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Abstract The relationship between monotonicity and accretivity on Riemannian
manifolds is studied in this paper and both concepts are proved to be equivalent in
Hadamard manifolds. As a consequence an iterative method is obtained for approx-
imating singularities of Lipschitz continuous, strongly monotone mappings. We also
establish the equivalence between the strong convexity of functions and the strong
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monotonicity of its subdifferentials on Riemannian manifolds. These results are then
applied to solve the minimization of convex functions on Riemannian manifolds.

Keywords Hadamard manifold · Monotone vector field · Accretive vector field ·
Singularity · Fixed point · Iterative algorithm · Convex function

1 Introduction

The concepts of monotonicity and accretivity constitute a valuable tool in studying
important operators, such as the gradient or subdifferential of a convex function,
which appears in many problems in optimization, equilibrium, variational inequal-
ity problems or differential equations; see, for instance, [1–4] and references therein.

Given a Banach space E with dual space E∗, recall from [1] that a set-valued
operator A : E → 2E∗

is said to be monotone provided that, for any x, y ∈ D(A),

〈x∗ − y∗, x − y〉 ≥ 0 for any x∗ ∈ A(x) and y∗ ∈ A(y),

where D(A) denotes the domain of A defined by D(A) := {x ∈ E : A(x) �= ∅}. On
the other hand, a set-valued operator A : E → 2E is said to be accretive iff, for each
x, y ∈ D(A) and r ≥ 0,

‖x − y‖ ≤ ‖(x + ru) − (y + rv)‖ for any u ∈ A(x) and v ∈ A(y).

One of the most relevant facts in the theory of monotone and accretive operators is
that in Hilbert spaces the two classes of operators coincide; see [1].

Some nonconvex constrained minimization problems can be solved by writing
them as convex minimization problems in Riemannian manifolds; see, for example,
[5–9]. This fact has led researchers from different areas, such as optimization, differ-
ential equations or fixed point theory, to extend the concepts and techniques which
fit in Euclidean spaces to Riemannian manifolds; see, for example, [10–12]. These
extensions have been developed in the last few years often in order to obtain effective
algorithms of optimization on Riemannian manifolds; see, for instance, [6, 7, 13–15].
In particular, in [7], an algorithm is provided for solving constrained problems in R

n

having a constant curvature Hadamard manifold as constraint set. One of the sim-
plest and most powerful among these methods is Newton’s. The convergence prop-
erties of Newton’s method on Riemannian manifolds have been extensively explored
in [16–21]. On the other hand, various derivative-like and subdifferential construc-
tions for nondifferentiable functions on spaces with nonlinear structure have been
developed and applied to the study of constrained optimization problems, nonclas-
sical problems of the calculus of variations and optimal control; see [6, 14, 15, 22],
where solutions to first-order partial differential equations on Riemannian manifolds
and other important classes of spaces without linear structure have been generalized.
Moreover, the extension of the maximal monotonicity to the setting of Riemannian
manifolds renders feasible the definition of a proximal-type method in order to ap-
proximate singularities of set-valued vector fields; see [6, 23, 24].
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The purpose of this paper is to study the relationship among the different concepts
of monotone vector fields, which previously have been introduced in the framework
of Riemannian manifolds, as well as the notion of accretive vector field which is
introduced here for the first time in this setting. We also provide an explicit iteration
scheme for approximating singularities of strongly monotone vector fields, which is
applied for solving minimization problems.

The organization of the paper is as follows. In Sect. 2 we introduce basic concepts,
results and notations on Riemannian manifolds. In Sects. 3 and 4, the equivalence of
the different definitions of monotonicity on Riemannian manifolds which appear in
the literature (e.g., [5, 12, 25]) is proved. As a consequence we show that in the
setting of Hadamard manifolds the classes of monotone and strong monotone vec-
tor fields coincide, respectively, with the classes of accretive and strongly accretive
vector fields introduced in this work. Section 5 is devoted to the study of the exis-
tence and approximation of singularities of strongly monotone vector fields. In the
last section, we introduce the concept of strongly convex functions on Riemannian
manifolds and we prove that the subdifferential of this type of functions is strongly
monotone. This result is a counterpart of the one proved by Rockafellar in Hilbert
spaces [26]. Finally the results of Sect. 5 are applied to obtain the convergence of
an iterative method to the minimum of a subprogram to get a minimizer of a convex
function [23].

2 Preliminaries

In this section we introduce some of the fundamental definitions, properties and no-
tations needed for a comprehensive reading of this paper. This can be found in any
text book on Riemannian geometry, for example [13, 27, 28].

Let M be a connected m-dimensional manifold and let x ∈ M . We always assume
that M can be endowed with a Riemannian metric to become a Riemannian mani-
fold. The tangent space of M at x is denoted by TxM . We denote by 〈·, ·〉x the scalar
product on TxM with the associated norm ‖ · ‖x , where the subscript x is sometimes
omitted. The tangent bundle of M is denoted by T M = ⋃

x∈M TxM , which is nat-
urally a manifold. Given a piecewise smooth curve γ : [a, b] → M joining x to y

(i.e. γ (a) = x and γ (b) = y), we can define the length of γ by l(γ ) = ∫ b

a
‖γ ′(t)‖dt .

Then the Riemannian distance d(x, y), which induces the original topology on M , is
defined by minimizing this length over the set of all such curves joining x to y.

Let ∇ be the Levi-Civita connection associated with the Riemannian metric. Let γ

be a smooth curve in M . A vector field X is said to be parallel along γ iff ∇γ ′X = 0.
If γ ′ itself is parallel along γ , we say that γ is a geodesic (this notion is different
from the corresponding one in the calculus of variations), and in this case ‖γ ′‖ is
constant. When ‖γ ′‖ = 1, γ is said to be normalized. A geodesic joining x to y in M

is said to be minimal if its length equals d(x, y).
A Riemannian manifold is complete if for any x ∈ M all geodesics emanating

from x are defined for all −∞ < t < ∞. By the Hopf-Rinow Theorem, we know
that if M is complete then any pair of points in M can be joined by a minimal geo-
desic. Moreover, (M,d) is a complete metric space and bounded closed subsets are
compact.
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We use Pγ,·,· to denote the parallel transport on the tangent bundle T M along γ

with respect to ∇ , which is defined by

Pγ,γ (b),γ (a)(v) = V (γ (b)) for any a, b ∈ R and v ∈ Tγ (a)M,

where V is the unique vector field satisfying ∇γ ′(t)V = 0 for all t and V (γ (a)) = v.
Then, for any a, b ∈ R, Pγ,γ (b),γ (a) is an isometry from Tγ (a)M to Tγ (b)M . We will
write Py,x instead of Pγ,y,x in the case where γ is a minimal geodesic joining x to y;
this will avoid any confusion.

Assuming that M be complete, the exponential map expx : TxM → M at x is
defined by expx v = γv(1, x) for each v ∈ TxM , where γ (·) = γv(·, x) is the geodesic
starting at x with velocity v. Then expx tv = γv(t, x) for each real number t . Note
that the mapping expx is differentiable on TxM for any x ∈ M .

We will denote by B(x, r) the open metric ball centered at x with radius r . Note
that (cf. [27, p. 72]) there exist r > 0 and δ > 0 such that, for each y ∈ B(x, r),
expy(B(0, δ)) ⊃ B(x, r) and expy(·) is a diffeomorphism on B(0, δ) ⊂ TyM . It is
customary to call B(x, r) a totally normal neighbourhood of x. The biggest radius r

is denoted by rx , that is,

rx := sup{r > 0 : B(x, r) is a totally normal neighbourhood of x}.
A complete simply-connected Riemannian manifold of nonpositive sectional cur-

vature is called a Hadamard manifold. The following proposition shows that rx =
+∞ for each x ∈ M if M is a Hadamard manifold.

Proposition 2.1 [28] Let M be a Hadamard manifold and x ∈ M . Then expx :
TxM → M is a diffeomorphism and, for any two points x, y ∈ M , there exists a
unique normalized geodesic joining x to y which is minimal.

Given a nonempty subset K ⊂ M , we denote the closure of K by clK . The fol-
lowing definition gathers the notions of the different kinds of convexity; items (a) and
(b) were defined in [29] whereas items (c) and (d) were, respectively, introduced in
[30] and [13].

Definition 2.2 A nonempty subset K ⊂ M is said to be

(a) weakly convex iff, for any x, y ∈ K , there exists a minimal geodesic joining x to
y contained in K ;

(b) strongly convex iff, for any x, y ∈ K , there is just one minimal geodesic of M

joining x to y and it is contained in K ;
(c) locally convex iff, for any x ∈ clK , there exists a positive number ε > 0 such that

K ∩ B(x, ε) is strongly convex;
(d) totally convex iff, for any x, y ∈ K , every geodesic of M joining x to y is con-

tained in K .

Clearly, for any nonempty set K in M , the following implications hold:

strong convexity (or total convexity) �⇒ weak convexity �⇒ local convexity.

(1)
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Let f : M→]−∞,+∞] be a proper extended real-valued function. The effec-
tive domain of the function f is denoted by D(f ) and defined by D(f ) := {x ∈
M| f (x) �= +∞}. Given x, y ∈ M , we will denote

�xy := {
γ : [0,1] → M is geodesic such that γ (0) = x and γ (1) = y

}
(2)

and

�
(f )
xy := {

γ ∈ �xy : γ ([0,1]) ⊆ D(f )
}
. (3)

Definition 2.3 The function f is said to be convex iff D(f ) is weakly convex and for
any x, y ∈ D(f ) and γ ∈ �

(f )
xy the composition function f ◦γ : [0,1] → R is convex;

that is,

(f ◦ γ )
(
ta + (1 − t)b

) ≤ t (f ◦ γ )(a) + (1 − t)(f ◦ γ )(b)

for any a, b ∈ [0,1] and 0 ≤ t ≤ 1.

The following proposition, taken from [28], describes the convexity property of
the distance function on Hadamard manifolds.

Proposition 2.4 Let M be a Hadamard manifold and d : M × M → R the distance
function. Then d is a convex function with respect to the product Riemannian metric;
that is, given any pair of geodesics γ1 : [0,1] → M and γ2 : [0,1] → M , the following
assertion:

d(γ1(t), γ2(t)) ≤ (1 − t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)) for each t ∈ [0,1]
holds. In particular, for each y ∈ M , the function d(·, y) : M → R is convex.

3 Monotone Vector Fields on Riemannian Manifolds

In the sequel, we always assume that M be a complete connected m-dimensional
Riemannian manifold. Let X (M) denote the set of all set-valued vector fields A :
M → 2T M such that A(x) ⊆ TxM , for each x ∈ M , and the domain D(A) is closed
and weakly convex. Given x, y ∈ M , we will denote �

(A)
xy := {γ ∈ �xy : γ ([0,1]) ⊆

D(A)}.
The following definition extends the concepts of monotonicity for operators on

Hilbert spaces to set-valued vector fields on Riemannian manifolds; see [24] for the
case of single-valued vector fields and [5, 23] for the case of set-valued vector fields.

Definition 3.1 Let A ∈ X (M) and α > 0. The vector field A is said to be

(a) monotone iff for any x, y ∈ D(A) and γ ∈ �
(A)
xy , we have

〈
u,γ ′(0)

〉 ≤ 〈
v, γ ′(1)

〉
for any u ∈ A(x) and v ∈ A(y); (4)
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(b) α-strongly monotone iff for any x, y ∈ D(A) and γ ∈ �
(A)
xy , we have

〈
u,γ ′(0)

〉 − 〈
v, γ ′(1)

〉 ≤ −α l2(γ ) for any u ∈ A(x) and v ∈ A(y); (5)

(c) maximal monotone iff it is monotone and the following implication holds for any
x ∈ M and u ∈ TxM :

〈
u,γ ′(0)

〉 ≤ 〈
v, γ ′(1)

〉
, ∀y ∈ D(A), γ ∈ �(A)

xy and v ∈ A(y) �⇒ u ∈ A(x).

(6)

Remark 3.2 Suppose that A be a monotone vector field and x ∈ int D(A). Then, by
definition, one has that, for each v ∈ TxM , there exists μ > 0 such that 〈u,v〉 ≤ μ for
all u ∈ A(x). This shows that A(x) is bounded for any x ∈ int D(A).

For our purpose we need to introduce the local version of the previous concepts.

Definition 3.3 Let A ∈ X (M), z0 ∈ D(A) and α > 0. The vector field A is said to be
locally monotone (locally α-strongly monotone) at z0 iff there exists r > 0 such that,
for any x, y ∈ B(z0, r) ∩ D(A), inequality (4) (inequality (5)) holds.

Remark 3.4 Let A ∈ X (M), z0 ∈ D(A)and α > 0. By the definition of rz0 , one has
that γ ′(0) = exp−1

x y and γ ′(1) = − exp−1
y x for any x, y ∈ B(z0, rz0) ∩ D(A) and

γ ∈ �
(A)
xy . Hence, in the definition of local monotonicity, inequalities (4) and (5) can

be replaced, respectively, by

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉
and

〈
u, exp−1

x y
〉 − 〈

v,− exp−1
y x

〉 ≤ −αd2(x, y).

Clearly, for A ∈ X (M), the global monotonicity implies the corresponding local
monotonicity at any point of D(A). The following proposition shows that also the
converse is true.

Theorem 3.5 Let A ∈ X (M) and α > 0. Then A is monotone (α-strongly monotone)
if and only if A is locally monotone (locally α-strongly monotone) at each point
of D(A).

Proof Only the assertion for the monotonicity case is proved here, since the proof for
the strongly monotonicity case is similar.

It is obvious that if A is monotone then it is locally monotone at each point
of D(A). Conversely, assume that A be locally monotone at each point of D(A). In
order to prove that A is monotone, let x, y ∈ D(A) and consider u ∈ A(x), v ∈ A(y)

and γ ∈ �
(A)
xy . We have to show that

〈
Px,yv − u,γ ′(0)

〉 ≥ 0. (7)
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Since A is locally monotone at each point of D(A), it follows that for each t ∈ [0,1],
there exists rt > 0 such that B(γ (t), rt ) is a totally normal neighbourhood of γ (t)

and for any z1, z2 ∈ B(γ (t), rt ) ∩ D(A), the following assertion:
〈
Pz1,z2w2 − w1, exp−1

z1
z2

〉 ≥ 0 for each w1 ∈ A(z1) and w2 ∈ A(z2) (8)

holds. Since γ ([0,1]) is a compact subset of D(A), there exist 0 ≤ t1 < t2 < · · · <

tn ≤ 1 such that the family {B(γ (ti), rti ) ∩ D(A)} is a cover of γ ([0,1]). That is,

γ
([0,1]) ⊂

n⋃

i=1

(
B

(
γ (ti), ri

) ∩ D(A)
)
.

Without loss of generality, we may assume that {B(γ (ti), rti ) ∩ D(A)} be minimal;
in other words, any proper sub-family of {B(γ (ti), rti ) ∩ D(A)} is not a cover of
γ ([0,1]). Thus we can choose 0 = s0 < s1 < s2 < · · · < sn−1 < sn = 1 such that

γ (si) ∈ B(γ (ti), rti ) ∩ B(γ (ti+1), rti+1) ∩ D(A) for each 1 ≤ i ≤ n − 1.

Take vi ∈ A(γ (si)) for each 1 ≤ i ≤ n − 1 and write v0 = u, vn = v. Note that
(si −si−1)γ

′(si−1) = exp−1
γ (si−1)

γ (si) for each 1 ≤ i ≤ n. This together with (8) imply
that

〈
Pγ (si−1),γ (si )vi − vi−1, (si − si−1)γ

′(si−1)
〉 ≥ 0 for each 1 ≤ i ≤ n. (9)

Consequently,

〈Px,yv − u,γ ′(0)〉 =
n∑

i=1

〈Pγ (si−1),γ (si )vi − vi−1, (si − si−1)γ
′(si−1)〉 ≥ 0

and inequality (7) is proved. �

The following lemma is an essential tool to study the relationship between
monotonicity and accretivity.

Lemma 3.6 Let z0 ∈ M and let x, y ∈ B(z0, rz0) with x �= y. Then
(

d

ds
d(expx su, expy sv)

)

s=0
= 1

d(x, y)

(−〈
u, exp−1

x y
〉 + 〈

v,− exp−1
y x

〉)
, (10)

for any u ∈ TxM and v ∈ TyM .

Proof Let ε > 0 be such that for each s ∈ (−ε, ε), expx su, expy sv ∈ B(z0, rz0). Let
f : (−ε, ε) × [0,1] → M be the function defined by

f (s, t) = expexpx su t (exp−1
expx su expy sv) for each (s, t) ∈ (−ε, ε) × [0,1].

Let γ ∈ �xy be a minimal geodesic (i.e. l(γ ) = d(x, y)). Then γ ⊂ B(z0, rz0) and γ

can be expressed as

γ (t) = expx t
(
exp−1

x y
)

for each t ∈ [0,1].
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It follows that

γ ′(0) = exp−1
x y and γ ′(1) = − exp−1

y x. (11)

Since the exponential map exp is differentiable and f (0, ·) = γ (·), f is a variation of
γ and V (·) = ∂f

∂s
(0, ·) is the variational field of f . In particular,

V (0) = ∂f

∂s
(0,0) = u and V (1) = ∂f

∂s
(0,1) = v. (12)

Note that for each s ∈ (−ε, ε), the parameterized curve fs : [0,1] → M given by
fs(·) = f (s, ·) is a geodesic and so ‖ ∂f

∂t
(s, ·)‖ is a constant. Therefore

∥
∥
∥
∥
∂f

∂t
(s, ·)

∥
∥
∥
∥ = ‖ exp−1

expx su expy sv‖ = d(expx su, expy sv)

for each s ∈ (−ε, ε). (13)

Define L : (−ε, ε) → R by

L(s) =
∫ 1

0

∥
∥
∥
∥
∂f

∂t
(s, t)

∥
∥
∥
∥dt for each s ∈ (−ε, ε). (14)

Then, by the first variational formula, see e.g. [28, p. 38, Proposition 2.5],

(
d

ds
L(s)

)

s=0
= 1

l(γ )

(

−
∫ 1

0

〈

V (t),
D

dt

dγ

dt

〉

dt −
〈

V (0),
dγ

dt
(0)

〉

+
〈

V (1),
dγ

dt
(1)

〉)

= 1

d(x, y)

(

−
〈
∂f

∂s
(0,0), γ ′(0)

〉

+
〈
∂f

∂s
(0,1), γ ′(1)

〉)

, (15)

where the second equality holds because γ is a geodesic and D
dt

dγ

dt
= 0. Then, bearing

in mind that
(

d

ds
d(expx su, expy sv)

)

s=0
=

(
d

ds
L(s)

)

s=0
,

equality (10) follows from (11), (12) and (15). �

The following characterization of the local monotonicity is a direct consequence
of Definition 3.3 and Lemma 3.6.

Theorem 3.7 Let A ∈ X (M), z0 ∈ M and α > 0. Then the following assertions
hold.

(i) A is locally monotone at z0 if and only if there exists r > 0 such that, for any
x, y ∈ B(z0, r) ∩ D(A),

(
d

ds
d
(
expx(su), expy(sv)

)
)

s=0
≥ 0 for any u ∈ A(x) and v ∈ A(y). (16)
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(ii) A is locally α-strongly monotone at z0 if and only if there exists r > 0 such that,
for any x, y ∈ B(z0, r) ∩ D(A),
(

d

ds
d
(
expx(su), expy(sv)

)
)

s=0
≥ αd(x, y) for any u ∈ A(x) and v ∈ A(y).

(17)

In the particular case when M is a Hadamard manifold, as noted earlier, rz0 = +∞
for each z0 ∈ M . Thus, by Lemma 3.6, we have the following corollary.

Corollary 3.8 Let A ∈ X (M) and α > 0. Suppose that M is a Hadamard manifold.
Then A is monotone (α-strongly monotone) if and only if, for any x, y ∈ D(A), in-
equality (16) (inequality (17)) holds.

Remark 3.9 It is worth mentioning that in [12] a vector field A ∈ X (M) is said to
be monotone iff inequality (16) holds for any x, y ∈ D(A). In the case when M is a
Hadamard manifold, we see from Corollary 3.8 that this alternative definition coin-
cides with the one considered in this paper.

4 Accretive Vector Fields on Riemannian Manifolds

We begin with the following definition which extends the concept of accretivity to
set-valued vector fields on Riemannian manifolds.

Definition 4.1 Let A ∈ X (M) and α > 0. The vector field A is said to be

(a) accretive iff for any x, y ∈ D(A) and each r ≥ 0 we have that

d(x, y) ≤ d
(
expx(ru), expy(rv)

)
for any u ∈ A(x) and v ∈ A(y); (18)

(b) α-strongly accretive iff for any x, y ∈ D(A) and each r ≥ 0 we have that

(1 + αr)d(x, y) ≤ d
(
expx(ru), expy(rv)

)
for any u ∈ A(x) and v ∈ A(y);

(19)
(c) m-accretive iff it is accretive and

⋃

x∈D(A)

(
⋃

u∈A(x)

expx u

)

= M. (20)

Definition 4.2 Let A ∈ X (M), z0 ∈ D(A) and α > 0. The vector field A is said to
be locally accretive (locally α-strongly accretive) at z0 iff there exists r1, r2 > 0 such
that, for any x, y ∈ B(z0, r1) ∩ D(A) and each 0 ≤ r ≤ r2, inequality (18) (inequality
(19)) holds.

The following theorem describes the relationships between the notions of accre-
tivity and the monotonicity.
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Theorem 4.3 Let A ∈ X (M), z0 ∈ D(A) and α > 0. Then the following assertions
hold.

(i) If A is locally accretive at z0 then A is locally monotone at z0.
(ii) If A is locally α-strongly accretive at z0 then A is locally α-strongly monotone

at z0. Conversely, if A is locally α-strongly monotone at z0 then A is locally
α′-strongly accretive at z0 for each 0 < α′ < α.

Proof (i) Assume that A be locally accretive at z0. Then there exist r1, r2 > 0 such
that for any x, y ∈ B(z0, r1) ∩ D(A) and each u ∈ A(x) and v ∈ A(y), we have that

d(x, y) ≤ d(expx(ru), expy(rv)) for each r2 ≥ r ≥ 0,

which means that
(

d

ds
d(expx su, expy sv)

)

s=0
≥ 0. (21)

This together with Theorem 3.7 imply that A is locally monotone.
(ii) Assume that A be locally α-strongly accretive at z0. Then the same argument

we adopted for the proof of (i) shows that A is locally α-strongly monotone at z0.
Conversely, assume that A be local α-strongly monotone at z0 and let 0 < α′ < α.

Then, there exists r1 > 0 such that for any x, y ∈ B(z0, r1) ∩ D(A), and any u ∈
A(x),v ∈ A(y), one has

−〈
u, exp−1

x y
〉 + 〈

v,− exp−1
y x

〉 ≥ αd2(x, y). (22)

Let x, y ∈ B(z0, r1) ∩ D(A). Without loss of generality, assume that x �= y and so
d(x, y) > 0. Let u ∈ A(x) and v ∈ A(y) be arbitrary. Then by Lemma 3.6 we get that

(
d

ds
d(expx su, expy sv)

)

s=0
= 1

d(x, y)

(−〈
u, exp−1

x y
〉 + 〈

v,− exp−1
y x

〉)

≥ αd(x, y).

This means that there exists r2 > 0 such that

d(expx ru, expy rv) − d(x, y) > rα′d(x, y) for each 0 < r ≤ r2;
hence

(1 + α′r)d(x, y) ≤ d(expx ru, expy rv) for each 0 ≤ r ≤ r2.

Therefore, A is local α′-strongly accretive at z0 and the proof is complete. �

Combining Theorems 3.5 and 4.3, we have the following corollary.

Corollary 4.4 Let A ∈ X (M) and α > 0. If A is accretive (α-strongly accretive),
then A is monotone (α-strongly monotone).

In the particular case when M is a Hadamard manifold, the notions of accretivity
and monotonicity can be proved to be equivalent, as we show in Theorem 4.6 below.
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Lemma 4.5 Let M be a Hadamard manifold. Let x, y ∈ M with x �= y and let u ∈
TxM,v ∈ TyM . Then the following inequality holds for each r > 0:

d
(
expx(ru), expy(rv)

) ≥ d(x, y) + r

(
d

ds
d
(
expx(su), expy(sv)

)
)

s=0
. (23)

Proof Define the function g : [0,+∞) → [0,+∞) by

g(s) := d(expx su, expy sv) for each s ∈ [0,+∞).

Then g(·) is convex by Proposition 2.4 (as M is a Hadamard manifold). Let r > 0.
Then

g(r) − g(0)

r
≥ inf

r≥0

g(r) − g(0)

r
=

(
d

ds
d
(
expx(su), expy(sv)

)
)

s=0
. (24)

This shows (23) and completes the proof. �

Theorem 4.6 Let M be a Hadamard manifold, A ∈ X (M) and α > 0. Then the
following assertions hold.

(i) A is accretive (α-strongly accretive) if and only if A is monotone (α-strongly
monotone).

(ii) If A is m-accretive, then A is maximal monotone. The converse is true provided
that D(A) = M .

Proof (i) Since the proof for the case of α-strong accretivity is similar, we only keep
the proof here for the case of accretivity. Furthermore, by Corollary 4.4, it is enough
to prove the sufficient part. To this end, we assume that A be monotone. Let x, y ∈
D(A) and u ∈ A(x), v ∈ A(y). Then, by Corollary 3.8,

(
d

ds
d
(
expx(su), expy(sv)

)
)

s=0
≥ 0. (25)

This together with Lemma 4.5 shows that A is accretive.
(ii) Assume that A be m-accretive. In particular, A is accretive and so A is

monotone by (i). In order to prove the maximality, we take x ∈ M and u ∈ TxM ,
and assume that

〈
u, exp−1

x y
〉 ≤ −〈

v, exp−1
y x

〉
for any y ∈ D(A) and v ∈ A(y). (26)

We have to verify that x ∈ D(A) and u ∈ A(x). Suppose on the contrary that it be not
the case. Then x �= y for each y ∈ D(A). Thus Lemma 3.6 is applicable to getting
that

(
d

ds
d(expx(su), expy(sv))

)

s=0
≥ 0 for any y ∈ D(A) and v ∈ A(y).

This together with Lemma 4.5 implies that

d(x, y) ≤ d(expx u, expy v) for any y ∈ D(A) and v ∈ A(y). (27)
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On the other hand, since A is m-accretive, by (20), there exist y ∈ D(A) and v ∈
A(y) such that expx u = expy v. This together with (27) yields that x = y, which is a
contradiction.

Conversely, assume that A be maximal monotone and D(A) = M . Then A is
monotone, and so accretive by (i). In order to proved that A is m-accretive we need
to show that (20) is true. To this end,let y ∈ M and define the set-valued vector field
B : M → 2T M by

B(x) := A(x) − exp−1
x y for each x ∈ M. (28)

It turns out that B is maximal 1-strongly monotone (cf. Example 6.1 of Sect. 6) and
D(B) = M . Therefore, by [23, Theorem 4.3], there exists a unique singularity x0
of B , that is, 0 ∈ A(x0)− exp−1

x0
y. This means that y ∈ ⋃

u∈A(x0)
expx0

u. Hence (20)
is seen to hold as y ∈ M is arbitrary. �

Remark 4.7 By definition, it is straightforward to see that the accretivity (strongly
accretivity) implies the corresponding local accretivity (strongly accretivity) at each
point of D(A). Combining Theorems 3.5 and 4.6, one can deduce that the converse
is true in the case when M is a Hadamard manifold. However, we do not know if this
is also true in general Riemannian manifolds.

5 Singularities of α-strongly Monotone Vector Fields

In the setting of Banach spaces, iterative methods to approximate singularities of
strongly monotone vector fields or, equivalently, fixed points of α-strongly pseudo-
contractive mappings have been studied by many authors; see, for instance, [31–33].
The aim of this section is to define and study the convergence of an iterative scheme
which is an extension to Riemannian manifolds of the one studied by Chidume
(cf. [31]) in Banach spaces.

For the main theorem of this section, we need to extend the notion of the L-
Lipschitz continuity to the setting of general Riemannian manifolds. Given L > 0,
a single-valued vector field A ∈ X (M) is said to be L-Lipschitz continuous iff

‖Pγ,x,yA(x) − A(y)‖ ≤ Ll(γ ) for any x, y ∈ D(A) and any γxy ∈ �
(A)
xy .

Theorem 5.1 Let A ∈ X (M) be a single-valued, L-Lipschitz continuous and α-
strongly monotone vector field with D(A) = M . Given x0 ∈ M , let {xn} be the se-
quence defined by the algorithm

xn+1 = expxn

(−rA(xn)
)
, (29)

where 0 < r < 2α

L2 . Then {xn} converges to the unique singularity of A.

Proof Note that the uniqueness of singularity follows from the strong monotonicity
of A. Below we prove the convergence of the sequence {xn} generated by (29). To do
this, let n ∈ N and let γn ∈ �xn,xn+1 be defined by

γn(t) := expxn
(t (−rA(xn))) for each t ∈ [0,1].
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Write Pxn,xn+1 = Pγn,xn,xn+1 for simplicity. Since A is α-strongly monotone, it fol-
lows that

〈
Pxn,xn+1A(xn+1) − A(xn), γ

′
n(0)

〉 ≥ αl2(γn). (30)

Since γ ′
n(0) = −rA(xn) and l(γn) = r‖A(xn)‖, the inequality (30) implies that

〈
Pxn,xn+1A(xn+1) − A(xn),A(xn)

〉 ≤ −αr‖A(xn)‖2. (31)

On the other hand, we have

‖A(xn+1)‖2 = ‖Pxn,xn+1A(xn+1) − A(xn) + A(xn)‖2

= ‖Pxn,xn+1A(xn+1) − A(xn)‖2 + ‖A(xn)‖2

+ 2
〈
Pxn,xn+1A(xn+1) − A(xn),A(xn)

〉
. (32)

Then, from inequality (31) we obtain that

‖A(xn+1)‖2 ≤ ‖Pxn,xn+1A(xn+1) − A(xn)‖2 + ‖A(xn)‖2 − 2αr‖A(xn)‖2. (33)

Since A is L-Lipschitz continuous, one has

‖Pxn,xn+1A(xn+1) − A(xn)‖ ≤ Ll(γn) = Lr‖A(xn)‖.
Combining this with the inequality (33), we get that

‖A(xn+1)‖ ≤ (1 + r(L2r − 2α))
1
2 ‖A(xn)‖ = q‖A(xn)‖,

where, thanks to the fact that 0 < r < 2α

L2 ,

q := (1 + r(L2r − 2α))
1
2 < 1.

Hence, limn A(xn) = 0. On the other hand, by (29), we have that

d(xn+1, xn) ≤ r‖A(xn)‖ ≤ rqn‖A(x0)‖.
This means that the sequence {xn} converges to some point x∗ satisfying A(x∗) = 0
because limn A(xn) = 0 and A is Lipschitz continuous. �

6 Application to Minimization

In the linear case, an important class of convex functions is the one of the strongly
convex functions introduced by Polyak, in [34]. Consider the special case of a Hilbert
space H and let α > 0. Recall that a function f : H→]−∞,+∞] is said to be α-
strongly convex if

f
(
(1 − t)x + ty

) ≤ (1 − t)f (x) + tf (y) − 1

2
αt(1 − t)‖x − y‖2
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for any x, y ∈ H and 0 < t < 1. Rockafellar, in [26], proved that a function
f : H→]−∞,+∞] is α-strongly convex if and only if its subdifferential ∂f is
α-strongly monotone. This section is devoted to an extension of the notion of α-
strongly convexity and the corresponding equivalence with the strongly monotonic-
ity in the setting of Riemannian manifolds. Throughout the whole section, let f :
M→]−∞,+∞] be a proper convex function. Recall from [13] that the subdifferen-
tial ∂f : M → 2TxM of f is defined by

∂f (x) := {u ∈ TxM| 〈u, γ̇ (0)〉 ≤ f (y) − f (x), ∀y ∈ D(f ) and γ ∈ �
(f )
xy },

for each x ∈ D(f ) (otherwise, ∂f (x) := ∅). Let x ∈ D(f ) and v ∈ TxM . Define the
directional derivative at x in the direction v by

f ′(x;v) := lim
t→0+

f (expx tv) − f (x)

t
.

Then we have the following assertions:

Proposition 6.1 Let f : M→]−∞,+∞[ be convex and x ∈ M . Then the following
assertions hold.

(i) ∂f (x) = {u ∈ TxM| 〈u,v〉 ≤ f ′(x;v) for all v ∈ TxM}.
(ii) f ′(x, v) = supu∈∂f (x)〈u,v〉, for each v ∈ TxM .

Proof (i) has been proved in [13, p. 75]. We next show that (ii) is true. Recall from
[35, Proposition 3.5(iii)] that the support function of the subdifferential is the lower
semicontinuous hull of the directional derivative f ′(x; ·) of f at x; that is,

sup
u∈∂f (x)

〈u, ·〉 = clf ′(x; ·).

Note that D(f ) = M . We have D(f ′(x; ·)) = TxM . Recall also from [13, p. 71] that
f ′(x; ·) is convex. Thus it follows that

cl f ′(x; ·) = f ′(x; ·).
Hence (ii) is seen to hold. �

Definition 6.2 Let α > 0. The function f is said to be α-strongly convex iff, for any
x, y ∈ D(f ) and any geodesic γ ∈ �

(f )
xy , the following inequality holds:

f
(
γ (t)

) ≤ (1 − t)f (x) + tf (y) − 1

2
αt(1 − t)l2(γ ) for each 0 < t < 1.

The following theorem is an extension of Rockafellar’s result to the setting of
Riemannian manifolds.

Theorem 6.3 Let f : M → R be a convex function and let α > 0. Then f is α-
strongly convex if and only if ∂f is α-strongly monotone.
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Proof Let x, y ∈ D(f ) and γ ∈ �
(f )
xy . Define the function Fγ : [0,1] → R by

Fγ (t) := f (γ (t)) for each t ∈ [0,1].
Then, for each t ∈ [0,1], we have that

F ′
γ (t,−1) = f ′(γ (t),−γ̇ (t)), F ′

γ (t,1) = f ′(γ (t), γ̇ (t))

and

∂Fγ (t) = [−F ′
γ (t,−1),F ′

γ (t,1)] = [−f ′(γ (t),−γ̇ (t)), f ′(γ (t), γ̇ (t))].

It follows that ∂Fγ is αl2(γ )-strongly monotone if and only if

(−f ′(γ (t2),−γ̇ (t2)
) − f ′(γ (t1), γ̇ (t1)

))
(t2 − t1) ≥ αl2(γ )(t2 − t1)

2 (34)

holds for any 0 ≤ t1 ≤ t2 ≤ 1. By Proposition 6.1 we have that

−f ′(γ (t2),−γ̇ (t2)
) − f ′(γ (t1), γ̇ (t1)

)

= inf
w2∈∂f (γ (t2))

〈
w2, γ

′(t2)
〉 − sup

w1∈∂f (γ (t1))

〈
w1, γ

′(t1)
〉
. (35)

Combining (34) and (35), one sees that ∂Fγ is αl2(γ )-strongly monotone if and only
if

(〈
w2, γ

′(t2)
〉 − 〈

w1, γ
′(t1)

〉)
(t2 − t1) ≥ αl2(γ )(t2 − t1)

2,

∀w2 ∈ ∂f
(
γ (t2)

)
, ∀w1 ∈ ∂f

(
γ (t1)

)
(36)

holds for any 0 ≤ t1 ≤ t2 ≤ 1. Hence, we get the following fact that for any x, y ∈
D(f ) and any geodesic γ ∈ �

(f )
xy , ∂Fγ is αl2(γ )-strongly monotone if and only if

∂f is α-strongly monotone. Furthermore, by definition, it’s easy to verify that f is
α-strongly convex if and only if, for any x, y ∈ D(f ) and any geodesic γ ∈ �

(f )
xy , the

function Fγ is αl2(γ )-strongly convex on [0,1]. By [26, Proposition 6] (applied to
the function Fγ ), one sees that Fγ is α l2(γ )-strongly convex if and only if ∂Fγ is
αl2(γ )-strongly monotone. Thus the conclusion of this theorem follows. �

Below, we show that, for each fixed y ∈ M , the vector field T : M → T M defined
by

T (x) := − exp−1
x y, for each x ∈ M,

is 1-strongly monotone. This fact has been previously proved in [36]. However, as an
example of the application of Theorem 6.3, we give a different proof.

Example 6.1 Let M be a Hadamard manifold and let y ∈ M be fixed. Consider the
function φ : M → R defined by

φ(x) = 1

2
d2(y, x), for each x ∈ M.
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Then by [29], φ is differential and its derivative is

φ′(x) = ∂φ(x) := − exp−1
x y for each x ∈ M.

Hence we have that T = φ′. We will prove that φ is 1-strongly convex on M and
therefore, by Theorem 6.3, φ′ is 1-strongly monotone on M . For this aim, take x, z ∈
M and γ ∈ �xz. Then γ (0) = x and γ (1) = z. Consider the geodesic triangle 	(xyz)

and the corresponding comparison one 	(x̄ȳz̄) in R
2 (cf. [37, p. 24]) such that

d(x, y) = ‖x̄ − ȳ‖, d(y, z) = ‖ȳ − z̄‖ and d(x, z) = ‖x̄ − z̄‖. (37)

Let t ∈ [0,1] and let γ (t) := (1 − t)x̄ + t z̄ denote the point in R
2 corresponding

to γ (t). Then, by [38, Lemma 4.3],

d2(y, γ (t)
) ≤ ‖ȳ − γ (t)‖2 = ∥

∥ȳ − [
(1 − t)x̄ + t z̄

]∥
∥2

. (38)

Since

∥
∥ȳ − [

(1 − t)x̄ + t z̄
]∥
∥2 = (1 − t)‖x̄ − ȳ‖2 + t‖z̄ − ȳ‖2 − t (1 − t)‖x̄ − z̄‖2.

It follows from (37) and (38) that

d2(y, γ (t)) ≤ (1 − t)d2(y, x) + td2(y, z) − t (1 − t)d2(x, z),

which implies that φ is strongly convex with modulus α = 1.

By Theorems 5.1 and 6.3, the following theorem is immediate.

Theorem 6.4 Let f : M → R be α-strongly convex. Suppose that f be continuously
differentiable and its gradient ∇f be L-Lipschitz continuous. Then, for any x0 ∈ M ,
the sequence {xn} defined by the algorithm

xn+1 = expxn
(−r∇f (xn)),

where 0 < r < 2α

L2 , converges to a minimizer of f in M .
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