same problem but
uses a genetic algorithm to find a solution. Yavuz [3], on the other hand, assumes that
the aircraft has to visit multiple targets during a mission. He again considers the same
two objectives and tries to minimize a linear combination of them. He first tries to
determine the best order to visit the targets using an algorithm called Particle Swarm
Optimization and Ant System. He then tries to find the paths to be used between
consecutive targets using the same algorithm.

Under the presence of multiple targets, the route planning of UAVs turns out to
be a Multi-Objective Traveling Salesperson Problem (MOTSP). The single-objective
Traveling Salesperson Problem (TSP) searches for a tour that has the best objective
function value. The MOTSP, on the other hand, may contain many tours, each per-
forming relatively better than others in some objectives. The overall problem may
then be defined as finding a tour that gives the best combination of the objectives for
the decision maker (DM).

In the literature, MOTSP has been defined to have a single path between any two
consecutive nodes, to the best of our knowledge. For p-objectives, p separate cost
matrices are defined, each matrix representing a single value for each link corre-
sponding to a specific objective. However, in a practical setting, there are usually
multiple paths between any pair of nodes. For example, if cities are our nodes, there
are typically multiple ways of traveling between any two cities and it is unlikely to
have a single path that is best in all objectives under consideration. In general, in
a problem with conflicting multiple objectives, it is not clear which path is best up
front. A path that performs well in a criterion typically does not perform very well in
some other criteria. Therefore, in a realistic representation of the MOTSP, we need
to consider that multiple competing paths may exist between nodes. This leads to a
problem of finding efficient paths between the nodes included in the TSP. Then there
is the problem of finding efficient tours that are made up of these efficient paths.
Therefore, the problem turns into a combination of an interrelated Multi-Objective
Shortest Path Problem (MOSPP) and a MOTSP. The MOTSP having single paths be-
tween nodes, as defined in the literature so far, is a special case of this generalized
MOTSP.

In the generalized MOTSP, we need to consider the efficient paths between the
nodes while searching for a preferred tour of a DM. Naturally, such a tour depends
on the specific paths chosen between the nodes.
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MOSPP is a well-known NP-hard problem (see [4], p. 166–167). Furthermore,
finding all efficient paths is intractable, since they may increase exponentially
with the problem size. There are many approaches for MOSPP in the literature.
Gandibleux et al. [5] discuss the algorithms for solving MOSPP with sum-type objec-
tives under the categories of labeling-based and ranking path-based algorithms. Raith
and Ehrgott [6] make a comparative study on the computational efficiency of some
of the methods on two-objective problems. Gabrel and Vanderpooten [7] develop an
approach for a MOSPP, scheduling an Earth observing satellite. Considering three
objectives, they first generate the whole efficient frontier with a label setting algo-
rithm. Then they try to identify the preferred portion of the efficient frontier by a
Tchebycheff-like function. Granat and Guerriero [8] develop an interactive algorithm
for the MOSPP based on the reference-point methodology.

The TSP is NP-hard for both single and multi-objective cases (see [4], p. 211).
The number of efficient tours can grow exponentially with the problem size for the
MOTSP problem and finding them all is intractable. The literature on MOTSP is lim-
ited. In [9] and [10], TSP with profits is considered, where all nodes need not be
visited. The problem is to decide which nodes will be visited and in which order.
Here, one objective is to minimize the distance traveled and the other objective is to
maximize the benefit from the visited nodes. Karademir [9] develops a genetic algo-
rithm to solve this problem. Berube et al. [10] try to generate the efficient frontier of
this problem with the ε-constraint method and they propose improvement heuristics.
Özpeynirci and Köksalan [11, 12], address special cases of MOTSP.

The rest of the paper unfolds as follows. We formally define the problem in Sect. 2.
We develop an algorithm in Sect. 3 and demonstrate it on an example problem in
Sect. 4. We present our conclusions in Sect. 5.

2 Problem Definition

Before we explain the problem in detail, we give some definitions.
Let G = (V ,E) be a graph having |V | = N nodes and |E| = M edges, where

E ⊂ {(n1, n2) : n1, n2 ∈ N}. A path between nodes ns and nt is a sequence of edges
{(ns, n1), (n1, n2), . . . , (nt−1, nt )} and a tour (π) is a cyclic permutation of the set N .
Under the presence of multiple targets, the route planning of UAVs becomes a gen-
eralized MOTSP that aims to find a tour that gives the best combination of the p ob-
jectives, z1(π), z2(π), . . . , zp(π), for the DM.

Let x denote the decision variable vector, X denote the feasible space, Z denote
the corresponding feasible objective function space, and let z(x) = (z1(x), z2(x), . . . ,

zp(x)) be the objective function vector. We assume, without loss of generality, that
all objectives are to be minimized.

Definition 2.1 A solution x ∈ X is said to be efficient iff there does not exist x′ ∈ X

such that zj (x
′) ≤ zj (x) j = 1, . . . , p and zj (x

′) < zj (x) for at least one j . If there
exists such an x′, x is said to be inefficient. All efficient solutions constitute the effi-
cient set.
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Definition 2.2 If x is efficient, then z(x) is said to be nondominated, and if x is
inefficient, z(x) is said to be dominated.

Definition 2.3 An efficient solution x is a supported efficient solution iff there exists
a positive linear combination of objectives that is minimized by x. Otherwise, x is an
unsupported efficient solution.

Definition 2.4 An extreme efficient solution is a supported efficient solution that has
the minimum possible value in at least one of the objectives.

Definition 2.5 Two solutions are adjacent efficient solutions iff none of their convex
combinations is dominated by any convex combination of other solutions in the ob-
jective function space. That is, xj is adjacent efficient to xi iff there does not exist
xt ∈ X � ∑

t �=j μtz(xt ) ≤ λz(xj )+ (1 −λ)z(xi) where
∑

t �=j μt = 1, 0 ≤ μt ≤ 1 and
0 ≤ λ ≤ 1, and z(x) is the objective function vector. In a bicriteria problem, there are
at most two distinct adjacent efficient solutions of a solution (see [13]).

A path is a solution of the shortest path problem and a tour is a solution of TSP.
Therefore, the above definitions directly apply to paths and tours.

The single-target problem is a special case of the multiple-target problem. In this
paper, we consider route planning with multiple targets. We represent the terrain by
equidistant grids. Each grid point (node) can be represented by the coordinates (x, y)
corresponding to the latitude and longitude, respectively. For simplification, we intro-
duce our terrain structure on a two dimensional plane (as in [2]) as shown in Fig. 1.
In this structure, the UAV can only move to its adjacent grid points.

Fig. 1 Representation of the terrain of the UAV route selection problem
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This problem is a generalized MOTSP with multiple efficient paths between
nodes. If the aim is to find all efficient solutions, there are two problems to be con-
sidered. Firstly, a MOSPP is defined between each target pair and all efficient paths
of each MOSPP are found. Secondly, the efficient tours of the MOTSP that are com-
posed of these efficient paths should be found. For both parts, we consider two ob-
jectives: minimization of the total distance traveled and minimization of the radar
detection threat.

Let the distance from node i to node j , cij , and the radar detection probability at
any point between nodes i and j , (pd)ij be the parameters of the problem. Let xij

be the binary decision variable indicating whether or not link (i, j) is used and let N

denote the node set.
Then we have the following two objectives to be minimized:

z1 =
∑

i∈N

∑

j∈N

cij · xij , (1)

z2 =
∑

i∈N

∑

j∈N

cij · (pd)ij · xij . (2)

The total distance is found by summing all the edge lengths that are traversed. For
the estimation of the total radar detection threat, we use the radar exposure measure
presented in [1]. The details of this measure are given in the Appendix. We assume
that the UAV moves with constant speed. With constant speed, the distance traveled
can be used to represent the duration of the flight. Multiplying the detection proba-
bility of an edge with its distance is approximately equivalent to computing the dura-
tion that a UAV is exposed to that detection probability. Minimizing this objective is
equivalent to minimizing the duration of total radar detection threat.

For this general structure of the MOTSP, we present some properties.

Theorem 2.1 An efficient tour does not contain any inefficient paths.

Proof Consider a MOTSP with node set N = {1,2, . . . , n}. Let x′
kl ∈ X be an ineffi-

cient path between nodes k and l. Then there must exist at least one x′′
kl ∈ X such that

the following inequalities hold.

zj (x
′′
kl) ≤ zj (x

′
kl) j = 1, . . . , p, (3)

zj (x
′′
kl) < zj (x

′
kl) for at least one j. (4)

Let the set Aτ contain the node pairs (a, b) such that the path, x′
ab , between nodes a

and b is included in tour T . The performance of tour T in objective j is:

Zj (T ) =
∑

(a,b)∈Aτ −(k,l)

zj (x
′
ab) + zj (x

′
kl) for j = 1, . . . , p.

If we replace x′
kl in tour T with x′′

kl , we obtain tour T ′ having performance in objective
j as:

Zj (T
′) =

∑

(a,b)∈Aτ −(k,l)

zj (x
′
ab) + zj (x

′′
kl) for j = 1, . . . , p.
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Fig. 2 Example MOTSP

Based on (3) and (4), we have

Zj (T
′) ≤ Zj (T ) j = 1, . . . , p,

Zj (T
′) < Zj (T ) for at least one j.

Therefore, T cannot be an efficient tour. �

Remark All combinations of efficient paths do not necessarily yield efficient tours
and there may be efficient paths that are not parts of any efficient tours.

Example 2.1 Consider the bicriteria TSP with three nodes shown in Fig. 2, where
each objective is to be minimized. We would like to identify the efficient tours. Each
edge corresponds to an efficient path, where the first and second values in parenthe-
sis correspond to the value of the path in the first and second objective, respectively.
Since the TSP is symmetric, there is only a single tour, 1–2–3–1, for a three-node
problem. However, there are multiple efficient paths between each node pair as shown
in the figure. Permuting these paths, we can form tour 1–2–3–1 in 18 (= 2 × 3 × 3)
different ways, yielding the values of the two objectives in the resulting tours as fol-
lows: (6,25), (7,24), (8,16), (8,24), (9,23), (10,15), (13,24), (14,18), (14,23),
(15,15), (15,17), (15,23), (16,9), (16,17), (16,22), (17,14), (17,16), and (18,8).
Only six of these objective vectors, (6,25), (7,24), (8,16), (10,15), (16,9), and
(18,8), correspond to efficient tours. The remaining tours are inefficient even though
they are combinations of some efficient paths. Furthermore, the efficient path having
the objective values (10,8) does not appear in any of the efficient tours.

Theorem 2.2 A dominated subtour cannot be part of an efficient tour even if it is
made up of efficient paths.

The proof is similar to that of Theorem 2.1, and we omit it.

3 An Interactive Approach

Generating the whole efficient frontier of a multi-objective combinatorial optimiza-
tion problem would be neither practical nor meaningful, especially as the problem
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size increases. A meaningful approach is to generate solutions from the preferred
part of the efficient set under the guidance of the DM. In this section, we introduce
such an interactive approach, where we incorporate the preferences of the DM in
finding the best solution assuming an underlying linear utility function.

3.1 The Solution Approach

With the guidance of a DM, our aim is to find the most preferred solution by effec-
tively utilizing the available preference information.

In our solution approach, we assume that the DM has a linear utility function. That
is, the DM has a utility function of the following form:

U(z) = w1z1(x) + · · · + wpzp(x),

where p is the number of objectives, wi is the weight of ith objective and zi(x) is the
performance of x in the ith objective. We consider two objectives and, without loss
of generality, we assume that U is to be minimized and the weights are normalized.
The following is the utility function to be minimized:

U(z) = wz1(x) + (1 − w)z2(x), where 0 ≤ w ≤ 1.

We utilize two properties of a linear utility function in our solution approach.
Firstly, it is well known that the most preferred solution of a DM is a supported
efficient solution. Secondly, a supported efficient solution, that is preferred to all its
adjacent solutions, is the most preferred solution [14]. In an interactive approach,
we would like to keep the information requirement from the DM at a reasonable
level. Therefore, it is important to ask questions that will help converge towards the
preferred solutions quickly.

In our algorithm, we ask the DM to compare an efficient solution with its adjacent
efficient solutions. We utilize the responses of the DM to restrict the possible weights
of his/her underlying utility function. This reduces the candidates that are eligible to
be the best solution. Our approach adapts the approach of Zionts [14] developed for
a set of readily available discrete alternatives to the case of multi-objective combina-
torial optimization problems.

3.2 The Interactive Algorithm

We develop an interactive algorithm, BestSol, that finds the most preferred solution
of a DM for a bicriteria problem. Let ε be a small positive constant, wL = 1 − ε, and
wR = ε.

Step 1. Set k = 0. Find the extreme efficient solutions of the problem using wL and
wR . Let the solutions be xL and xR , respectively. If xL = xR , the problem has only
one solution in the preferred region, namely x∗ = xL = xR . Go to Step 8. Otherwise,
go to Step 2.

Step 2. Let

w′ = z2(xL) − z2(xR)

(z2(xL) − z2(xR)) + (z1(xR) − z1(xL))
.
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Find the solution that minimizes the utility function formed with weight w′.
Min U ′(x) = w′z1(x) + (1 − w′)z2(x).
Let the solution be x′. If x′ = xL or x′ = xR , go to Step 3. Otherwise, go to Step 4.
Step 3. Ask the DM xL versus xR .

• If xL is preferred to xR , update wR .

wR = z2(xL) − z2(xR)

(z2(xL) − z2(xR)) + (z1(xR) − z1(xL))
+ ε.

x∗ = xL. Go to Step 8.
• If xR is preferred to xL, update wL.

wL = z2(xL) − z2(xR)

(z2(xL) − z2(xR)) + (z1(xR) − z1(xL))
− ε,

x∗ = xR . Go to Step 8.

Step 4. Find the left adjacent solution of x′ (by the method presented in Sect. 3.4).
Let the solution be xL. Go to Step 5.

Step 5. Ask the DM x′ versus xL.

• If xL is preferred to x′, update wR . Set

wR = z2(xL) − z2(x
′)

(z2(xL) − z2(x′)) + (z1(x′) − z1(xL))
+ ε,

x′ = xL. Set k = 1.
Go to Step 4.

• If x′ is preferred to xL, update wL. Set

wL = z2(xL) − z2(x
′)

(z2(xL) − z2(x′)) + (z1(x′) − z1(xL))
− ε.

If k = 0; go to Step 6.
If k �= 0; x∗ = x′. Go to Step 8.

Step 6. Find the right adjacent solution of x′ (by the method presented in Sect. 3.4).
Let the solution be xR . Go to Step 7.

Step 7. Ask the DM x′ versus xR .

• If x′ is preferred to xR , update wR . Set

wR = z2(x
′) − z2(xR)

(z2(x′) − z2(xR)) + (z1(xR) − z1(x′))
+ ε,

x∗ = x′. Go to Step 8.
• If xR is preferred to x′, update wL. Set

wL = z2(x
′) − z2(xR)

(z2(x′) − z2(xR)) + (z1(xR) − z1(x′))
− ε,

x′ = xR . Go to Step 6.
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Step 8. The most preferred solution is x∗. The utility function of the DM is

U(z) = wz1(x) + (1 − w)z2(x), where wR ≤ w ≤ wL.

The algorithm first finds the two extreme efficient solutions. If we cannot find
two distinct extreme efficient solutions, we conclude that the problem has only one
efficient solution in Step 1. Then we go to Step 8 and the algorithm terminates. How-
ever, if we can find two distinct extreme efficient solutions, we go to Step 2. Here,
we search for a solution x′ that minimizes the function passing through the two ex-
treme efficient solutions. If we do not find a different solution than the two extreme
efficient solutions, we conclude that the problem has only two supported efficient so-
lutions and we go to Step 3. In Step 3, we ask the DM to choose between the two
extreme efficient solutions. Based on the preference of the DM, we update the lower
or upper bound on the favorable weight set and go to the last step. If we can find an-
other solution in Step 2, we go to Step 4 where we search for its left adjacent solution.
In Step 5, the DM compares the solution x′ and its left adjacent solution, xL. If xL is
preferred to x′, we set k = 1. This indicates that we will only search the portion of the
efficient frontier that is on the left side of xL. We continue finding the left adjacent
solution of the most preferred solution of the DM. Whenever a solution in this region
is preferred to its left adjacent, we terminate the algorithm. This is because of the fact
that when we set k = 1, we indicate that the best solution found up to that point of the
algorithm is preferred to its right adjacent solution. If this solution is also preferred
to its left adjacent, we say that this is the most preferred solution of the DM.

If a solution is preferred to its left adjacent solution the first time Step 5 is exe-
cuted, we go to Step 6 where we find the right adjacent of the preferred solution. If
the DM prefers the solution to the right adjacent xR as well, we conclude that the
current solution is the best solution and we terminate the algorithm. However, if xR

is preferred, we continue finding right adjacent solutions that lie on the right side of
xR . Whenever a solution is preferred to its right adjacent solution, we conclude that
it is the best solution and we terminate the algorithm.

During the algorithm, if we find more than one efficient solution, i.e., if we can
pass from Step 1 to Step 2, we guarantee that the lower bound or the upper bound or
both bounds of w will be updated.

Figure 3 illustrates how the interactive algorithm (BestSol) proceeds. In Fig. 3(a),
we show the efficient frontier of a hypothetical discrete bicriteria problem as well as
the DM’s underlying utility function. It can be seen that solution E minimizes the
utility function.

We run BestSol to find the most preferred solution of the DM iteratively. We first
find the extreme efficient solutions; the left extreme solution A with weight wL and
right extreme solution G with weight wR as shown in Fig. 3(b). Since these two solu-
tions are different, we find the solution that minimizes the function passing through
the extreme efficient solutions. The resulting solution is D as shown in Fig. 3(c). We
next find the left adjacent solution of D which is solution C. We ask the DM to com-
pare D and C and the DM prefers D to C. We update the upper bound on w, wL, as
shown in Fig. 3(d) and search for the right adjacent of D. The right adjacent of D is
solution E. We ask the DM to choose between D and E.
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Fig. 3 The interactive algorithm

Since E gives a lower utility value, the DM prefers E. We update the upper bound
on w and continue with finding the right adjacent of E. Solution G is the right adjacent
of E. The DM now prefers E to G. We update the lower bound on w, wR , as in
Fig. 3(e) and conclude that the best solution is E. Now we have a narrower interval
that contains the true weight of the DM’s utility function: wR ≤ w ≤ wL.

3.3 Finding Supported Efficient Solutions

This method generates all supported efficient solutions of a discrete bicriteria prob-
lem. It has been developed by Aneja and Nair [15] and Cohon ([16], p. 127–133)
independently. In Fig. 4, we illustrate how the algorithm proceeds.
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Fig. 4 Finding the supported efficient solutions

First, the extreme efficient solutions are found by minimizing the composite ob-
jectives formed by setting w to 1 − ε and ε for the left extreme and the right extreme
solutions, respectively, where ε is a small positive constant. In Fig. 4(a), A and B
are the extreme efficient solutions found with weights 1 − ε and ε, respectively. In
the absence of any other solutions, A and B are adjacent solutions. Then, the linear
function that passes through these solutions is found and this function is minimized.
In Fig. 4(b), we obtain solution C and we update our current adjacent solution pairs.
(A, C) and (B, C) are adjacent solution pairs in Fig. 4(b). The supported solutions be-
tween these adjacent solutions are found by minimizing the linear function that passes
through these solutions. The same procedure is repeated for each adjacent point pair
until we do not obtain any new solution. Finally, we find all the supported efficient
solutions of the problem as shown in Fig. 4(c).

3.4 Finding the Adjacent Efficient Solutions

The following is an algorithm to find the left and right adjacent solutions of a
supported efficient solution, x, in a bicriteria problem. We first find the left and
right extreme efficient solutions, xL and xR , by respectively minimizing U(x) =
(1 − ε)z1(x)+ εz2(x) and U(x) = εz1(x)+ (1 − ε)z2(x), where ε is a small positive
constant used to guarantee that the resulting solution is efficient.
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Finding the Left Adjacent Solution Step 0. Let x be the supported efficient solution
whose left adjacent solution is to be found.

Step 1. Let

w′ = z2(xL) − z2(x)

(z2(xL) − z2(x)) + (z1(x) − z1(xL))
.

Find the solution minimizing U ′(x) = w′z1(x) + (1 − w′)z2(x) and denote it as x′.
If x′ = xL or x′ = x, go to Step 2. Otherwise, let xL = x′ and go to Step 1.

Step 2. The left adjacent solution of x is xL.
In Step 1, we minimize the linear objective function that has the slope of the line

passing through x and its current left adjacent xL. If we find a new supported efficient
solution between these two solutions, we update the current left adjacent of x with
the new solution and go back to Step 1. If we cannot find another supported efficient
solution between x and its current left adjacent, we conclude that the current left
adjacent solution is the true left adjacent solution of x.

The right adjacent of any solution can be found similarly. The following is the
algorithm to find the right adjacent solution of a solution for a bicriteria problem.

Finding the Right Adjacent Solution Step 0. Select a supported efficient solution x

whose right adjacent solution is to be found.
Step 1. Let

w′ = z2(x) − z2(xR)

(z2(x) − z2(xR)) + (z1(xR) − z1(x))
.

Find the solution minimizing U ′(x) = w′z1(x) + (1 − w′)z2(x) and denote it as x′.
If x′ = xR or x′ = x, go to Step 2. Otherwise, let xR = x′ and go to Step 1.

Step 2. The right adjacent solution of x is xR .

3.5 MOTSP with Multiple Efficient Paths between Nodes

We utilize the BestSol algorithm for the route selection of UAVs. In our solution
approach, we first find the most preferred path between each target pair. In the sec-
ond part, we find the most preferred tour that is made up of a subset of these most
preferred paths.

3.5.1 Interactive Algorithm—Part I

In this part, we find the most preferred path between each target pair. We consider M

targets. In each run of BestSol, we not only find the most preferred path between the
selected target pair, but we also update the upper and lower bounds on w. In the be-
ginning of the algorithm, w ranges from ε to 1−ε. As the algorithm progresses, if we
have more than one supported efficient path for any target pair (i, j) that minimizes a
linear utility function for some w in the range [wR,wL], we ask the DM to compare
some of these solutions. Based on the responses of the DM, we either update wL or
wR or both. Then, for the next target pair, we find the extreme points using these
updated weights. The responses of the DM help in generating a smaller portion of the
set of supported efficient solutions of the succeeding paths to be evaluated.
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The following are the steps of the algorithm we use for finding the best path be-
tween each target pair.

Step 0. Let wL = 1 − ε and wR = ε.
Step 1. Select a target pair (i, j) that has not been evaluated.
Step 2. Find the most preferred path between target pair (i, j) using BestSol. Up-

date the lower (wR) and upper bounds (wL) of w.
Step 3. If there are target pairs not evaluated, go to Step 1. Otherwise, terminate

the algorithm. All the most preferred paths between the target pairs are found.
In Step 2, we solve the shortest path problem for finding the extreme efficient so-

lutions, the supported efficient solutions and their adjacent solutions. Since we take a
linear combination of the objectives, we solve a single-objective shortest path prob-
lem. We use Dijkstra’s exact algorithm ([17], p. 416).

3.5.2 Interactive Algorithm—Part II

In Part I of our algorithm, we identify the best path between each target pair and
a reduced range of w values that reflects the preferences of the DM. The resulting
problem becomes a regular MOTSP with a single connection between each target
pair. Having this information at hand, we next run BestSol to find the most preferred
tour of the DM.

We run BestSol using the updated range of w; [wR,wL]. In Steps 1, 2, 4, and 6,
we use a single objective TSP solver, CONCORDE (see http://www.tsp.gatech.edu/
concorde), to find the optimal visiting order of targets for a given w. Using w, we set
the weighted cost of using edge xij to

eij =
{

0 if i = j

wz1(xij ) + (1 − w)z2(xij ) if i �= j
.

BestSol terminates after finding the best tour of the DM.

4 An Example

We demonstrate our approach on a problem where the terrain is represented by grids
of size 10×10 and there are five targets. We located the targets and the radars suitably
at different parts for illustration purposes. We denote a node by its (x, y) coordinates
where x and y show horizontal and vertical locations of the corner points of the
grids, respectively. We start numbering from the northwest corner point assigning its
coordinates the values of (1,1). Targets 1 to 5 are located at (1,1), (3,8), (5,4),
(9,7), and (10,3), respectively. The radars are located at the centers of the circles
at coordinates (3,3), (6,8), and (8,4). The terrain structure, the threat areas of the
radars, and the five targets of this problem are shown in Fig. 1.

We give the details of the execution of the algorithm in Table 1 using an under-
lying weight representing the true preferences of the DM, wbest = 0.5. We use this
information to simulate the DM whenever we need preference information. The first
column in Table 1 shows the target pair (i, j) that is evaluated. The second column

http://www.tsp.gatech.edu/concorde
http://www.tsp.gatech.edu/concorde
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Table 1 Computational results for the example problem (wbest = 0.5)

Target pair (i, j) Number of efficient paths Number of comparisons Weight range

(1,2) 1 – [0.0001,0.9999]
(1,3) 7 2 [0.2004,0.5160]
(1,4) 7 2 [0.4620,0.5160]
(1,5) 2 – [0.4620,0.5160]
(2,3) 1 – [0.4620,0.5160]
(2,4) 6 – [0.4620,0.5160]
(2,5) 10 – [0.4620,0.5160]
(3,4) 2 – [0.4620,0.5160]
(3,5) 6 – [0.4620,0.5160]
(4,5) 1 – [0.4620,0.5160]

shows the actual number of efficient paths between target pair (i, j). The third col-
umn shows the number of comparisons the DM has to make between efficient paths
in order to find the best path connecting target pair (i, j). Notice that we only need to
identify Number of Comparisons+1 of the total efficient paths between target pair
(i, j) to find the best path between those targets. The last column shows the reduced
weight space as a result of the comparisons made so far. In the early stages of the
algorithm, different efficient paths may be best for different weights within the re-
duced weight range for the considered target pairs. However, after the evaluation of
target pair (1,4), the weight space is reduced to a sufficiently narrow range around
wbest = 0.5 that a unique efficient path turns out to be the best for each of the suc-
ceeding target pairs. Therefore, the DM is not asked for any preference information
for those target pairs and all of the best paths are obtained by a total of four pairwise
comparisons made by the DM in this example problem.

In the second part of the problem, the reduced weight range is again suffi-
ciently narrow that there is a unique tour, 1–2–3–4–5, that minimizes U for any
w ∈ [0.4620,0.5160]. The total distance of the corresponding tour, and the total radar
detection threat are 32.140 and 5.306, respectively.

There were totally four questions asked to the DM. The weight space was quickly
reduced to a narrow range around 0.5 and no additional questions were needed for
determining most of the best paths and the best tour during the rest of the algorithm.

5 Conclusions

In this paper, we develop an interactive algorithm for the case where the DM’s pref-
erences can be represented by a linear function of the two objectives. As a part of this
algorithm, we also develop an algorithm for finding the adjacent efficient solutions of
a supported efficient solution.

It is important for an interactive approach to reach the most preferred solution of
a DM without requiring excessive preference information from the DM. In order to
accomplish this, we use two properties of a linear utility function: the most preferred
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solution of a DM is a supported efficient solution and a solution that is preferred to its
adjacent efficient solutions is the most preferred solution. Hence we generate only the
supported efficient solutions and ask for comparison only between adjacent efficient
solutions.

In this paper, we define a generalized MOTSP, and apply it to the problem of
route planning for UAVs. The generalized MOTSP accounts for multiple efficient
paths between pairs of nodes and the dependence of the tours on these paths. The
problem can be modeled as a combination of two combinatorial problems: MOSPP
and MOTSP. In MOSPP, we need to determine the best path between each target
pair. After determining the best path between each target pair, we need to determine
the best tour. The preference information used in early stages help reduce the weight
range quickly, and the best solution can be found after a small amount of preference
information is obtained. This also reduces the computational effort by focusing on a
smaller portion of the efficient set.

An area for future research is to consider more general utility functions than a lin-
ear function. Another future research area is to consider a dynamic version of the
problem where the targets and/or radars may change their locations. In this case,
a real time implementation of the route selection problem is necessary. The problem
becomes more complex and the paths and routes need to be modified dynamically
throughout the movement of the UAV.

Appendix: Computation of the Radar Exposure Measure

In this measure, we first calculate the signal-to-noise ratios, S/N , at grid points using
the monostatic radar formula (5). To calculate pd of an edge, we take the arithmetic
average of the S/N ratios of the two grid points that are the end points of that edge.
We then calculate the pd value using (6). We modify the upper and lower bounds
of [1] in (6) in order to obtain values that differentiate the grid points and demonstrate
the problem well. After finding the pd value, we multiply it with the length of the
edge to come up with a threat measure that accounts for the length of the exposure:

S/N = PtG
2
t λ

2σ

(4π)3KTsBnL
2
t R

4
, (5)

where
Pt is the power transmitted by radar (watts),
Gt is the power gain of transmitting antenna,
Lt is the transmitting system loss,
σ is the aircraft radar cross-section (RCS) (square meters),
Rt is the distance from the transmitter to the aircraft (meters),
λ is the wave length of signal frequency (meters),
K is Boltzman’s constant (joules/kelvin),
Ts is the receiving system noise temperature (kelvin),
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Bn is the noise bandwidth of the receiver (hertz),

pd =

⎧
⎪⎨

⎪⎩

1 if S/N > 30,

((S/N) − 15)/15 if 15 < S/N ≤ 30,

0 if S/N ≤ 15.

(6)
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