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Abstract We consider a problem of minimizing an extended real-valued function
defined in a Hausdorff topological space. We study the dual problem induced by a
general augmented Lagrangian function. Under a simple set of assumptions on this
general augmented Lagrangian function, we obtain strong duality and existence of
exact penalty parameter via an abstract convexity approach. We show that every clus-
ter point of a sub-optimal path related to the dual problem is a primal solution. Our
assumptions are more general than those recently considered in the related literature.
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1 Introduction

It is well known that augmented Lagrangian methods are useful for solving con-
strained (nonconvex) optimization problems. Rockafellar and Wets [1] considered a
primal problem of minimizing an extended real-valued function and proposed and an-
alyzed a dual approach via augmented Lagrangians. Strong duality and a criterion for
exact penalty representation are shown in Rockafellar and Wets [1, Theorems 11.59
and 11.61]. Recently, this duality approach has been studied in a more general set-
ting. In Huang and Yang [2] the convexity assumption on the augmenting function,
which is assumed by Rockafellar and Wets [1], is relaxed to a level boundedness
assumption. Nedic and Ozdaglar [3] considered a geometric dual approach and stud-
ied a zero-duality-gap property. Many efforts have been devoted to augmented La-
grangians with a valley-at-zero property on the augmenting function, see for example
Burachik and Rubinov [4], Rubinov et al. [5], Zhou and Yang [6] and references
therein. In Wang et al. [7, Sect. 3.1], an augmented Lagrangian type function is stud-
ied via an auxiliary coupling function, and a valley-at-zero type property is proposed
in the derivative of the coupling function with respect to the penalty parameter. Penot
and Rubinov [8] investigated the relationship between the Lagrangian multipliers and
the generalized subdifferential of the perturbation function in ordered spaces.

In the present paper, we consider a primal problem of minimizing an extended
real-valued function in a Hausdorff topological space. A main tool in our analysis is
abstract convexity, which recently became a natural language to investigate duality-
schemes via augmented Lagrangian type functions, see for example Burachik and
Rubinov [4], Rubinov et al. [5], Penot and Rubinov [8], Nedić et al. [9] and Rubi-
nov and Yang [10]. With abstract convexity tools, we propose and analyze a duality
scheme induced by a general augmented Lagrangian function. We consider a valley-
at-zero type property on the coupling (augmenting) function, which generalizes the
valley-at-zero type property proposed in the related literature (e.g., Burachik and Ru-
binov [4] and references therein, Wang et al. [7, Sect. 3.1]), see Sect. 5 in the present
paper. To obtain our results, we only need to assume continuity at a fixed point in-
stead of at the whole space, the latter being a standard assumption in the literature
(see, e.g., Burachik and Rubinov [4]). We show that our duality scheme has a zero-
duality-gap property. A sub-optimal path related to the dual problem is considered,
and we prove that all its cluster points are primal solutions.

A criterion for exact penalization was presented in Rockafellar and Wets [1, Theo-
rem 11.61]. This criterion has been generalized, for instance, by Huang and Yang [2]
and Burachik and Rubinov [4]. We also extend this criterion to our general setting.
Since no linearity on the augmented Lagrangian is assumed, this allows us to consider
our primal-dual scheme in Hausdorff topological spaces.

The main motivation for working in the framework of Hausdorff topological
spaces is to develop a duality theory that can encompass different settings found
in the literature, such as metric spaces (see e.g., [5, 11–13]) and Banach spaces with
the weak topology (see e.g., [4, 6, 14]), which in general are not metrizable. It is
also worthwhile to note that the general augmented Lagrangian, considered in the
present paper, for which the valley-at-zero type property is assumed directly at the
coupling function ρ (see Sect. 2), has not been considered in the literature even in
finite dimensional spaces.



J Optim Theory Appl (2010) 147: 125–140 127

The outline of this manuscript is as follows. Section 2 contains basic definitions
and assumptions. Also, our primal-dual scheme is stated. In Sect. 3, we show that our
duality scheme provides strong duality, and a criterion to exact penalty representation
is presented. In Sect. 4, we study the convergence properties of a sub-optimal path re-
lated to our dual problem. In the last section, we present some examples and compare
our setting with the ones considered in Burachik and Rubinov [4], and Wang et al.
[7, Sect. 3.1].

2 Statement of the Problem and Basic Assumptions

Let Y be an arbitrary (nonempty) set. Let X and Z be Hausdorff topological spaces.
We consider the optimization problem

minimizeϕ(x) subject to x in X, (1)

where the function ϕ : X → R+∞ := R ∪ {+∞} is a proper (i.e., domϕ �= ∅ and
ϕ > −∞) extended real-valued function. We fix a base point in Z and denote it by 0.
In order to introduce our duality scheme, we consider a duality parameterization
for ϕ, which is a function f : X × Z → R̄ := R ∪ {±∞} satisfying f (x,0) = ϕ(x)

for all x ∈ X. We also consider a perturbation function β : Z → R̄, related to this
duality parameterization, given by

β(z) := inf
x∈X

f (x, z).

Since ϕ is proper, β(0) < +∞. The definition of the dual function and dual problem
rely on the coupling function used in the conjugation. For instance, the classical con-
jugate duality (in the setting of Banach spaces) is defined using the coupling function
ρ0 : X × X∗ → R given by ρ0(x, x∗) := x∗(x). For a set V ⊂ Z we use the notation
V c := Z \ V .

In what follows, we consider a coupling function ρ : Z × Y × R+ → R that satis-
fies the following basic assumptions:

(C1) For any (y, r) ∈ Y × R+ the function ρ(·, y, r) is upper semicontinuous at 0,
and ρ(0, y, r) = 0.

(C2) For every neighborhood V ⊂ Z of 0, and for every (y, r) ∈ Y × R+, it holds
that
(i)

AV
y,r (r) := inf

z∈V c
{ρ(z, y, r) − ρ(z, y, r)} > 0, for all r > r;

(ii)

lim
r→∞AV

y,r (r) = ∞.

Remark 2.1 Condition C2 is a valley-at-zero type property, which generalizes similar
properties for augmenting functions recently introduced in the literature. Item (i) in
condition C2 ensures that the function ρ(z, y, ·) is strictly decreasing for any fixed
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(y, z) ∈ Y ×Z \ {0}. In particular, the function AV
y,r : (r,∞) → R+ is nondecreasing,

ensuring that limr→∞ AV
y,r (r) exists. See Sect. 5 and references therein for more

details on condition C2, and its comparison with related assumptions in the literature.

The augmented Lagrangian function � : X × Y × R+ → R̄, induced by the cou-
pling function ρ, is defined as

�(x, y, r) := inf
z∈Z

{f (x, z) − ρ(z, y, r)}. (2)

The dual function q : Y × R+ → R̄ is defined as q(y, r) := infx∈X �(x, y, r) and
therefore the dual problem is stated as

maximizeq(y, r) subject to (y, r) in Y × R+. (3)

It is clear that q(y, r) = infz∈Z{β(z) − ρ(z, y, r)}, where β is the perturbation func-
tion. We denote by Mp := infx∈X ϕ(x) the optimal value of the primal problem, and
by Md := sup(y,r)∈Y×R+ q(y, r) the optimal value of the dual problem.

Since f is a parameterization function, condition C1 easily implies the weak du-
ality property for our scheme, that is, Md ≤ Mp . In this section, we show that our
duality scheme enjoys a strong duality property, that is to say, the zero-duality-gap
property holds (Mp = Md ). Next we present some definitions related to abstract con-
vexity. For a detailed presentation of this subject, see for example, Rubinov [15].

Definition 2.1 Let g : Z → R̄. Given ε ≥ 0, we say that (y, r) is an ε-abstract sub-
gradient of g in z (with respect to ρ) iff

g(z) − ρ(z, y, r) ≥ g(z) − ρ(z, y, r) − ε for all z ∈ Z. (4)

The set of ε-abstract subgradients of g in z, denoted by ∂ρ,εg(z), is the ε-abstract
subdifferential of g in z with respect to the coupling function ρ. The 0-abstract sub-
differential in z̄ is denoted by ∂ρg(z), and is called abstract subdifferential.

Remark 2.2 It follows from C1 and the definition of ∂ρ,εg(0), that, if (y, r0) ∈
∂ρ,εg(0), then (y, r) ∈ ∂ρ,εg(0) for all r ≥ r0, using the fact that ρ(z, y, ·) is de-
creasing.

The abstract conjugate and biconjugate functions of g with respect to the coupling
function ρ are defined, respectively, by

gρ(y, r) = sup
z∈Z

{ρ(z, y, r) − g(z)}

and

gρρ(z) = sup
(y,r)∈Y×R+

{ρ(z, y, r) − gρ(y, r)}.
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Remark 2.3 It is easy to show that βρρ(0) = Md , where β is the perturbation func-
tion. In particular, weak and strong duality are rewritten, respectively, as βρρ(0) ≤
β(0) and βρρ(0) = β(0). In this context strong duality is related to abstract convex-
ity of the function β with respect to the family of functions Hρ := {ρ(·, y, r) + c :
(y, r, c) ∈ Y × R+ × R} at 0. For more details on the relationship between strong
duality and abstract convexity at a point, see for example, Rubinov and Yang [10,
Chap. 2 and Sect. 5.2].

Consider the set of functions Hρ as in Remark 2.3. The set Supp(β,Hρ) := {h ∈
Hρ : h ≤ β} is called the support set of β with respect to Hρ . In next proposition we
relate ∂ρβ(0), Supp(β,Hρ), and domβρ with the dual function q .

Proposition 2.1 Take (y, r) ∈ Y × R+. Then

(i) (y, r) ∈ ∂ρβ(0), if and only if q(y, r) = β(0);
(ii) (y, r) ∈ domβρ , if and only if there exists c ∈ R, such that ρ(·, y, r) + c ∈

Supp(β,Hρ), which in turn is equivalent to q(y, r) ≥ c.

Proof Since weak duality holds, (i) follows from the following equivalences:

(y, r) ∈ ∂ρβ(0) ⇔ β(z) − ρ(z, y, r) ≥ β(0) (∀z ∈ Z)

⇔ inf
z

{β(z) − ρ(z, y, r)} ≥ β(0)

⇔ q(y, r) ≥ β(0).

Since q(y, r) = −βρ(y, r), (ii) follows from the following equivalences:

ρ(·, y, r) + c ∈ Supp(β,Hρ) ⇔ β(z) ≥ ρ(z, y, r) + c (∀z ∈ Z)

⇔ β(z) − ρ(z, y, r) ≥ c (∀z ∈ Z)

⇔ inf
z

{β(z) − ρ(z, y, r)} ≥ c

⇔ q(y, r) ≥ c. �

3 Strong Duality and Exact Penalty Representation

Next theorem ensures that, under mild assumptions, for every ε > 0 the ε-abstract
subgradient of β at 0 is nonempty. As a consequence of this fact, we establish strong
duality. In Example 4.1 we consider a constrained optimization problem for which
the hypothesis of next theorem, regarding lower semicontinuity of β at 0, is satis-
fied. Proposition 4.1 presents some conditions, on the parameterization function, that
guarantee the lower semicontinuity of β at 0.

Theorem 3.1 Assume that C1 and C2 hold, that β be lower semicontinuous (lsc) at 0,
and that there exists (y, r) ∈ domβρ . Then ∂ρ,εβ(0) �= ∅ for all ε > 0. Moreover, for
any ε > 0, there exists r0, such that (y, r) ∈ ∂ρ,εβ(0) for all r ≥ r0.
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Proof First, by assumption β(0) < ∞. Second, we have that β(0) > −∞ by weak
duality and the assumption that domβρ is nonempty. Therefore, β(0) ∈ R. Observe
that we just need to prove the last statement of the theorem. To arrive at a contradic-
tion suppose that there exists ε̄ > 0, such that for any k > 0 there exists rk ≥ k, zk ∈ Z

satisfying:

β(zk) − ρ(zk, y, rk) < β(0) − ε. (5)

Suppose that {zk}k∈N converges to 0. Thus

β(0) − ε̄ > β(zk) − ρ(zk, y, rk) > β(zk) − ρ(zk, y, r)

for all k ≥ k0 > r . Hence, using C1 and the lower semicontinuity of β at 0, we have

β(0) − ε̄ ≥ lim inf
k→∞ {β(zk) − ρ(zk, y, r)} ≥ β(0) − ρ(0, y, r) = β(0),

which is a contradiction. Therefore {zk}k∈N does not converge to 0, which implies that
there exists some open neighborhood V ⊂ Z of 0, and a subsequence {zkj

}j∈N ⊂ V c.
Now, using (5) and the fact that there exists c such that ρ(·, y, r) + c ∈ Supp(β,Hρ)

(see Proposition 2.1(ii)), we have

β(0) − ε̄ > β(zkj
) − ρ(zkj

, y, rkj
)

= β(zkj
) − ρ(zkj

, y, r) + ρ(zkj
, y, r) − ρ(zkj

, y, rkj
)

≥ c + inf
z∈V c

{ρ(z, y, r) − ρ(z, y, rkj
)}.

Henceforth,

AV
y,r (rkj

) := inf
z∈V c

{ρ(z, y, r) − ρ(z, y, rkj
)} ≤ β(0) − ε̄ − c,

which contradicts C2, because limj→∞ rkj
= ∞. The result follows. �

Next corollary, which extends [4, Proposition 4.2], shows that in order to check if
the abstract subgradient of β at 0 is nonempty we just need to verify that there exists
an element (y, r) ∈ Y × R+ satisfying the inequality (4) in a neighborhood of 0. As
we will see in Theorem 3.3, under mild assumptions, this fact is equivalent to the
existence of an exact penalty representation.

Corollary 3.1 Suppose that the assumptions of Theorem 3.1 hold. Suppose also that
there exists an open neighborhood V ⊂ Z of 0 such that β(z) − ρ(z, y, r) ≥ β(0) for
all z ∈ V , with (y, r) ∈ domβρ . Then there exists r0, such that β(z) − ρ(z, y, r) ≥
β(0) for all z ∈ Z and r ≥ r0, i.e., (y, r) ∈ ∂ρβ(0) for all r ≥ r0.

Proof Take V as in the assumption. Consider z ∈ V c and ε > 0. By Theorem 3.1
there exists rε > 0, such that (y, rε) ∈ ∂ρ,εβ(0). Thus

β(z) ≥ β(0) + ρ(z, y, rε) − ε

= β(0) + ρ(z, y, r) + ρ(z, y, rε) − ρ(z, y, r) − ε

≥ β(0) + ρ(z, y, r) + inf
u∈V c

{ρ(u, y, rε) − ρ(u, y, r)} − ε. (6)
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By C2 there exists r1 > rε such that infu∈V c {ρ(u, y, rε) − ρ(u, y, r)} > ε for all
r ≥ r1. Using this estimate in (6) we obtain β(z) ≥ β(0) + ρ(z, y, r) for all z ∈ V c

and r ≥ r1. Since, by assumption, β(z) ≥ β(0) + ρ(z, y, r) for all z ∈ V , the re-
sult follows by taking r0 = max{r, r1} and observing that ρ(z, y, ·) is nonincreasing
in R+ for each (z, y) ∈ Z × Y . �

Theorem 3.2 Under the assumptions of Theorem 3.1, the zero-duality-gap property
holds for the primal-dual pair of problems (1)–(3).

Proof Take ε > 0. By Theorem 3.1, there exists (y, rε) ∈ ∂ρ,εβ(0). Hence we have

βρρ(0) = sup
(y,r)

{ρ(0, y, r) − βρ(y, r)} = sup
(y,r)

−βρ(y, r)

≥ −βρ(y, rε) = inf
z

{β(z) − ρ(z, y, rε)} ≥ β(0) − ε,

using Condition C1 in the second equality and the fact that (y, rε) ∈ ∂ρ,εβ(0) in the
last inequality. It follows that βρρ(0) ≥ β(0) − ε. Since ε is arbitrary, we have that
βρρ(0) ≥ β(0), and the reverse inequality is the weak duality property. We conclude
that βρρ(0) = β(0), i.e. the zero-duality-gap property holds. �

Remark 3.1 Corollary 3.1 and Theorem 3.2 generalize Burachik and Rubinov
[4, Propositions 4.2 and 4.1], respectively. Observe also that we just use the lower
semicontinuity of β at 0, while in Burachik and Rubinov [4] β is assumed to be lsc
in all the space.

Exact penalty representation for augmented Lagrangian function was defined and
studied in Rockafellar and Wets [1, Chap. 11]. A criterion for such a representation
was presented in Rockafellar and Wets [1, Theorem 11.61]. This criterion has been
studied for more general augmented Lagrangians, for instance, by Burachik and Ru-
binov [4], and Huang and Yang [2]. In next theorem we extend this criterion to our
more general setting.

Definition 3.1 Consider the primal and dual problems (1)–(3). An element y ∈ Y

is said to support an exact penalty representation for problem (1) iff there exists
r0 ∈ R+, such that for any r > r0,

(E1) β(0) = q(y, r);
(E2) argminxϕ(x) = argminxl(x, y, r).

Theorem 3.3 Assume that

(a) the parameterization function f satisfies: f (x, ·) is lsc at 0 for every x ∈ X;
(b) the perturbation function β is lsc at 0;
(c) conditions C1 and C2 are satisfied;
(d) there exists (y, r) ∈ domβρ .

Then the following assertions are equivalent:
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(i) There exist an open neighborhood V ⊂ Z of 0 and r0 > 0, such that

β(z) ≥ β(0) + ρ(z, y, r0) for all z ∈ V ;
(ii) y supports an exact penalty representation for problem (1).

Proof First, we prove that (ii) ⇒ (i). By E1 there exists r0 > 0 such that ∀r ≥ r0

β(0) = q(y, r) = inf
z∈Z

{β(z) − ρ(z, y, r)}.

In particular, for any open neighborhood V ⊂ Z of 0, we have that β(0) ≤ β(z) −
ρ(z, y, r) for all z ∈ V and r ≥ r0, which proves (i).

Let us now prove that (i) ⇒ (ii). By conditions (b), (i) and Corollary 3.1 we obtain
that there exists r1 such that (y, r) ∈ ∂ρβ(0), for all r ≥ r1. From Proposition 2.1 we
conclude that E1 holds for all r ≥ r1. Take r ≥ r1. We prove now that E2 holds.

(⊂) Assume that argmin xϕ(x) is nonempty. Take x∗ ∈ argmin xϕ(x). Then

l(x∗, y, r) = inf
z

{f (x∗, z) − ρ(z, y, r)} ≤ f (x∗,0) − ρ(0, y, r) = ϕ(x∗)

= β(0) = q(y, r) = inf
x

l(x, y, r),

where the second equality follows from C1 and the fact that f (x,0) = ϕ(x) for all
x ∈ X, and the fourth equality follows from E1 (already proved). From these estimates
we obtain that x∗ ∈ argmin xl(x, y, r). Since x∗ is arbitrary, we conclude that the
announced inclusion holds.

(⊃) Consider r > r1 and take xr ∈ argmin xl(x, y, r). We know that E1 holds, and
therefore

β(0) = q(y, r) = inf
x

l(x, y, r) = l(xr , y, r)

= inf
z

{f (xr , z) − ρ(z, y, r)}
= lim

k→∞{f (xr , zk) − ρ(zk, y, r)} (7)

for some minimizing sequence {zk}k∈N. We analyze two possible cases:

(1) the sequence {zk}k∈N converges to 0;
(2) the sequence {zk}k∈N does not converge to 0.

In the first case we get from (7) that

β(0) = lim
k→∞{f (xr , zk) − ρ(zk, y, r)}

= lim inf
k→∞ {f (xr , zk) − ρ(zk, y, r)}

≥ f (xr ,0) − ρ(0, y, r) = f (xr ,0) = ϕ(xr)

where the inequality follows from (a) and C1, included in (c), and the third equality
also follows from C1. We conclude that in this case xr ∈ argmin xϕ(x). Since xr is
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arbitrary, the proof will be complete if we prove that case (2) cannot occur. Suppose
by contradiction that case (2) holds. Thus there exist an open neighborhood V ⊂ Z

of 0 and a subsequence {zkj
}j∈N, such that zkj

∈ V c for all j ∈ N. Then,

f (xr , zkj
) − ρ(zkj

, y, r) = f (xr , zkj
) − ρ(zkj

, y, r1) + ρ(zkj
, y, r1) − ρ(zkj

, y, r)

≥ inf
z

{f (xr , z) − ρ(z, y, r1)}
+ inf

z∈V c
{ρ(z, y, r1) − ρ(z, y, r)}

≥ q(y, r1) + inf
z∈V c

{ρ(z, y, r1) − ρ(z, y, r)}
= β(0) + inf

z∈V c
{ρ(z, y, r1) − ρ(z, y, r)}.

Taking limits with j → ∞ in the inequalities above and using (7), we obtain that

β(0) ≥ β(0) + inf
z∈V c

{ρ(z, y, r1) − ρ(z, y, r)}. (8)

We have that β(0) ∈ R, because the primal function ϕ is proper and (d) holds. Since
r > r1, (8) contradicts condition C2(i), included in (c). We conclude that case (2)

cannot occur. For completing the proof of the theorem we just need to consider the
case argmin xϕ(x) = ∅. In this case the inclusion argmin xϕ(x) ⊂ argmin xl(x, ȳ, r)

trivially holds. We need to prove that argmin xl(x, ȳ, r) = ∅ for every r > r1. Sup-
posing by contradiction that this set is nonempty, we can repeat the second part of
the proof above and conclude that ∅ �= argmin xl(x, ȳ, r) ⊂ argmin xϕ(x), which is a
contradiction, because argmin xϕ(x) is empty. The proof is complete. �

Remark 3.2 We mention that the assumption (a) in Theorem 3.3 does not imply as-
sumption (b). Indeed, consider a primal problem minx∈R ϕ(x), where ϕ(x) = x2. Let
a continuous parameterization function f (x, z) = x2 + zx3. It follows that assump-
tion (a) in Theorem 3.3 holds, but assumption (b) does not hold, because β(0) = 0 and
β(z) = −∞ for all z �= 0. Proposition 4.1 presents some assumptions under which β

is lsc at 0.

4 Sub-optimal Path

To obtain an exact solution of an optimization problem may, in general, be very hard
or even impossible. However, when the optimal value of the problem is finite, ap-
proximate solutions always exist and they are, in principle, easier to find than exact
solutions. In Wang et al. [16], the authors defined a sub-optimal path related with
the dual problem and established some convergence results in finite dimensional
spaces. In this section we consider a optimal path related to our duality scheme and
analyze its convergence properties. This result is related to Burachik and Rubinov
[4, Theorem 6.1], where the authors consider an optimal path in the sense that all the
subproblems are supposed to be solved exactly. Also, as we will see in Sect. 5 that
our duality scheme includes the one considered in Burachik and Rubinov [4].
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Recall that the calculation of the dual function leads to the following problem:

inf{f (x, z) − ρ(z, y, r) : (x, z) ∈ X × Z}. (9)

Definition 4.1 Let I ⊂ R+ be unbounded above, and for each r ∈ I take εr ≥ 0. The
set {(xr , zr )}r∈I ⊂ X × Z is called a sub-optimal path of problem (9) iff

f (xr , zr ) − ρ(zr , y, r) ≤ q(y, r) + εr (10)

for all r ∈ I . When (xr , zr ) satisfies (10) with εr = 0 for all r ∈ I , the set {(xr , zr )}r∈I

is called an optimal path.

In next theorem we analyze limit points of sub-optimal paths, where {εr}r∈I is
assumed to satisfy limr→∞ εr = 0.

Theorem 4.1 Assume that

(a) there exists (y, r) ∈ domβρ , and conditions C1 and C2 hold;
(b) the parameterization function f is lsc at (x,0) for each x ∈ X, and there exist an

open neighborhood W ⊂ Z of 0, a real number α > β(0), and a compact subset
B ⊂ X such that

Lf,W (α) := {x ∈ X : f (x, z) ≤ α} ⊂ B, for all z ∈ W.

Then

(i) there exists a sub-optimal path {(xr , zr )}r≥r .
(ii) Take a set I ⊂ R+ unbounded above and consider a sub-optimal path

{(xr , zr )}r∈I satisfying limr∈I,r→∞ εr = 0. Then {zr}r∈I converges to 0, and the
set of cluster points of {xr}r∈I is a nonempty set contained in the primal optimal
solution set.

Proof Since ρ(z, y, ·) is a nonincreasing function, we have that q(y, ·) is nonde-
creasing. Thus, if r ≥ r then q(y, r) > −∞, by item (a) and Proposition 2.1. Thus
the existence of a sub-optimal path is trivially ensured, which proves (i).

For proving (ii), let {(xr , zr )}r∈I be a sub-optimal path. Assume that
limr∈I,r→∞ εr = 0. Suppose by contradiction that {zr}r∈I does not converge to 0
when r → ∞. Thus there exist an open neighborhood V ⊂ Z of 0 and J ⊂ I , un-
bounded above, such that {zr}r∈J ⊂ V c (for instance, we can take Jk := I ∩ [k,∞),
for k ∈ N, and hence there exists rk ∈ Jk such that zrk ∈ V c; then J = {rk}k is un-
bounded above). Therefore, we have

β(0) + εr ≥ q(y, r) + εr ≥ f (xr , zr ) − ρ(zr , y, r)

= f (xr , zr ) − ρ(zr , y, r) + ρ(zr , y, r) − ρ(zr , y, r)

≥ q(y, r) + inf
z∈V c

{ρ(z, y, r) − ρ(z, y, r)}.
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Since limr∈I,r→∞ εr = 0, we conclude that there exists r0 ∈ J such that for all r ≥
r0, r ∈ J , we have

β(0) + 1 − q(y, r) ≥ inf
z∈V c

{ρ(z, y, r) − ρ(z, y, r)},

which contradicts C2, because J is unbounded above and β(0), q(y, r) ∈ R. It fol-
lows that {zr}r∈I converges to 0. Consider an open neighborhood W ⊂ Z of 0 and
α > β(0) as in assumption (b). Since {zr}r∈I converges to 0, there exists r0 ∈ I such
that {zr}r≥r0,r∈I ⊂ W . Take t := α − β(0) > 0. The function ρ(·, y, r) is upper semi-
continuous at 0 by condition C1. Thus there exists some r1 ≥ max{r0, r} such that
ρ(zr , y, r) ≤ t

2 and εr ≤ t
2 for all r ≥ r1, r ∈ I . Therefore, for all r ≥ r1, r ∈ I ,

β(0) + t

2
≥ q(y, r) + εr ≥ f (xr , zr ) − ρ(zr , y, r)

≥ f (xr , zr ) − ρ(zr , y, r) ≥ f (xr , zr ) − t

2
.

Hence

f (xr , zr ) ≤ β(0) + t = α, for all r ≥ r1, r ∈ I,

that is to say {xr}r≥r1,r∈I ⊂ Lf,W (α). Assumption (b) implies that {xr}r≥r1,r∈I ⊂ B ,
where B is a compact set. In particular, since {zr }r∈I converges to 0, the set of cluster
points of the sub-optimal path {(xr , zr ) : r ∈ I } is nonempty. Moreover, every cluster
point has the form (x∗,0). Let us prove that x∗ is a primal optimal solution, where x∗
is an arbitrary cluster point of {xr}r∈I . Take a subnet {xrj }j∈J converging to x∗, and
j0 ∈ J satisfying rj ≥ r for all j ≥ j0, j ∈ J . Observe that {zrj }j∈J converges to 0.
Thus

β(0) + εrj ≥ q(y, rj ) + εrj

≥ f (xrj , zrj ) − ρ(zrj , y, rj )

≥ f (xrj , zrj ) − ρ(zrj , y, r)

for all j ≥ j0, j ∈ J . If we take the lim infj∈J in these inequalities, we obtain

β(0) ≥ f (x∗,0) − ρ(0, y, r) = f (x∗,0) = ϕ(x∗),

using conditions (b) and C1. Thus x∗ is a primal solution. The theorem is proved. �

Remark 4.1 In connection with the compactness assumption of Theorem 4.1, we
mention that when X is an infinite dimensional reflexive Banach space with the weak
topology (which is not metrizable), Banach-Alaoglu’s Theorem implies that a set is
weakly compact if and only if it is bounded and weakly closed. In particular, closed
balls (in the strong topology) are weakly compact in such spaces. Thus, a parame-
terization function f such that some sub-level set of f (·, z) is uniformly bounded
and weakly closed when z runs over a neighborhood of 0, provides an example for
which assumption (b) of Theorem 4.1 holds. This situation is indeed a prototypical
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and nontrivial case to which Theorem 4.1 applies. We remind also that sub-level sets
of convex and lsc functions are always weakly closed, so that in the convex case it
suffices to check the uniform boundedness of the sub-level sets of f (·, z).

Remark 4.2 Theorem 4.1 is related to Burachik and Rubinov [4, Theorem 6.1], where
the authors considered an optimal path (in a reflexive Banach space) instead of a sub-
optimal path, and the compactness assumption on the sub-level sets of f (·, z) is as-
sumed locally at all z, instead of just at z = 0, as assumed in the present paper. Also,
in Burachik and Rubinov [4, Theorem 6.1] it is assumed that the compactness prop-
erty holds for all sub-level sets of f (·, z), while Theorem 4.1 assumes compactness
of just one of them, corresponding to α > β(0). Since we are not assuming convex-
ity of f (·, z), compactness of just one sub-level set of f (·, z) is not equivalent to
compactness of all of them.

Proposition 4.1 Let f : X × Z → R be a function lsc at (x,0) for each x ∈ X. Take
β(z) := infx f (x, z). Suppose that β(0) ∈ R and that there exist an open neighbor-
hood W ⊂ Z of 0, α ≥ β(0) and a compact subset B ⊂ X, such that

Lf,W (α) := {x ∈ X : f (x, z) ≤ α} ⊂ B, for all z ∈ W.

Then the perturbation function β is lsc at 0.

Proof Let J be the set of all neighborhoods of 0. We know that J is a directed set
with the partial order V1 ≥ V2 iff V1 ⊂ V2. Suppose by contradiction that β is not lsc
at 0. Then there exists ε > 0 such that

sup
V ∈J

inf
v∈V

β(v) < β(0) − ε.

Thus, infv∈V β(v) < β(0) − ε for all V ∈ J . In particular for each V ∈ J there exists
zV ∈ V such that β(zV ) < β(0) − ε, which in turn implies that for each V ∈ J there
exists xV ∈ X satisfying

f (xV , zV ) < β(0) − ε. (11)

By construction the net {zV }V ∈J converges to 0. Taking W and α as in the as-
sumption, it follows that I := {V ∈ J : V ≥ W } is a terminal subset of J such that
{zV }V ∈I ⊂ W and {xV }V ∈I ⊂ Lf,W (α) ⊂ B , where B is the compact set given by
hypothesis. Hence there exists a subnet {ηs}s∈S of {xV }V ∈I convergent to some x.
This means that ηs = xg(s), where S is a directed set and g : S → I is a function such
that for every U ∈ I there exists an sU ∈ S satisfying g(s) ≥ U for all s ≥ sU , s ∈ S.
In particular, the set {ts}s∈S , where ts := zg(s) for all s ∈ S, is a subnet of {zV }V ∈I

converging to 0, and f (ηs, ts) < β(0) − ε for all s ∈ S, by (11). Therefore, using the
lower semicontinuity of f in (x,0) we obtain

β(0) ≤ f (x,0) ≤ lim inf
s∈S

f (ηs, ts) ≤ β(0) − ε,

entailing a contradiction. �
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Example 4.1 Consider the following constrained optimization problem

minimizeh(x) subject to x in C, (12)

where h : X → R is a lsc function such that Lα := {x ∈ X : h(x) ≤ α} is compact for
some α > infx∈C h(x), and C is a closed subset of X. Take a mapping D : Z ⇒ X

such that D(0) = C and suppose that D has a closed graph, that is, the set {(z, u) :
u ∈ D(z), z ∈ Z} is closed (in the case that C := {x : gj (x) ≤ 0, j = 1, . . . ,m}, where
gj : X → R is lsc for j = 1, . . . ,m, a canonical such mapping is D(z) = {x : gj (x) ≤
zj , j = 1, . . . ,m}). A canonical dualizing parameterization function for problem (12)
is f (x, z) = h(x) + δD(z)(x), where δV (x) = 0 if x ∈ V and δV (x) = ∞ otherwise.
It is not difficult to see that f satisfies the assumptions of Proposition 4.1. Thus the
perturbation function β(z) = infx∈D(z) h(x) is lsc at 0. See also Proposition 5.2 in
Burachik and Rubinov [4], where a similar result is stated.

Next, we show some examples of general augmented Lagrangians and compare
our setting with the ones considered in Burachik and Rubinov [4] and Wang et al.
[7, Sect. 3.1].

5 Augmented Lagrangians

Consider a coupling function p : Z × Y × R++ → R such that p(z, y, ·) is differ-
entiable. A valley-at-zero type property of p′

r (z, y, ·) was introduced in Wang et al.
[7, Sect. 3.1] where X,Y and Z are finite dimensional vector spaces. In addition, the
primal problem is an inequality constrained problem, which is a particular case of
the primal problem considered in the present paper. We state next the valley-at-zero
property given in Wang et al. [7, Sect. 3.1] in our general setting.

(A1) There exists α ∈ [0,1) such that, for every open neighborhood V ⊂ Z of 0, and
y ∈ Y ,

MV,ε := inf
u∈V c,τ≥ε

ταp′
r (u, y, τ ) > 0

for all ε > 0.

Remark 5.1 Wang et al. [7, Sect. 3.1] also assume that p′
r (0, y, r) = 0. We do not

assume this condition. Regarding our condition C1, it is a standard assumption, used
also in [4] and [7]. Therefore, is enough for us to study the relationship between our
condition C2 and related assumptions in the aforementioned papers.

Wang et al. [7] use as coupling function ρ := −p in the construction of the La-
grangian scheme.

Proposition 5.1 Take a function p satisfying Condition A1. Then the function ρ :=
−p satisfies Condition C2.
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Proof Fix an open neighborhood V ⊂ Z of 0, y ∈ Y , and r̂ > 0. For every z ∈ V c

and r > r̂ there exists θr ∈ (r̂, r) such that

p(z, y, r) − p(z, y, r̂) = p′
r (z, y, θr )(r − r̂) ≥ (r1−α − r̂1−α)θα

r p′
r (z, y, θr ), (13)

where the inequality follows from the following estimates:

r > θr ⇒ r = r1−αrα ≥ r1−αθα
r ,

where α ∈ [0,1) is given by A1; analogously we have r̂ = r̂1−αr̂α ≤ r̂1−αθα
r . Thus

we get

r − r̂ ≥ r1−αθα
r − r̂1−αθα

r = θα
r (r1−α − r̂1−α).

Take 0 < ε < r̂ . From (13) we obtain

p(z, y, r) − p(z, y, r̂) ≥ (r1−α − r̂1−α) inf
τ≥ε

ταp′
r (z, y, τ )

≥ (r1−α − r̂1−α) inf
u∈V c,τ≥ε

ταp′
r (u, y, τ )

= (r1−α − r̂1−α)MV,ε

for all z ∈ V c. Therefore

inf
z∈V c

{p(z, y, r) − p(z, y, r̂)} ≥ (r1−α − r̂1−α)MV,ε.

It is easy to see that C2 follows from the last estimate above and A1, observing that
ρ = −p and α ∈ [0,1). �

The above result shows that our setting is more general than the one considered
in Wang et al. [7]. In order to show that our setting is more general than the one
considered in Burachik and Rubinov [4], we recall next their main assumptions.

Consider a function s : R
2 → R such that s(0,0) = 0 and for every a ∈ R and

b1 ≥ b2, it satisfies

s(a, b1) − s(a, b2) ≥ ψ(b1 − b2), (14)

where ψ : R+ → R+ is a strictly increasing function such that ψ(0) = 0 and ψ is
coercive, that is, limt→∞ ψ(t) = ∞.

Let {νη}η∈U1 be a family of upper semicontinuous functions satisfying

νη(0) = 0 for all η ∈ U1, (15)

and {σμ}μ∈U2 be a family of augmenting functions which have a valley-at-zero prop-
erty, that is, for every μ ∈ U2, σμ : Z → R+ is proper, lsc and satisfies

σμ(0) = 0 and inf
z∈V c

σμ(z) > 0, (16)

for every open neighborhood V ⊂ Z of 0.
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The coupling function considered in Burachik and Rubinov [4] is ρ, given by

ρ(z, (η,μ), r) = s(νη(z),−rσμ(z))

where s, {νη}η∈U1 and {σμ}μ∈U2 satisfy (14)–(16).
Since we are not supposing any structure on the set Y , we can consider Y :=

U1 × U2. In next proposition we show that our primal-dual scheme includes the one
in Burachik and Rubinov [4].

Proposition 5.2 Let ρ(z, y, r) := s(νη(z),−rσμ(z)), where y = (η,μ) and the func-
tions s, {νη}η∈U1 and {σμ}μ∈U2 satisfy (14)–(16). Then condition C2 is satisfied.

Proof Fix an open neighborhood V ⊂ Z of 0, y ∈ Y and r > 0. For all r > r and
z ∈ V c we have

ρ(z, y, r) − ρ(z, y, r) = s(νη(z),−rσμ(z)) − s(νη(z),−rσμ(z))

≥ ψ((r − r)σμ(z))

≥ ψ((r − r)MV ),

where the first inequality follows from the property of the function s, and the second
inequality follows from the fact that ψ is increasing and MV := infu∈V c σμ(u) > 0.
It follows that

inf
z∈V c

ρ(z, y, r) − ρ(z, y, r) ≥ ψ((r − r)MV ).

Using this last estimate and the property of the function ψ , we conclude that Condi-
tion C2 is satisfied. �

Remark 5.2 The coercivity property limt→∞ ψ(t) = ∞ was not explicitly required
in Burachik and Rubinov [4], but it was used in the proof of Burachik and Rubinov
[4, Theorem 4.1], and this theorem is applied throughout the paper.

Example 5.1 Let Z be a reflexive Banach space. Take a coupling function g :
Y × Z → R such that g(y, ·) is weakly upper semicontinuous and g(y,0) = 0 for
each y ∈ Y . Let ρ(z, y, r) := g(y, z) − rσ (z), where σ is an augmenting function
with a valley-at-zero (i.e., σ satisfies (16)). In this case, we recover the augmented
Lagrangian studied in Zhou and Yang [14]:

�(x, y, r) = inf
z

{φ(x, z) − g(y, z) + rσ (z)}.

Example 5.2 Let Z be a Hilbert space. Consider a continuous and invertible map
A : Z → Z, and suppose that Y = Z. Let the coupling function ρ be defined by
ρ(z, y, r) = 〈y,Az〉 − rσ (Az), where σ : Z → R is an augmenting function, i.e. a
proper, lsc and convex function satisfying:

σ(0) = 0 and Argminσ = {0}.
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In this context our general augmented Lagrangian is the A-augmented Lagrangian
proposed and studied in Yang and Zhang [17]:

�A(x, y, r) = inf
z∈Z

{φ(x, z) − 〈y,Az〉 + rσ (Az)}.

The A-augmented Lagrangian was studied in finite dimensional space, and some ad-
ditional conditions are imposed on the mapping A, see Yang and Zhang [17]. In
particular, when A = I , that is, Az = z for all z ∈ Z, we recover the classical aug-
mented Lagrangian proposed in Rockafellar and Wets [1, Chap. 11], which is also an
example of the augmented Lagrangians proposed in Burachik and Rubinov [4].
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3. Nedić, A., Ozdaglar, A.: A geometric framework for nonconvex optimization duality using augmented

Lagrangian functions. J. Global Optim. 40, 545–573 (2008)
4. Burachik, R.S., Rubinov, A.M.: Abstract convexity and augmented Lagrangians. SIAM J. Optim. 18,

413–436 (2007)
5. Rubinov, A.M., Huang, X.X., Yang, X.Q.: The zero duality gap property and lower semicontinuity of

the perturbation function. Math. Oper. Res. 27, 775–791 (2002)
6. Zhou, Y.Y., Yang, X.Q.: Augmented Lagrangian function, non-quadratic growth condition and exact

penalization. Oper. Res. Lett. 34, 127–134 (2006)
7. Wang, C.Y., Yang, X.Q., Yang, X.M.: Unified nonlinear Lagrangian approach to duality and optimal

paths. J. Optim. Theory Appl. 135, 85–100 (2007)
8. Penot, J.P., Rubinov, A.M.: Multipliers and general Lagrangians. Optimization 54, 443–467 (2005)
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