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Abstract We consider the optimal value reformulation of the bilevel programming
problem. It is shown that the Mangasarian-Fromowitz constraint qualification in
terms of the basic generalized differentiation constructions of Mordukhovich, which
is weaker than the one in terms of Clarke’s nonsmooth tools, fails without any re-
strictive assumption. Some weakened forms of this constraint qualification are then
suggested, in order to derive Karush-Kuhn-Tucker type optimality conditions for the
aforementioned problem. Considering the partial calmness, a new characterization is
suggested and the link with the previous constraint qualifications is analyzed.

Keywords Bilevel programming · Optimal value function · Basic generalized
differentiation · Constraint qualification · Necessary optimality conditions

1 Introduction

The optimistic bilevel programming problem is an hierarchical optimization problem,
where the so-called upper level problem is defined as

min F(x, y) s.t. (x, y) ∈ X × R
m, y ∈ �(x); (1)
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with X being a closed subset of R
n and �(x) the solution set of the following para-

metric optimization problem called lower level problem:

min f (x, y) s.t. y ∈ K(x). (2)

The functions F,f : R
n × R

m → R are continuous and throughout the paper, X and
K(x) will be taken respectively as:

X := {x|G(x) ≤ 0,H(x) = 0} and K(x) := {y|g(x, y) ≤ 0, h(x, y) = 0},
where the functions G : R

n → R
k , H : R

n → R
l , g : R

n × R
m → R

p and h : R
n ×

R
m → R

q are also continuous.
If we assume that problem (1) has at least one feasible point, then a reformulation

of this problem as a one level optimization problem is possible as:

min F(x, y) s.t. x ∈ X, y ∈ K(x), f (x, y) ≤ ϕ(x), (3)

where the optimal value function ϕ is defined by

ϕ(x) := min{f (x, y)|y ∈ K(x)}.
Problem (3) is called the optimal value reformulation of problem (1). The two prob-
lems are globally and locally equivalent [1]. Our main concern in this paper is to
derive KKT type optimality conditions for problem (3).

For many years now, most of the work on bilevel programming has been focussed
on the KKT reformulation of (1). To obtain this reformulation, the lower level prob-
lem is replaced by its KKT conditions under the assumptions that the problem be
convex and an appropriate constraint qualification be satisfied. Not only the KKT re-
formulation is not equivalent to the initial problem (1) for local solutions, but it is
more demanding in terms of differentiation. In fact, deriving first order necessary op-
timality conditions for (1) using the KKT reformulation usually requires the compu-
tation of second order derivatives for the functions defining the lower level problem.
More details on how to derive necessary optimality conditions for (1) using the KKT
reformulation can be found in [2–5].

The price to pay for the optimal value reformulation (3) is due to the nature of
the optimal value function itself, which is source of nonsmoothness and the failure
of well-known constraint qualifications like the Mangasarian-Fromowitz constraint
qualification (MFCQ), the linear independence constraint qualification (LICQ) and
the Slater constraint qualification. Already in 1995, Ye and Zhu [6] showed that the
nonsmooth version, in terms of Clarke’s generalized subdifferential of the MFCQ,
fails for problem (3). In the same work, these authors introduced the weaker con-
straint qualification (CQ) named partial calmness after the stronger concept of calm-
ness introduced by Clarke [7]. Using the Clarke subdifferential, necessary optimality
conditions of KKT type where derived in [6, 8] under the partial calmness. Also Ye
[9] extended the Abadie, Kuhn-Tucker, Zangwill, Arrow-Hurwicz-Uzawa, weak re-
verse and weak Slater constraint qualifications to problem (3). KKT type optimality
conditions were then derived for problem (3) using the Michel-Penot subdifferen-
tial. Recently again Ye [10] considered problem (3), where the constraint function
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f (x, y) − ϕ(x) was replaced by a new function ψ(x, y) Lipschitz continuous near
the optimal solution, thus exempting some common requirements on the lower level
problem. Also the KKT optimality conditions were then derived in terms of Clarke’s
subdifferential under some of the CQs already used in [9].

Necessary optimality conditions for problem (3), of the KKT type, were also ob-
tained recently by Babahadda and Gadhi [11] using convexificators. The constraint
qualification used here is in the line of the regularity condition introduced in [12]
using the concept of approximation, which is a nonsmooth differentiation tool.

More recent on the subject is the work of Dempe et al. [13]. In this paper, optimal-
ity conditions of KKT type are obtained for problem (3) with some new features, that
is without dependence of the conditions on the partial derivatives of the lower level
objective function with respect to the parameters from the upper level problem. It is
important to mention that this has been possible thanks to the inner semicontinuity of
� required for the estimation of the subdifferential of ϕ. In fact, for most of the pre-
vious works (see e.g. [2]) on the subject upper semicontinuity has been used. Again
the partial calmness was used here as constraint qualification.

In the present paper, we come back to the MFCQ. First we show that the Mor-
dukhovich version of this CQ fails to hold for problem (3). Then, based on some
works by Henrion and Outrata [14] and Henrion et al. [15] in the framework of the
calmness of set-valued mappings, we observe that it is possible to weaken the MFCQ
in order to derive KKT type optimality conditions for problem (3) using the basic
subdifferential of Mordukhovich. Later in the paper we also suggest new sufficient
conditions for the partial calmness based on a more general notion of the weak sharp
minimum.

The rest of the paper is organized as follows. In next section, we recall some defin-
itions of the nonsmooth tools needed in this work. The preliminaries are mainly con-
cerned with relevant properties of the basic differentiation tools (i.e. the normal cone,
subdifferential and coderivative) of Mordukhovich. Also of importance are some Lip-
schitz properties of multifunctions. In Sect. 3, we investigate a direct approach to op-
timality for problem (3) using the mentioned weakened form of the MFCQ. Section 4
is devoted to KKT conditions for (3) using the exact penalization. Also in this section
we give new sufficient conditions for the partial calmness, which in some sense are
equivalent to the partial exact penalization for problem (3).

In Sect. 5, we consider the strong stability in the sense of Kojima, for the paramet-
ric programming problem (2). We notice that the inner semicompactness of � and the
Aubin property of K needed to estimate the basic subdifferential of ϕ are no longer
sufficient. The constant rank constraint qualification appears to be essential in order
to derive necessary optimality conditions of KKT type for problem (3), under strong
stability. Throughout the paper many examples are considered to illustrate some key
points.

2 Preliminaries

In this section we present the basic concepts and notations used in the paper. More de-
tails on the material, briefly discussed here, can be found in [16–18]. We first consider
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some notations: Let A be a subset of R
n, coA, clA and intA denote the convex hull,

the closure and the interior of A, respectively. For a matrix B , B� is the transposed
matrix of B and, finally, ‖.‖ denotes an arbitrary norm in R

n.
Next we assume that A be a closed subset of R

n. The contingent and Clarke’s
tangent cone to A at some point x ∈ A are defined respectively by

TA(x ) := {d ∈ R
n|∃tk ↓ 0, dk → d : x + tkdk ∈ A},

T c
A( x ) := {d ∈ R

n|∀tk ↓ 0, xk → x(xk ∈ A); ∃dk → d : xk + tkdk ∈ A}.
The respective normal cones, i.e. the regular and the Clarke normal cones, are ob-
tained as

̂NA(x ) := {d∗ ∈ R
n| 〈d∗, d〉 ≤ 0, ∀d ∈ TA(x )},

Nc
A(x ) := {d∗ ∈ R

n| 〈d∗, d〉 ≤ 0, ∀d ∈ T c
A(x )}.

Meanwhile, the basic normal cone introduced by Mordukhovich is defined as

NA(x ) := {d∗ ∈ R
n|∃d∗

k → d∗, xk → x(xk ∈ A) : d∗
k ∈ ̂NA(xk)}.

In contrast to the regular and the Clarke normal cones, which are convex, the basic
normal cone is generally nonconvex. For this reason it cannot be polar to any tangen-
tial approximation of A [16]. But, in the context of optimality conditions, the basic
normal cone presents one major advantage: it gives sharper conditions. To see this
we mention the following relation between the basic and the Clarke normal cones

Nc
A(x ) = cl coNA(x ), (4)

which shows that the basic normal cone is included in the Clarke normal cone.
For a lower semicontinuous function ϑ : R

n → R, the Mordukhovich (or basic)
and the Clarke subdifferential of ϑ are, respectively, defined by

∂ϑ(x ) := {x∗ ∈ R
n|(x∗,−1) ∈ Nepiϑ(x,ϑ(x))},

∂cϑ(x ) := {x∗ ∈ R
n|(x∗,−1) ∈ Nc

epiϑ(x,ϑ(x))};
where epiϑ is the epigraph of ϑ . A relation (where the closure is omitted), similar
to the one mentioned above between the basic and the Clarke normal cones, can be
established between the basic and the Clarke subdifferentials when ϑ is Lipschitz
continuous. Hence the following convex hull property

co ∂(−ϑ)(x ) = −co ∂ϑ(x ), (5)

holds true when ϑ is Lipschitz continuous. Also the basic subdifferential is nonempty
and compact in the latter case. In addition, if ϑ is continuously differentiable, then

∂ϑ(x ) = {∇ϑ(x )}.
Given a set-valued mapping M : R

n ⇒ R
m, let us denote by gphM its graph:

gphM := {(u, v) ∈ R
n × R

m|v ∈ M(u)}.
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The coderivative of M at ( x, y ) ∈ gphM is a positively homogeneous mapping
D∗M(x,y ) : R

m ⇒ R
n with the values

D∗M(x,y )(y∗) := {x∗ ∈ R
n|(x∗,−y∗) ∈ NgphM(x, y )}, ∀y∗ ∈ R

m,

where the argument y is omitted, if M is single-valued. Moreover, for a single-valued
Lipschitzian mapping M : R

n → R
m,

D∗M(x )(y∗) = ∂〈y∗,M〉(x), ∀y∗ ∈ R
m, (6)

with 〈y∗,M〉( x ) := 〈y∗,M(x)〉 and ∂ being the basic subdifferential defined above.
Again let us mention that, if the single-valued mapping M is continuously differen-
tiable around x, then

D∗M(x )(y∗) = {∇M(x )�y∗}, ∀y∗ ∈ R
m,

where ∇M(x ) is the Jacobian matrix of M .
Given a set-valued mapping M : R

n ⇒ R
m and a point x with M(x ) �= ∅, we

say that M is inner semicompact at x, if and only if, for every sequence xk → x with
M(xk) �= ∅ there is a sequence of yk ∈ M(xk) that contains a convergent subsequence
as k → ∞. It follows that the inner semicompactness holds whenever M is uniformly
bounded around x, i.e. there exist a neighborhood U of x and a bounded set A ⊂ R

m,
such that M(x) ⊆ A, ∀x ∈ U.

A set-valued mapping M : R
n ⇒ R

m satisfies the Aubin/Lipschitz-like property
around the point (x, y) ∈ gphM , if and only if, there are neighborhoods U of x, V of
y and a constant L > 0, such that

d(y,M(x2)) ≤ L‖x1 − x2‖, ∀x1, x2 ∈ U, ∀y ∈ M(x1) ∩ V,

where d stands for a distance on R
m × R

m. The Lipschitz modulus is the infinimum
of the numbers L satisfying Aubin’s property. Estimations of the Lipschitz modulus
can be found in [16].

A weaker concept of Lipschitz-like behavior of set-valued mappings is that of
calmness, which is satisfied at some point ( x, y ) ∈ gphM , if and only if, there exist
neighborhoods U of x, V of y and a constant L > 0, such that

d(y,M(x )) ≤ L‖x − x‖, ∀x ∈ U, ∀y ∈ M(x) ∩ V.

The modulus of calmness of M at ( x, y ) (defined in the like manner to the Lipschitz
modulus) is denoted by L(M;x, y). Following the very recent work by Zheng and
Ng [18], L(M;x, y) can be computed using the inner norm. Given a positively ho-
mogeneous mapping M : R

n ⇒ R
m, and a cone A in R

n, the inner norm of M on A

is defined by

‖M|A‖− := sup
x∈B∩A

{inf‖y‖ : y ∈ M(x)}; (7)

where B denotes the unit ball of R
n. We have the following result from Zheng and

Ng [18].
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Theorem 2.1 If the set-valued mapping M : R
n ⇒ R

m is calm at ( x, y ), then

L(M;x, y) ≥ lim sup
v∈M(x ),v→y

‖D∗M(x,v)|−̂NM(x )(v)‖−.

Furthermore, if gphM is convex, then equality holds true.

This result could be very useful (see Sect. 4) in order to obtain the uniform calm-
ness of a certain family of set-valued mappings, which is sufficient to achieve the
partial calmness mentioned in the Introduction.

3 A Direct Approach to Optimality

Consider a classical Lipschitz optimization problem

min f (x) s.t. x ∈ A, g(x) ≤ 0, h(x) = 0, (8)

where A is a closed subset of R
n and the functions f : R

n → R, g : R
n → R

r and
h : R

n → R
s are different from those considered in Sect. 1. Let us consider a feasible

point x of problem (8); then it follows from Ye and Zhu [6] that the nonsmooth
MFCQ for (8) at x, has the dual form:

[

0 ∈ ∂c�(x )�ζ + Nc
A(x), ζ ∈ Nc

D(�(x ))
] =⇒ ζ = 0, (9)

where Nc and ∂c denote Clarke’s normal cone and generalized Jacobian, respec-
tively; and �(x) := (g(x),h(x))�, D := R

r− × {0s}. Even though the Mordukhovich
subdifferential does not take its source from a directional derivative, the MFCQ in
terms of the basic generalized constructions can be defined similarly. For a feasible
point x of (8), the MFCQ, in terms of the basic generalized differentiation tools of
Mordukhovich that we denote by MMFCQ, is satisfied at x, if and only if

[

0 ∈ ∂〈ζ,�〉( x ) + NA(x ), ζ ∈ ND(�(x ))
] =⇒ ζ = 0, (10)

where ∂ and N stand for the basic subdifferential and basic normal cone, respectively.
By applying (6) to (10), the MMFCQ can be rewritten using the coderivative. The
condition (10) is closely related to the well-known coderivative criterion of a certain
set-valued mapping; see e.g. Henrion and Outrata [14]. For more on the coderivative
criterion and its applications in nonsmooth analysis, we refer the interested reader
to the books by Rockafellar and Wets [17] and Mordukhovich [16]. It may also be
important to mention that, if the functions g and h are continuously differentiable
and the set A := R

n, then conditions (9) and (10) coincide with the dual form of the
well-known MFCQ of smooth functions [19].

We now consider our bilevel programming problem in the optimal value reformu-
lation (3). We let

	 := {(x, y)|x ∈ X,y ∈ K(x)}
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define an abstract constraint for the problem and from here on, we define G(x, y) :=
f (x, y) − ϕ(x). Then (3) has the form

minF(x, y) s.t. (x, y) ∈ 	, G(x, y) ≤ 0, (11)

and one can easily verify that the MMFCQ for (11) at ( x, y ) is

∂G( x, y ) ∩ (−N	(x, y )) = ∅. (12)

From now on, (12) will also be denoted as MMFCQ. An interesting thing about
the MMFCQ for problem (11), in comparison to the nonsmooth MFCQ in terms of
Clarke’s tools, is that the earlier CQ is weaker. In fact, let G be Lipschitz continuous;
then, as mentioned in Sect. 2, we have ∂G(x, y) ⊆ ∂c G( x, y ). We also have from (4)
that N	(x, y ) ⊆ Nc

	(x, y). Hence, it follows that: ∂c G( x, y ) ∩ (−Nc
	(x, y)) = ∅

implies ∂G(x, y) ∩ (−N	(x, y )) = ∅. Next, we show that the MMFCQ is violated
at any feasible point of problem (11). The only condition needed here is a regularity
condition, which ensures that the sum rule is applicable to the function G + δ	, where
δ	 is the indicator function of the set 	.

Theorem 3.1 Let ( x, y ) be an arbitrary feasible point of problem (11). Assume that

∂(G + δ	)( x, y ) ⊆ ∂G( x, y ) + ∂δ	(x, y ); (13)

then the MMFCQ fails at ( x, y ).

Proof Assume that ( x, y ) be a feasible point of (11). Then ( x, y ) ∈ gph� and
it follows that G(x, y) = 0. On the other hand, for all x ∈ X, we have f (x, y) ≥
ϕ(x),∀y ∈ K(x). It follows that G(x, y) ≥ 0,∀(x, y) ∈ 	. That is, G( x, y ) = 0 ≤
G(x, y),∀(x, y) ∈ 	. Hence, from (13), 0 ∈ ∂G( x, y ) + N	(x, y ) or equivalently
∂G( x, y ) ∩ (−N	(x, y )) �= ∅. �

Remark 3.2 A simple situation, where (13) holds, is when the lower level cost func-
tion f is continuously differentiable and the optimal value function ϕ is locally Lip-
schitz continuous [16]. For more details on regularity conditions for (13) to hold, we
refer the reader to the books [16, 17].

Ye and Zhu [6] proved a similar result to Theorem 3.1, in terms of the Clarke’s sub-
differential, under the assumption that ϕ be locally Lipschitz continuous and equality
holds in the estimation of Clarke’s subdifferential as given by Gauvin and Dubeau
[20, Theorem 5.3]. These assumptions seem to be restrictive and our result shows
that the MFCQ fails for problem (11) in a broader sense.

It is possible to have a weaker CQ for problem (11). Recall that for a set A ⊆ R
n,

the topological boundary of A is defined as

bdA := clA \ intA. (14)

We consider the weaker CQ closely related to MMFCQ that we denote by WMFCQ:

∂G( x, y ) ∩ (−bdN	(x, y )) = ∅. (15)
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It does not make any doubt that the WMFCQ be implied by the MMFCQ since the
normal cone N	(x, y ) is closed and bdN	(x, y ) ⊆ N	(x, y ), cf. (14).

Assuming that the WMFCQ has some chances to be satisfied for problem (11),
we can derive KKT type optimality conditions for this problem, in a direct way under
WFMFQ. Before heading to that, the following result is crucial. For this, denote by
C := {(x, y) ∈ 	| G(x, y) ≤ 0} the feasible set of (11).

Lemma 3.3 Let (x, y) be a feasible point of problem (11). Assume that 	 be convex
and G be Lipschitz continuous around ( x, y ). Then

NC(x, y ) ⊆
⋃

r≥0

r∂G( x, y ) + N	(x, y )

provided that WMFCQ holds true at ( x, y ).

Proof Assume that 	 be convex. Then 	 is regular in the sense of Clarke, and semi-
smooth at ( x, y ). Thus the result follows from Henrion et al. [15, Theorem 4.1] and
Henrion and Outrata [14, Theorem 3.1]. For the definition of semismoothness and
some related properties, the interested reader is referred for example to [14]. �

Unless otherwise stated, we assume from now on that the functions F, G, H, f, g

and h defining problem (1) be continuously differentiable. The Lipschitz continuity of
G can then be achieved when ϕ is Lipschitz continuous. It appears that the following
result due to Mordukhovich and Nam [21] and Mordukhovich [16] be needed to
ensure the Lipschitz continuity of ϕ and the estimation of its basic subdifferential.

Theorem 3.4 Assume that � be inner semicompact at x and K satisfies Aubin’s
property around (x, y) ∈ gphK , for all y ∈ �(x ). Then ϕ is Lipschitz continuous
around x. Furthermore the basic subdifferential of ϕ is estimated as

∂ϕ(x ) ⊆
⋃

y∈�(x )

[
⋃

(λ,μ)∈�(x,y)

{

∇xf (x, y) + ∇xg(x, y)�λ + ∇xh(x, y)�μ
}]

.

The set �(x,y) of Lagrange multipliers for the lower level problem (2), when the
parameter is fixed at x, is defined as

�(x,y) := {

(λ,μ) ∈ R
p × R

q |∇yf (x, y) + ∇yg(x, y)�λ + ∇yh(x, y)�μ = 0,

λ ≥ 0, λ�g(x, y) = 0
}

.

The Lipschitz continuity of ϕ is also achievable under the inner semicontinuity of
� [21]. Klatte and Kummer [22] also established the Lipschitz continuity of ϕ under
the upper semicontinuity of � and an estimation of ∂cϕ has been given by Gauvin
and Dubeau [20], which differs from the one given for ∂ϕ by the fact that instead the
convex hull is considered in the right hand side of the inclusion in Theorem 3.4.

We are now ready to state our result on the KKT type necessary optimality con-
ditions of problem (11) under the WMFCQ. For this reason, the following regularity
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conditions are necessary. Consider a feasible point ( x, y ) to problem (11), the con-
ditions

[

∇G(x )�λ′ + ∇H(x)�μ′ = 0, (μ′, λ′) ∈ R
l × N

R
k−(G(x ))

]

=⇒
(λ′,μ′) = 0,

[

∇yg( x, y )�λ + ∇yh( x, y )�μ = 0, (μ,λ) ∈ R
q × N

R
p
−(g( x, y ))

]

=⇒
(λ,μ) = 0

define the upper level and lower level regularity condition at x and ( x, y ), respec-
tively. Let us remind that this is nothing, but the MFCQ as given in (9)–(10), for the
upper level and the unperturbed lower level constraints, respectively.

Theorem 3.5 Let ( x, y ) be a local optimal solution to problem (11). Assume that
� is inner semicompact at x, the lower (resp. upper) level regularity is satisfied at
(x, y), for all y ∈ �(x ) (resp. x). Moreover, we suppose that 	 is convex and the
WMFCQ holds true at ( x, y ). Then, there exist r ≥ 0, λ,μ,λ′,μ′, λs,μs, ηs ≥ 0,
and ys ∈ �(x ), s = 1, . . . , n + 1 with

∑n+1
s=1 ηs = 1, such that:

∇xF (x, y ) + r∇xf ( x, y ) − r

n+1
∑

s=1

ηs∇xf (x, ys)

+ ∇xg( x, y )�λ − r

n+1
∑

s=1

ηs∇xg(x, ys)
�λs

+ ∇xh( x, y )�μ − r

n+1
∑

s=1

ηs∇xh(x, ys)
�μs

+ ∇G(x )�λ′ + ∇H(x )�μ′ = 0, (16)

∇yF (x, y ) + r∇yf ( x, y ) + ∇yg( x, y )�λ + ∇yh( x, y )�μ = 0, (17)

∇yf (x, ys) + ∇yg(x, ys)
�λs + ∇yh(x, ys)

�μs = 0, (18)

λ ≥ 0, λ�g(x, y ) = 0, (19)

λ′ ≥ 0, λ′�G(x ) = 0, (20)

λs ≥ 0, λ�
s g(x, ys) = 0. (21)

Proof Let ( x, y ) be a local optimal solution of problem (11). Since F is continuously
differentiable at z, it follows from Mordukhovich [16, Proposition 5.1] that

0 ∈ ∇F(x, y ) + NC(x, y ).

Now let us mention that the lower level regularity at (x, y), for all y ∈ �(x ) implies
that Aubin’s property holds around (x, y), for all y ∈ �(x ). Thus in addition to the
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inner semicompactness of � at x, it follows from Theorem 3.4 that ϕ is Lipschitz
continuous around x. Hence, the convexity of 	 and the Lipschitz continuity of ϕ

imply from Lemma 3.3 that

0 ∈ ∇F(x, y ) +
⋃

r≥0

r∂G( x, y ) + N	(x, y).

It follows that there exist r ≥ 0 and u ∈ N	(x, y ) such that

−(∇F(x, y ) + r∇f (x, y) + u) ∈ r∂(−ϕ)( x ) × {0},
implying that there exist r ≥ 0 and u ∈ N	(x, y ) such that

(∇F(x, y ) + r∇f (x, y) + u) ∈ rco ∂ϕ(x ) × {0} (22)

from

∂(−ϕ)( x ) ⊆ co ∂(−ϕ)( x ) = −co ∂ϕ(x ).

Since upper and lower level regularities are satisfied at x and ( x, y ) respectively, then
u ∈ N	(x, y ) implies (cf. Rockafellar [23, Theorem 4.3]) that, there exist r ≥ 0 and
(λ,λ′,μ,μ′) ∈ R

p × R
k × R

q × R
l such that equality (17), (in)equalities (19)–(20)

and
(∇xF (x, y ) + r∇xf ( x, y ) + ∇xg( x, y )�λ + ∇xh( x, y )�μ

+ ∇G(x )�λ′ + ∇H(x )�μ′) ∈ r co ∂ϕ(x ) (23)

are satisfied.
Picking v ∈ co ∂ϕ(x ) and applying Carathéodory’s theorem (see e.g. Mangasarian

[24]), we find ηs ∈ R and vs ∈ R
n with s = 1, . . . , n + 1 such that

v =
n+1
∑

s=1

ηsvs,

n+1
∑

s=1

ηs = 1, ηs ≥ 0, vs ∈ ∂ϕ(x ), for s = 1, . . . , n + 1.

(24)
Applying Theorem 3.4 to (24), we have vectors ys ∈ �(x ) and (λs,μs) ∈ �(x,ys)

with s = 1, . . . , n + 1 such that,

vs = ∇xf ( x, ys) + ∇xg( x, ys)
�λs + ∇xh( x, ys)

�μs, (25)

and equality (18), (in)equality (21) are satisfied. The result then follows by combin-
ing (23)–(25). �

Remark 3.6 As mentioned in the Introduction of this paper, it was observed by
Dempe et al. [13] that under the inner semicontinuity of � , the partial calmness CQ
leads to KKT conditions for problem (3) without the partial derivative of the lower
level cost function with respect to the upper level variable. In Theorem 3.5, if we
replace the inner semicompactness assumption on � by the inner semicontinuity, the
WMFCQ will also lead to the same phenomenon.
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We now consider the class of simple convex bilevel programming problems studied
for example by Dempe et al. [25]:

minF(z) s.t. z ∈ S := argmin{f (z)|z ∈ 	}, (26)

where 	 is a closed and convex set, and the upper and lower level objective functions
F and f are also convex. Denoting by α := min{f (z)|z ∈ 	}, problem (26) can be
reformulated as

minF(z) s.t. z ∈ 	, f (z) ≤ α. (27)

This is a convex optimization problem, but the MFCQ also fails at any feasible
point [25]. KKT type necessary optimality conditions can be derived for problem (27)
by applying the technique in Theorem 3.5. In this case, the WMFCQ reduces to:

∂f ( z ) ∩ (−bdN	(z )) = ∅. (28)

The following example from the class of simple convex bilevel programming prob-
lems shows that the WMFCQ could be quite useful.

Example 3.7 We consider the simple convex bilevel programming problem:

minx2 + y2 s.t. (x, y) ∈ S := argmin{x + y|x, y ≥ 0}.
We have f (x, y) := x + y and 	 := R

2+. The point (0,0) is the unique optimal solu-
tion of the problem and N	(0,0) = R

2−. Hence,

∂f (0,0) = (1,1) /∈ {(x,0)|x ≥ 0} ∪ {(0, y)|y ≥ 0} = −bdN	(0,0).

Clearly, condition (28) is fulfilled at (0,0).

Continuing with the simple convex bilevel programming problem, the WMFCQ
can further be weakened by also passing to the boundary of the subdifferential of
the optimal value constraint function G , which corresponds here to z �→ f (z) − α.
Precisely, unlike in (28), if we assume that the condition

bd ∂f ( z ) ∩ (−bdN	(z )) = ∅ (29)

be satisfied at a local optimal solution z of problem (27), then KKT type optimality
conditions can also be derived for this problem using the same technique as in The-
orem 3.5. To proceed, one can state a result similar to Lemma 3.3, under condition
(29); cf. Henrion and Outrata [14, Theorem 4.2]. It is quite obvious that the qualifi-
cation condition in (28) implies the one in (29). Hence the latter is also satisfied for
the problem in Example 3.7.

Another alternative to the MFCQ in the framework of the simple convex bilevel
programming problem may be the qualification condition

int

[

⋃

{γ ∂f ( z )|γ ∈ [0,1]}
]

∩ (−N	(z )) �= ∅. (30)
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KKT type optimality conditions can also be derived for problem (27) under the CQ
(30) by applying the technique of Theorem 3.5, cf. [15, Theorem 3.6]. The following
example shows that this may also be a quite useful CQ for the bilevel programming
problem.

Example 3.8 Let us consider the simple convex bilevel programming problem:

minx2 + 1 s.t. x ∈ S := argmin{x|x ≥ 0}.
We have f (x) := x and 	 := R+. We have 0 as the unique optimal solution of the
problem. Also,

⋃{γ ∂f (0)|γ ∈ [0,1]} = [0,1] and N	(0) = R−. One can easily ver-
ify that condition (30) is fulfilled at 0.

It is important to mention that necessary and sufficient optimality conditions for
the simple convex bilevel programming problem were derived in [25] using other
CQs.

An approach similar to the one we have used to derive optimality conditions for
the optimal value reformulation of (1), can also be applied for the KKT reformulation.
To see this we first assume that both the function f (x, .) and the set K(x) be convex
for all x ∈ X, and also that the lower level regularity holds at (x, y) ∈ gphK , for all
x ∈ X. Hence the feasible set of (1) can be replaced by

C′ := {(x, y) ∈ X × R
m|0 ∈ ∇yf (x, y) + NK(x)(y)}.

We now assume K(x) := K , i.e. the feasible set of the lower level problem does not
depend on the upper level variable. Then problem (1) can be reformulated in a one
level optimization problem as

minF(x, y) s.t. (x, y) ∈ X × R
m, (y,−∇yf (x, y)) ∈ gphNK, (31)

where gphNK represents the graph of the set-valued mapping NK defined from R
m

to R
m as NK(y) being the normal cone (in the sense of convex analysis) to K at

y, when y ∈ K ; and NK(y) := ∅ otherwise. It follows from [23, Proposition 3.3]
that gphNK is closed as a subset of K × R

m. Problem (31) is locally and globally
equivalent to problem (1) [1]. Now let 	′ := X × R

m and consider the regularity
condition SCQ:
(

− [∇2
xyf ( x, y )

]�
z,w − [∇2

yyf ( x, y )
]�

z
)

∈ −bdN	′( x, y )

(w, z) ∈ NgphNK
(y,−∇yf ( x, y ))

}

⇒ (w, z) = 0

defined at a feasible point problem ( x, y ) of (31). Then using SCQ, necessary opti-
mality conditions for (1) can be obtained as follows.

Theorem 3.9 Assume that X be convex and let ( x, y ) be an optimal solution
of (31) that satisfies SCQ. Then, there exist (w, z ) ∈ NgphNK

(y,−∇yf ( x, y )) and
γ ∈ NX(x) , such that

∇xF (x, y ) − (∇2
xyf ( x, y) )�z + γ = 0,
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∇yF (x, y ) − (∇2
yyf ( x, y ))�z + w = 0.

The SCQ was introduced in [14], in the framework of mathematical programming
problems with complementarity constraints. As far as the bilevel programming prob-
lem is concerned, an approach similar to the one of Theorem 3.9 has been used in
[5]; at the difference that instead of bdN	′ (in the SCQ), the normal cone N	′ was
considered. Thus, making the resulting CQ stronger than the SCQ. The SCQ could be
a quite effective CQ for the bilevel programming problem (see [1, 26]); however, the
estimation of NgphNK

may require very strong assumptions [27]. Some links between
the KKT conditions in Theorem 3.9 and those in Theorem 3.5 can be found in [1, 26].

In the line of direct approaches to derive KKT optimality conditions for the bilevel
programming problem, let us mention the work of Ye [9] where some classical CQs
have been extended and used to obtain optimality conditions for the optimal value
reformulation of problem (1) using the Michel-Penot subdifferential. The optimality
conditions derived in [9] are similar to those obtained in Theorem 3.5.

To close this section, it is worth mentioning that, the CQs in (29) and (30) may
well be extended to problem (11), provided that G is regular at ( x, y ), in the sense
of Clarke. In the next section, we introduce the concept of partial calmness, a CQ
that may be used to design KKT type optimality conditions for problem (3) via (par-
tial) exact penalization. It will be shown that the WMFCQ strictly implies the partial
calmness. Another possible alternative to the MMFCQ may be the CQ introduced in
[28, 29]. This CQ is obtained by separation arguments in terms of tangent cone of a
suitable set in the image space. It has been shown to be weaker than the MFCQ and
its closeness with calmness and other well-known CQs has been established in [28,
29]. The application of this CQ to the bilevel programming problem may constitute a
topic for future research.

4 Optimality Conditions via Exact Penalization

In this section, we are mainly concerned with the concept of partial calmness in-
troduced by Ye and Zhu [6], and which has drawn a lot of attention (see e.g.
[1, 6, 8, 13, 30–32]) in the study of optimality conditions for the bilevel program-
ming problem (1), using the optimal value reformulation (3).

Definition 4.1 Let ( x, y ) be a feasible point of problem (3). The bilevel program-
ming problem (1) is partially calm at ( x, y ), if and only if, there exist α > 0 and a
neighborhood U of ( x, y,0) ∈ R

n × R
m × R, such that:

F(x, y) − F(x, y ) + α|u| ≥ 0,

∀(x, y,u) ∈ U : (x, y) ∈ 	, f (x, y) − ϕ(x) + u = 0.

The notion of partial calmness is closely related to that of partial exact penaliza-
tion as shown by the following result from [6].
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Theorem 4.2 Let ( x, y ) be a local optimal solution of (1). Then, problem (1) is
partially calm at ( x, y ), if and only if, there exists α > 0 such that, ( x, y ) is a local
optimal solution to the partially penalized problem:

minF(x, y) + α(f (x, y) − ϕ(x)) s.t. x ∈ X, y ∈ K(x).

To obtain sufficient conditions for partial calmness, the concept of weak sharp
minimum has been used [6, 8]. We now introduce a notion of weak sharp minimum
from Henrion et al. [15], which generalizes the one used by Ye and Zhu [6]. For this
reason, we consider a general optimization problem

min f (x) s.t. x ∈ A, (32)

where A is a closed subset of R
n, the function f : R

n → R is continuous and we
denote the solution set by S.

Definition 4.3 In (32), the function f is said to have S as set of weak sharp minima,
with respect to A ∩ N , if and only if, there exists α > 0 such that

f (x) − f∗ ≥ α d(x,S), ∀x ∈ A ∩ N ;
where f∗ := inf{f (x)|x ∈ A} and N is a neighborhood of S.

By replacing the set N by the whole space R
n, we obtain the definition used by

Ye and Zhu [6]. As we will see in what follows, Definition 4.3 can lead to a new
sufficient condition for partial calmness. Before heading to that, it seems appropriate
to first recall the link between the partial calmness and the notion of weak sharp
minimum. For this, we bring the previous definition to the context of the parametric
optimization problem (2).

The family of parametric problems {(2)|x ∈ X}, will be said to have a uniformly
weak sharp minimum, if and only if, there exist α > 0 and a neighborhood N (x) of
�(x), x ∈ X such that

f (x, y) − ϕ(x) ≥ α d(y,�(x)), ∀y ∈ K(x) ∩ N (x), ∀x ∈ X.

The term uniformly weak sharp minimum was first used by Ye and Zhu [6]. We now
present the following result, without the proof, since it can easily be adapted from the
one in [6, Proposition 5.1].

Theorem 4.4 Let ( x, y ) be an optimal solution of problem (1). Assume that F is Lip-
schitz continuous in y uniformly in x ∈ X, and the family {(2)|x ∈ X} has a uniformly
weak sharp minimum. Then problem (1) is partially calm at ( x, y ).

Now, we define the family of functions hx(y) := f (x, y) − ϕ(x) and multifunc-
tions

Mx(z) := {y ∈ K(x)|hx(y) + z ≤ 0}, ∀x ∈ X. (33)
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From the definition of the calmness of a multifunction given in Sect. 2, we recall
that for a given parameter x ∈ X, the multifunction Mx will be said to be calm at
(z, y) ∈ gphMx , if and only if, there exist neighborhoods Ux of z, Vx of y and a
constant Lx > 0 such that

d(y,Mx( z )) ≤ Lx |z − z|, ∀z ∈ Ux, ∀y ∈ Mx(z) ∩ Vx. (34)

The family of multifunctions {Mx |x ∈ X} will be said to be uniformly calm, if and
only if, for each x ∈ X, Mx is calm on {0} × �(x) and there is a family {Lx(y)|y ∈
�(x), x ∈ X} of calmness constants satisfying

Lx(y) ≤ α, ∀y ∈ �(x), x ∈ X; (35)

where α is a positive number. Hence, it should be clear in the definition of uniform
calmness that, when we fix x ∈ X and a vector y ∈ �(x), we consider only a certain
calmness constant Lx(y) satisfying (34) and such that Lx(y) ≤ α. It is also clear from
the definition of Mx in (33) that Mx(0) = �(x). Hence, the following result ensuring
the calmness of Mx on {0} × �(x) is a simple consequence of [14, Theorem 3.1].

Theorem 4.5 Assume that f be Lipschitz continuous in y uniformly in x, ϕ continu-
ous and K be a convex-valued mapping. Then Mx is calm at (0, y) for all y ∈ �(x),
x ∈ X; provided that the qualification condition

∂yf (x, y) ∩ −bdNK(x)(y) = ∅, ∀y ∈ �(x), x ∈ X

holds true.

Interested readers are also referred to Heerda and Kummer [33] for other ways to
characterize the calmness of the mappings Mx , x ∈ X.

We are now able to give a new sufficient condition for problem (1) to be partially
calm. The proof is inspired from [15] and the set-valued mapping Mx is defined as
in (33).

Theorem 4.6 We assume that the family {Mx |x ∈ X} be uniformly calm and the set-
valued mapping � be compact-valued with dom� = X. We further assume that the
follower’s cost function f be continuous in y uniformly in x. Then, there exists α > 0,
such that

f (x, y) − ϕ(x) ≥ α−1d(y,�(x)), ∀y ∈ K(x) ∩ N (x), x ∈ X,

where N (x) is a neighborhood of �(x).

Proof Fix x0 ∈ X and let y ∈ �(x0). Mx0 is calm at (0, y) and it follows from the
definition of calmness (34), that there exist εx0, δx0 > 0 such that

d(y′,Mx0(0)) ≤ Lx0(y)|z|, ∀z : |z| < δx0 , ∀y′ ∈ Mx0(z) ∩ B(y, εx0). (36)
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Since f is continuous in y′ uniformly in x, then we can choose εx0 small enough
such that

|f (x0, y
′) − f (x0, y)| < δx0, ∀y′ ∈ B(y, εx0),

with f (x0, y) = ϕ(x0). Thus we have |hx0(y
′)| < δx0 , ∀y′ ∈ B(y, εx0). Hence, by

taking z = hx0(y
′) in (36) and observing that Mx0(0) = �(x0), we have

d(y′,�(x0)) ≤ Lx0(y)|hx0(y
′)|, ∀y′ ∈ K(x0) ∩ B(y, εx0).

Since the solution set-valued mapping � is compact-valued; then, there is a finite
number of vectors yi ∈ �(x0) and real numbers δi

x0
> 0 and Lx0(y

i) > 0 such that
�(x0) ⊆ ⋃

i B(yi, δi
x0

), and we have

d(y′,�(x0)) ≤ Lx0(y
i)(f (x0, y

′) − ϕ(x0)), ∀y′ ∈ K(x0) ∩ B(yi, δi
x0

), ∀i.

By taking N (x0) = ⋃

i B(yi, δi
x0

), it follows that

d(y′,�(x0)) ≤ c(x0)(f (x0, y
′) − ϕ(x0)), ∀y′ ∈ K(x0) ∩ N (x0),

where c(x0) = maxi Lx0(y
i). Since the family of multifunctions {Mx |x ∈ X} is uni-

formly calm, we assume without lost of generality that the family of calmness con-
stants {Lx(y)|y ∈ �(x), x ∈ X} is chosen in such a way that, inequality (35) is satis-
fied. Hence, there exists α > 0 (c(x) < α,∀x ∈ X) such that

f (x, y) − ϕ(x) ≥ α−1d(y,�(x)), ∀y ∈ K(x) ∩ N (x), ∀x ∈ X.

�

The next result gives a possible way to achieve the uniform calmness of the family
of multifunctions {Mx |x ∈ X}, with the possibility of estimating the constant α. We
recall that L(Mx;0, y) denotes the modulus of calmness of the mapping Mx at the
point (0, y) and the restricted inner norm ‖.|A‖− used here is defined in (7).

Theorem 4.7 Assume that the function f (x, .) be convex for all x ∈ X and the set-
valued mapping K be convex-valued. Also, we suppose that for all x ∈ X, Mx is calm
on {0} × �(x). Then, we have

L(Mx;0, y) = lim sup
v∈�(x), v→y

‖D∗Mx(0, v)|−̂N�(x)(v)‖−, ∀y ∈ �(x), x ∈ X. (37)

Furthermore, assume that for all y ∈ �(x), x ∈ X, L(Mx;0, y) be achieved as a
minimum; and there is a number α > 0 such that

L(Mx;0, y) ≤ α, ∀y ∈ �(x), x ∈ X. (38)

Then, the family {Mx |x ∈ X} is uniformly calm.
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Proof Fix x ∈ X, if f (x, .) is convex and K(x) is convex, then gphMx is convex.
Hence, the equality in (37) follows from Theorem 2.1, given that Mx(0) = �(x).

Finally, if L(Mx;0, y) is achieved as a minimum for all y ∈ �(x), x ∈ X, then we
choose Lx(y) = L(Mx;0, y), y ∈ �(x), x ∈ X and it follows from (38) that the fam-
ily {Mx |x ∈ X} is uniformly calm. �

A second approach to obtain a result similar to Theorem 4.6 for the family
{(2)|x ∈ X} to have a uniformly weak sharp minimum is to consider but the fam-
ily of multifunctions

Mx(z) := {y ∈ K(x)|f (x, y) ≤ z}, x ∈ X

instead of that in (33). Hence, in the definition of the uniform calmness of the family
of multifunctions {Mx |x ∈ X}, consider but the calmness of each Mx on {ϕ(x)} ×
�(x) instead of {0} × �(x). A result similar to Theorem 4.6 can then be stated and
proven using [15, Lemma 4.7].

In the following example, we give an example of parametric optimization problem
where each multifunction Mx , defined as in (33), is calm on {0} × �(x), x ∈ X.

Example 4.8 We consider the parametric optimization problem

min{y|y ∈ K(x)},
where K(x) := {y|x ≤ y}, for all x ∈ X := R. We have f (x, y) := y, and it is
obvious that �(x) = {x}, for all x ∈ X. Hence, ∀x ∈ X, ∀y ∈ �(x), we have
∂yf (x, y) = 1 and NK(x)(y) := R−. Clearly, 1 /∈ {0} = bd R+. The calmness of Mx

(see (33), with ϕ(x) := x) on {0}×�(x) for all x ∈ X then follows from Theorem 4.5.

It has been shown in [1, Theorem 4.2], that the bilevel programming problem (1) is
partially calm at any feasible point, provided that X := R

n, dom� = R
n, the upper-

level objective function F is Lipschitz continuous, and the functions f , g and h

are linear w.r.t. y. Other sufficient conditions for the partial calmness of the bilevel
programming problem have been given in [6, 8, 31].

We now present the optimality conditions for the bilevel programming problem (1)
under the partial calmness and outline the difference with the optimality conditions
obtained under the WMFCQ.

Theorem 4.9 Let ( x, y ) be a local optimal solution to problem (11). Assume that
� be inner semicompact at x, the lower (resp. upper) level regularity be satisfied
at (x, y), for all y ∈ �(x ) (resp. at x). Moreover, we suppose that problem (11)
be partially calm at ( x, y ). Then, there exist r > 0, λ,μ,λ′,μ′, λs,μs, ηs ≥ 0, and
ys ∈ �(x ), s = 1, . . . , n + 1 with

∑n+1
s=1 ηs = 1 such that the optimality conditions in

Theorem 3.5 hold.

Proof Under the assumptions of inner semicompactness of � at x and lower level
regularity at (x, y), for all y ∈ �(x ), it follows from Theorem 3.4 that ϕ is Lipschitz
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continuous around x. Then applying Theorem 4.2 to problem (11), we have that there
exists r > 0 such that ( x, y ) is a local optimal solution of

minF(x, y) + r(f (x, y) − ϕ(x)) s.t. (x, y) ∈ 	, (39)

where 	 is defined in (3).
Since F and f are continuously differentiable, the objective function of prob-

lem (39) is Lipschitz continuous. Hence, from Mordukhovich [16, Proposition 5.3],
it follows that

0 ∈ ∇F(x, y ) + r∇f (x, y ) + r∂(−ϕ)( x ) × {0} + N	(x, y ).

From here the rest of the proof follows as that of Theorem 3.5. �

What holds our attention here is the nature of the multiplier r , which is positive
in Theorem 4.9 and simply nonnegative in Theorem 3.5. Though surprising, given
that the partial calmness is weaker than the WMFCQ, as we show in the next result,
this is rather understandable considering the difference in the two processes. Another
important point here is that, the convexity of set 	 is not necessary in the latter result.

Theorem 4.10 Consider problem (3) and assume that, 	 be convex and G be Lip-
schitz continuous. Then, the following implications hold true at a local optimal solu-
tion of problem (3).

MMFCQ =⇒ WMFCQ =⇒ partial calmness.

Proof Since the proof of the first implication is straightforward (see Sect. 3), we
focus our attention on the second implication.

Under the convexity of 	 and the Lipschitz continuity of G , the WMFCQ is well-
defined to be a CQ at a given point ( x, y ), as we can observe from Lemma 3.3.
Moreover, it follows from [14] that the set-valued mapping

M(t) = {(x, y) ∈ 	| G(x, y) ≤ t}
is calm at (0, x, y). Also observe that the feasible set of (3) is C = M(0). Hence, it
follows from [7] that, if ( x, y ) is a local optimal solution of (3), then there exists
α > 0 and a neighborhood W of ( x, y ), such that

F(x, y ) ≤ F(x, y) + αd((x, y),M(0)), ∀(x, y) ∈ W. (40)

On the other hand, the calmness of M at (0, x, y ) implies that there exist neighbor-
hoods U of 0, V of ( x, y ) and a constant L > 0 such that

d((x, y),M(0)) ≤ L|t |, ∀t ∈ U, ∀(x, y) ∈ M(t) ∩ V. (41)

By combining (40) and (41), it follows that

F(x, y) − F(x, y ) + αL|t | ≥ 0, ∀t ∈ U, ∀(x, y) ∈ W ∩ V ∩ M(t),

which coincides with the definition of partial calmness in Definition 4.1. �
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In the next example, we show that the converse of the second implication of this
result is not always possible.

Example 4.11 Consider the bilevel program

min x2 + y2 s.t. x ∈ R, y ∈ argmin{x2y + y|y ≥ 0}. (42)

Set f (x, y) := x2y + y and 	 := R × R+. We have ϕ(x) = 0, ∀x ∈ X := R,
and G(x, y) = x2y + y. We can easily check that (0,0) is an optimal solution of
problem (42). Hence ∂G(0,0) = (0,1) and N	(0,0) = {0} × R−. It follows that
(0,1) ∈ {0} × R+ = −bdN	(0,0). This means that WMFCQ fails at (0,0).

On the other hand, it follows from [1, Theorem 4.2] that problem (42) is partially
calm at (0,0).

5 Optimality Conditions Under Strong Stability

We consider the bilevel programming problem (1). Let a feasible point ( x, y ) be
such that, the vector y ∈ �(x ) is a strongly stable local optimal solution of the para-
metric optimization problem (2), in the sense of Kojima [34]; i.e. there exist open
neighborhoods U(x ) of x, and V (y) of y, and a uniquely determined continuous
vector-valued function y(.) : U(x) → V (y) such that, y(x) is the unique local op-
timal solution of problem (2) in V (y), for all x ∈ U(x ). Then, the optimal value
function takes the form

ϕ(x) = f (x, y(x)), ∀x ∈ U(x ). (43)

In this case, the mapping � is obviously inner semicompact at x, given that it is
uniformly bounded around x, from the definition we have in Sect. 2. In contrast to
what we had in the previous sections, the estimation of the subdifferential of the
optimal value function ϕ at the point x, could face some difficulties, since the function
y(.) : U(x ) → V (y) may not be Lipschitz continuous [35], even when the lower
level regularity is achieved. Before tackling this problem, we give a result ensuring
the strong stability in the sense of Kojima. For this, we assume for the rest of the
section that the functions f,g and h are twice continuously differentiable; hence we
can mention the following strong sufficient condition of second order (SSOC) which
is needed:

SSOC is said to hold at ( x, y ) if, for each (λ,μ) ∈ �(x,y ) and for each d �= 0
satisfying

∇ygi( x, y )d = 0, for each i ∈ J := {j |λj > 0}
∇yhj ( x, y )d = 0, for j = 1, . . . , q,

we have

d�∇2
yyL(x, y,λ,μ)d > 0;

where L(x, y,λ,μ) := f (x, y) + λ�g(x, y) + μ�h(x, y) is the Lagrangian function
of problem (2). We can then state this theorem from Kojima [34].
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Theorem 5.1 Let y ∈ �(x ) be a local optimal solution of problem (2). Assume that
the SSOC and the lower level regularity hold at (x, y), then the local optimal solution
y is strongly stable.

In order to obtain the Lipschitz continuity of y(.), and hence to be able to compute
the subdifferential of ϕ, the following constant rank constraint qualification (CRCQ)
is crucial, as was pointed out by Ralph and Dempe [35]:

CRCQ is said to be satisfied for problem (2) at ( x, y ) if, there exists an open
neighborhood W of ( x, y ) such that, for subsets

I ⊆ I ( x, y ) := {i|gi( x, y ) = 0}, J ⊆ {1, . . . , q},
the family of gradient vectors {∇ygi(x, y)|i ∈ I } ∪ {∇yhj (x, y)|j ∈ J }, has the same
rank, for all (x, y) ∈ W.

We are now ready to state a result analogous to Theorem 3.4.

Lemma 5.2 Consider a local optimal solution y ∈ �(x ) of problem (2). Assume that
the lower level regularity, the SSOC and the CRCQ hold at (x, y). Then, it follows
from Theorem 5.1 that, y is strongly stable. Moreover, there exists a neighborhood
U(x ) of x such that, the optimal value function defined by (43) is Lipschitz continu-
ous around x and

∂ϕ(x ) = ∇xf ( x, y ) + D∗y(x )(∇yf ( x, y )). (44)

Proof From Theorem 5.1, it follows that the local optimal solution y, of the lower
level problem (2), is strongly stable. Furthermore, from [2, Theorem 4.10], y(.) is
Lipschitz continuous around x provided that, CRCQ is satisfied. Hence, equality (44)
follows from the chain rule in [16, Theorem 1.110]. �

In the next result, we give KKT type optimality conditions for the optimal value
reformulation (3), of problem (1) under the strong stability of the parametric lower
level problem, in the sense of Kojima.

Theorem 5.3 Let ( x, y ) be a local optimal solution to problem (11). Assume that the
SSOC, CRCQ, and lower (resp. upper) level regularity are satisfied at ( x, y ) (resp.
x). Moreover, we suppose that 	 be convex and the WMFCQ holds true at ( x, y ).
Then, there exist r ≥ 0 and λ,μ,λ′,μ′ such that:

0 ∈ ∇xF (x, y ) − r∂y(x)�∇yf ( x, y ) + ∇xg(x, y)�λ + ∇xh( x, y )�μ

+ ∇G(x )�λ′ + ∇H(x )�μ′,

∇yF (x, y ) + r∇yf (x, y) + ∇yg( x, y )�λ + ∇yh( x, y )�μ = 0,

λ ≥ 0, λ�g(x, y ) = 0,

λ′ ≥ 0, λ′�G(x ) = 0,

where ∂y(x ) denotes the Clarke generalized Jacobian of the function y(.).
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Proof The proof is identical to that of Theorem 3.5, at the exception that in (23), one
has to notice the following changes: Firstly, it follows from Lemma 5.2 that

co ∂ϕ(x ) = ∇xf ( x, y ) + coD∗y(x )(∇yf ( x, y ))

and secondly, from Mordukhovich [36] one has

coD∗y(x )(∇yf ( x, y )) = ∂y(x )�∇yf ( x, y ). �

For the computation of the generalized Jacobian of the function y(.), the interested
reader is referred to Dempe and Vogel [37]. Optimality conditions for problem (1),
under strong stability, can also be derived by inserting the solution function y(.) in
the upper level objective function. Thus, the new problem to be solved is:

minF(x, y(x)) s.t. x ∈ X.

For more on this direction, the reader is referred to Dempe [2].

6 Conclusion

After observing that the Mangasarian-Fromowitz constraint qualification in terms of
the basic generalized differentiation constructions of Mordukhovich (MMFCQ) is
weaker than the MFCQ in terms of Clarke’s tools, we have shown that the former
CQ fails under a mild assumption. Knowing that the nonsmooth MFCQ in terms of
Clarke is weaker than the nonsmooth linear independence CQ and the nonsmooth
Slater CQ [6], we can conclude that under the sum rule (13), the latter CQs fail for
problem (3). Using a weakened form of the MMFCQ (i.e. the WMFCQ), KKT type
optimality conditions have been derived for problem (3). Other closely related CQs
have also been suggested (see Sect. 3), which seem quite interesting and easier to
check in the case of a simple convex bilevel programming problem.

In this work, we have also given a new sufficient condition for the partial calmness
of problem (3) based on the new concept of uniform calmness of a certain family of
set-valued mappings, but the difficulty here is how to choose the desired family of
calmness constants. The first step in this direction is given in Theorem 4.7.

References

1. Dempe, S., Zemkoho, A.B.: The bilevel programming problem: reformulations, constraint qualifica-
tions and optimality conditions. Submitted for publication

2. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic, Dordrecht (2002)
3. Dempe, S., Dutta, J., Lohse, S.: Optimality conditions for bilevel programming problems. Optimiza-

tion 55, 505–524 (2006)
4. Dempe, S., Kalashnikov, V.V., Kalashnykova, N.: Optimality conditions for bilevel programming

problems. In: Dempe, S., Kalashnikov, V.V. (eds.) Optimization with Multivalued Mappings, vol. 2,
pp. 3–28. Springer, New York (2006)

5. Dutta, J., Dempe, S.: Bilevel programming with convex lower level problems. In: Dempe, S., Kalash-
nikov, V.V. (eds.) Optimization with Multivalued Mappings, vol. 2, pp. 51–71. Springer, New York
(2006)



J Optim Theory Appl (2011) 148: 46–68 67

6. Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33, 9–27
(1995)

7. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM Classics in Applied Mathematics, vol. 5.
Wiley, New York (1983). Reprint, Philadelphia (1994)

8. Ye, J.J., Zhu, D.L.: A note on optimality conditions for bilevel programming problems. Optimization
39, 361–366 (1997)

9. Ye, J.J.: Nondifferentiable multiplier rules for optimization and bilevel optimization problems. SIAM
J. Optim. 15, 252–274 (2004)

10. Ye, J.J.: Constraint qualifications and KKT conditions for bilevel programming problems. Math. Oper.
Res. 31, 811–824 (2006)

11. Babahadda, H., Gadhi, N.: Necessary optimality conditions for bilevel optimization problems using
convexificators. J. Glob. Optim. 34, 535–549 (2006)

12. Amahroq, T., Gadhi, N.: On the regularity condition for vector programming problems. J. Glob. Op-
tim. 21, 433–441 (2001)

13. Dempe, S., Dutta, J., Mordukhovich, B.S.: New necessary optimality conditions in optimistic bilevel
programming. Optimization 56, 577–604 (2007)

14. Henrion, R., Outrata, J.: A subdifferential condition for calmness of multifunctions. J. Math. Anal.
Appl. 258, 110–130 (2001)

15. Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim.
13, 603–618 (2002)

16. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Ap-
plications. Springer, Berlin (2006)

17. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
18. Zheng, X.Y., Ng, K.F.: Calmness for L-subsmooth multifunctions in Banach spaces. SIAM J. Optim.

19, 1648–1673 (2009)
19. Mangasarian, O.L., Fromowitz, S.: The Fritz John necessary optimality conditions in the presence of

equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)
20. Gauvin, J., Dubeau, F.: Differential properties of the marginal function in mathematical programming.

Math. Program. Stud. 18, 101–119 (1982)
21. Mordukhovich, B.S., Nam, N.M.: Variational stability and marginal functions via generalized differ-

entiation. Math. Oper. Res. 30, 800–816 (2005)
22. Klatte, D., Kummer, B.: Stability properties of infima and optimal solutions of parametric optimiza-

tion problems. Nondifferentiable optimization: motivations and applications. In: Proc. IIASA Work-
shop, Sopron/Hung, 1984. Lect. Notes Econ. Math. Syst, vol. 255, pp. 215–229. Springer, Berlin
(1985)

23. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993)
24. Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10.

McGraw-Hill, New York (1969). Reprint, Philadelphia (1994)
25. Dempe, S., Dinh, N., Dutta, J.: Optimality conditions for a simple convex bilevel programming prob-

lem. In: Burachik, R.S., Yao, J.-C. (eds.) Variational Analysis and Generalized Differentiation in Op-
timization and Control. Springer, Berlin (2010)

26. Dempe, S., Zemkoho, A.B.: On the Karush-Kuhn-Tucker reformulation of the bilevel optimization
problem. Submitted for publication

27. Henrion, R., Outrata, J., Surowiec, T.: On the co-derivative of normal cone mappings to inequality
systems. Nonlinear Anal. 71, 1213–1226 (2009)

28. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. I: Sufficient optimal-
ity conditions. J. Optim. Theory Appl. 142, 147–163 (2009)

29. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. II: Necessary opti-
mality conditions. J. Optim. Theory Appl. 142, 165–183 (2009)

30. Dempe, S., Zemkoho, A.B.: Bilevel road pricing: Theoretical analysis and optimality conditions. Sub-
mitted for publication

31. Ye, J.J.: New uniform parametric error bounds. J. Optim. Theory Appl. 98, 197–219 (1998)
32. Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized

bilevel programming problems. SIAM J. Optim. 7, 481–507 (1997)
33. Heerda, J., Kummer, B.: Characterization of calmness for Banach space mappings. Preprint,

Humboldt-Universität zu Berlin (2006)
34. Kojima, M.: Strongly stable stationary solutions in nonlinear programs. Analysis and computation of

fixed points. Proc. Symp., Univ. Wis. 1979, 93–138 (1980)



68 J Optim Theory Appl (2011) 148: 46–68

35. Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program. Math.
Program. 70, 159–172 (1995)

36. Mordukhovich, B.S.: Generalized differential calculus for nonsmooth and set-valued mappings.
J. Math. Anal. Appl. 183, 250–288 (1994)

37. Dempe, S., Vogel, S.: The generalized Jacobian of the optimal solution in parametric optimization.
Optimization 50, 387–405 (2001)


	The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs
	Abstract
	Introduction
	Preliminaries
	A Direct Approach to Optimality
	Optimality Conditions via Exact Penalization
	Optimality Conditions Under Strong Stability
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


