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Abstract In this paper, we analyze the outer approximation property of the algorithm
for generalized semi-infinite programming from Stein and Still (SIAM J. Control Op-
tim. 42:769–788, 2003). A simple bound on the regularization error is found and used
to formulate a feasible numerical method for generalized semi-infinite programming
with convex lower-level problems. That is, all iterates of the numerical method are
feasible points of the original optimization problem. The new method has the same
computational cost as the original algorithm from Stein and Still (SIAM J. Control
Optim. 42:769–788, 2003). We also discuss the merits of this approach for the adap-
tive convexification algorithm, a feasible point method for standard semi-infinite pro-
gramming from Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007).

Keywords Semi-infinite programming · Interior-point method · Mathematical
program with equilibrium constraints · Bilevel programming · Design centering

1 Introduction

In this article, we study a numerical solution method for generalized semi-infinite
optimization problems of the type

(GSIP) min f (x),

s.t. x ∈ M,

O. Stein (�)
Institute of Operations Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: stein@kit.edu

A. Winterfeld
Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern, Germany
e-mail: winterfeld@itwm.fraunhofer.de

mailto:stein@kit.edu
mailto:winterfeld@itwm.fraunhofer.de


420 J Optim Theory Appl (2010) 146: 419–443

with

M = {x ∈ R
n| gi(x, y) ≤ 0, for all y ∈ Y(x), i ∈ I },

Y (x) = {y ∈ R
m| vl(x, y) ≤ 0, l ∈ L}

and finite index sets I = {1, . . . , r}, L = {1, . . . , s}. All defining functions f , gi ,
i ∈ I , vl , l ∈ L, are assumed to be real-valued and at least twice continuously differ-
entiable on their respective domains.

For an introduction to theory, applications, and numerical methods for GSIP we
refer to the monography [3] and to the survey article [4]. A semi-infinite problem is
called standard semi-infinite if the mapping Y(·) is constant.

Several real-life applications of generalized semi-infinite optimization problems
are described in [3], for example robust optimization, design centering, minimax
problems, Chebyshev approximation, and disjunctive programming. These problem
classes are of major interest, among others, in chemical engineering, in economical
and physical models, as well as in the geometrical layout of systems.

In particular, the theoretical and numerical treatment of design centering (DC)
problems is essential for cutting stock and nesting problems, where given shapes are
cut from a valuable material resource so that the amount of wasted material is mini-
mized [5]. The nesting problem of cutting a gem of maximal volume with prescribed
shape features from a raw gem is treated in the recent thesis [6] as a generalized semi-
infinite program. Among other applications of design centering are the so-called ma-
neuverability problem of a robot from [7] and the determination of ‘innermost’ points
of a container set of uncertain quality parameters to find a point where a company can
safely produce a good [8].

More formally, a design centering problem deals with the maximization of some
measure f of a parameterized body Y , the design, which must be contained in a
second body C, the container, where the dimension of the embedding space will be
denoted by m. Both the container C and the design Y can depend on a parameter
vector x ∈ R

n,

Y(x) = {y ∈ R
m| vl(x, y) ≤ 0, l ∈ L},

C(x) = {y ∈ R
m| gi(x, y) ≤ 0, i ∈ I }.

Then, problem DC can be formulated as

(DC) minx∈Rn f (x),

s.t. Y(x) ⊆ C(x),

which, after writing down the inclusion constraint explicitly, is just the above problem
GSIP.

The following assumptions are made throughout this paper.

Assumption 1 For all x ∈ R
n, Y(x) is a nonempty compact set.
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Assumption 2 For all x ∈ R
n, Y(x) is convex and the functions gi(x, ·) are concave

in y for i ∈ I .

Assumption 3 For all x ∈ R
n, Y(x) has a Slater point, i.e. a point y(x) such that

vl(x, y(x)) < 0, l ∈ L. (1)

The optimal solution of a generalized semi-infinite problem is closely related to its
lower-level problems, which have the form

(Qi(x)) maxy gi(x, y),

s.t. y ∈ Y(x), i ∈ I.

Let ϕi(x) denote the optimal value of Qi(x), i ∈ I . Then it is not hard to see that
x ∈ R

n is feasible for GSIP if and only if ϕi(x) ≤ 0 is satisfied for all i ∈ I . The main
computational problem in semi-infinite programming stems from the fact that the
evaluation of ϕi(x) involves the global maximization of Qi(x). Under Assumptions 2
and 3, however, the lower level problem Qi(x) is a regular convex problem for all
x ∈ R

n and i ∈ I , making its global solution numerically tractable. Moreover, under
Assumptions 1, 2 and 3 the optimal value functions ϕi(x), i ∈ I , are well-defined and
continuous on R

n [9], so that the feasible set M is closed.
In recent years some efforts were made to obtain feasible numerical methods for

standard semi-infinite programming (SIP) without convex lower level problems. To
our knowledge, [10] describes the first algorithm with feasible iterates for SIP. The
main idea leading to the feasibility of the iterates is bounding the optimal values
ϕi(x), i ∈ I , of the lower level problems from above. The techniques used in [10] in
order to compute such upper bounds are interval arithmetic and inclusion functions.

A reference dealing with the feasibility issue in more explicit form is [2]. To for-
mulate a method for standard SIP with convex index set but non-concave upper level
constraints, the lower level problems are convexified by the αBB method, a tech-
nique of global optimization. The fact that the convexified lower level problems are
relaxations of the original lower level problems again yields upper bounds on ϕi(x),
and an adaptive convexification method with feasible iterates is formulated. We will
return to this method in Sect. 6. We point out that, since lower level convexity is not
assumed in these approaches, both algorithms have to employ heavy-weight methods
of global optimization which leads to high computational costs.

On the other hand, for generalized semi-infinite programming with convex lower
level problems a different numerical method was introduced in [1]. Although it
promises to be much more efficient than approaches without convexity assumptions,
the regularization approach of this algorithm leads to an outer approximation method
and, thus, all its iterates have to be expected to be infeasible for the original feasible
set. The aim of the present article is to show how a simple modification of the latter
algorithm transforms it into a feasible point method, that is, all its iterates are feasible
for the original feasible set.

This paper is organized as follows. In Sect. 2 we briefly recall the main ideas
of the algorithm from [1]. In Sect. 3 we derive an upper bound of the lower level
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optimal values and thus a quantification of the regularization error. It turns out that the
regularization error is easy to compute and a-priori known. In Sect. 4 this observation
is used to construct a parametric inner approximation of M . In Sect. 5, the inner
approximation is used to formulate a GSIP method with the inner approximation
property. By construction, the method has the same computational cost as the original
algorithm from [1]. The problem of finding a feasible initial point for the method is
also discussed in this section and leads to a two-phase approach. Section 6 shows how
the adaptive convexification algorithm from [2] for standard semi-infinite programs
benefits from the obtained results, before Sect. 7 ends the article with conclusions
and some open questions.

2 Outer Approximation Method for Generalized Semi-infinite Programming

This section recalls the basic ideas behind the numerical method for GSIP from [1].
The approach bases on the observation from [11] that GSIP and the Stackelberg game
[12]

(SG) min
x,y1,...,yr

f (x),

s.t. gi(x, yi) ≤ 0,

yi solves Qi(x), i ∈ I,

are equivalent problems whenever the index set Y(x) is nonempty for all x ∈ R
n. The

latter is the case under Assumption 3.
Given a Stackelberg game reformulation of GSIP, the special structure of the lower

level problems can be exploited in order to replace GSIP by an equivalent one-level
finite optimization problem. In fact, recall that under Assumptions 2 and 3 all lower
level problems Qi(x) are regular convex problems. Thus the Karush-Kuhn-Tucker
conditions of Qi(x) are equivalent to global optimality for all x and for all i ∈ I .
Replacing ‘yi solves Qi(x)’ in the formulation of SG by the KKT system of Qi(x)

yields the following equivalent reformulation of SG as a special mathematical pro-
gram with equilibrium constraints. Here

Li (x, y, γ ) = gi(x, y) − γ T v(x, y)

denotes the Lagrange function of Qi(x) with multiplier vector γ ∈ R
s , and Dy stands

for the partial gradient with respect to the variable vector y:

(MPEC) min
x,y1,γ 1,...,yr ,γ r

f (x),

s.t. gi(x, yi) ≤ 0, i ∈ I, (2)

Dy Li (x, yi, γ i) = 0, i ∈ I, (3)

− diag(γ i)v(x, yi) = 0, i ∈ I, (4)

γ i ≥ 0, i ∈ I, (5)

− v(x, yi) ≥ 0, i ∈ I. (6)
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Mathematical programs with equilibrium constraints frequently arise in the con-
text of game theory and have been successively applied to various practical problems.
See [13] for a large collection of engineering and economic applications of MPEC
and [14] for an annotated bibliography.

Unfortunately, MPEC is an ill-posed problem even under very strong assumptions.
In fact, it is known (cf. [15, 16]) that MFCQ is violated at any feasible point of MPEC
due to the presence of degenerate complementary slackness constraints (4). Since
MFCQ is known to be a necessary condition for stability in presence of round-off
errors (cf. [17]), the direct application of standard non-linear solvers to MPEC may
fail.

We note, however, that an SQP method has been found to be competitive com-
pared to other approaches on a large set of MPECs in [18]. Since direct application
of SQP to our instances of MPEC failed, we follow the proposal made in [3] and use
an explicit smoothing method. For more information on smoothing methods, see, e.g.,
[19–21]. We note that there are many alternative ways to remove the ill-posedness of
MPEC. Some examples are relaxation schemes [22], penalty methods [23], exten-
sions of the standard SQP methods [15, 24], and a recent lifting approach [25]. An
extensive overview of methods for MPEC and further references can be found in [26].

The main idea behind the explicit regularization method is to replace the malignant
constraint (4) by

−diag(γ i)v(x, yi) = τ 2e, i ∈ I, (7)

where τ > 0 is a perturbation parameter and e = (1, . . . ,1)T ∈ R
s . So-called

smoothed NCP-functions can now be used to replace (5)–(7). Here a function ψ :
R

2 → R satisfying

ψ(a, b) = 0 ⇔ a, b ≥ 0, ab = 0 (8)

is called NCP function, the terminology owing to the fact that for each i ∈ I the
constraints (4)–(6) constitute a non-linear complementary slackness problem. There
is a large number of NCP functions available (see, e.g., [27]). Since the zero set of any
NCP function has to exhibit a kink at the origin, those functions are either nonsmooth
or degenerate. Nonsmooth ones may be smoothed in such a way that their perturbed
zero set models, for example, (7).

In the sequel, we will use the Chen-Harker-Kanzow-Smale (CHKS) function
which is also called the smoothed natural residual function and has the form

ψτ (a, b) = 1

2

(
a + b −

√
(a − b)2 + 4τ 2

)
. (9)

For τ �= 0 one can show (cf., e.g., [3]) that ψτ (a, b) = 0 holds if and only if ab =
τ 2, a > 0, b > 0 is satisfied. Let

�τ : R
s × R

s → R
s , (v,w) 	→ (ψτ (v1,w1), . . . ,ψτ (vs,ws))

T (10)

denote the vectorization of ψτ . Then, the constraints (5)–(7) hold if and only if

�τ (γ
i,−v(x, yi)) = 0, (11)
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so that MPEC is embedded in the parametric family of problems Pτ for τ = 0, where

(Pτ ) min
x,y1,γ 1,...,yr ,γ r

f (x),

s.t. gi(x, yi) ≤ 0, i ∈ I, (12)

Dy Li (x, yi, γ i) = 0, i ∈ I, (13)

�τ (γ
i,−v(x, yi)) = 0, i ∈ I. (14)

In [3] it is shown that the degeneracy of the complementarity constraints has now been
removed, and Pτ can be solved by a ‘black-box’ non-linear optimization software
package. The optimal solution of P0 = MPEC may be iteratively found by solving a
series of problems Pτk , where τk is a sequence converging to zero.

Algorithm 1 (Numerical GSIP Solver)
Step 1. Choose a sequence {τk} ⊂ R with limk→∞ τk = 0 and a starting point

x0 ∈ R
n. Compute a starting point (x0,0, y1,0,0, γ 1,0,0, . . . , yr,0,0, γ r,0,0) of

Pτ0 and set k = 0.
Step 2. Find an optimal solution (xk,∗, y1,k,∗, γ 1,k,∗, . . . , yr,k,∗, γ r,k,∗) of Pτk using

(xk,0, y1,k,0, γ 1,k,0, . . . , yr,k,0, γ r,k,0) as the starting point.
Step 3. If some termination criterion is satisfied, terminate with the optimal

solution of GSIP xk,∗.
Step 4. Set (xk+1,0, y1,k+1,0, . . . , γ r,k+1,0) = (xk,∗, y1,k,∗, . . . , γ r,k,∗),

replace k by k + 1 and go to Step 2.

Since Algorithm 1 is based on the reduction of GSIP to finite non-linear problems
Pτ , obviously the solutions computed by the method can be only as ‘optimal’ as the
results delivered by the black-box non-linear solver.

Fortunately, it can be shown that the optimality conditions achieved by the finite
non-linear solver can be translated into corresponding optimality conditions of GSIP.
The convergence of global solutions of Pτk to a global solution of GSIP [3, Theo-
rem 5.2.2] is rarely observed in practice due to the non-convexity of Pτk . It is more
realistic to expect the non-linear solver to return merely Karush-Kuhn-Tucker or Fritz
John points of Pτk . The convergence of Fritz John points of Pτk to a Fritz John point
of GSIP is shown in [3, Theorem 5.1] under mild additional assumptions. The con-
vergence of Karush-Kuhn-Tucker points is discussed in [28].

For the initialization of Algorithm 1 a certain regularization of the lower level
problems is suggested in [3], which we will use for a different purpose in the sequel.
In fact, for i ∈ I consider the log-barrier problems

(
Qi

τ (x)
)

max
y

bi
τ (x, y),
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where

bi
τ (x, y) = gi(x, y) + τ 2

s∑

l=1

log(−vl(x, y))

denotes the log-barrier function of Qi(x). A necessary and sufficient optimality con-
dition for Qi

τ (x) is

0 = Dyb
i
τ (x, y) = Dygi(x, y) +

s∑

l=1

τ 2

vl(x, y)
Dyvl(x, y). (15)

By comparing this equation with the equality constraints of Pτ , it is not hard to obtain
the following result.

Lemma 2.1 [3, Lemma 5.1.6(i)] Let i ∈ I and τ > 0. The point yi solves Qi
τ (x) if

and only if (yi, γ i), with

γ i
l = − τ 2

vl(x, yi)
, l ∈ L, (16)

satisfies (13), (14).

From [3, Theorem 5.2.8(iii)] it is known that for τ > 0 the values of ϕi(x), i ∈ I,

are under-estimated by the optimal values ϕi
τ (x) of the lower level log-barrier prob-

lems Qi
τ (x). This leads to a remarkable property of Algorithm 1, the outer approxi-

mation property.

Proposition 2.1 [3, Proposition 5.2.9] Let Mτ = projx(Pτ ). Then:

(i) For all 0 < τ1 < τ2, Mτ1 ⊂ Mτ2 .
(ii) For all τ > 0, M ⊂ Mτ .

A negative effect of the outer approximation property is that solutions of Pτ can
be infeasible for GSIP for all τ > 0, although the infeasibility vanishes in the limit.
Clearly, this is a serious drawback when feasibility is a crucial issue.

3 Upper Bound on the Regularization Error

In this section, we quantify the regularization error by giving upper bounds of the
lower level optimal value functions ϕi(x). The regularization error results from the
fact that Pτ is not equivalent to GSIP for τ > 0. In fact, even given a feasible solution
(x, y1, γ 1, . . . , yr , γ r ) of Pτ , τ > 0, x is not necessarily feasible for GSIP.

Recall that the quantities ϕi(x) = maxy∈Y(x) gi(x, y) play an important role for
the feasibility of x for GSIP via the relationship

M = {x ∈ R
n| ϕi(x) ≤ 0, i ∈ I }. (17)

Based on this observation, we define approximate feasibility for GSIP as following.
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Definition 3.1 We call x ε-feasible for GSIP if

max
i∈I

ϕi(x) = max
i∈I

max
y∈Y(x)

gi(x, y) ≤ ε. (18)

Consider a feasible point (x, y1, γ 1, . . . , yr , γ r) of Pτ . In view of (18), we
are interested in finding upper bounds of ϕi(x), i ∈ I , that is, over-estimates of
maxy∈Y(x) gi(x, y). To this end, we rewrite the well-known weak duality theorem
in terms of the lower level problems Qi(x). For a different solution approach to gen-
eralized semi-infinite programs via lower level duality see [29].

Theorem 3.1 [30, Theorem 6.2.1] For all x and for all i ∈ I , the inequality

max
y∈Y(x)

gi(x, y) ≤ min
γ≥0

θi(x, γ ) (19)

holds, where

θi(x, γ ) = max
y

{gi(x, y) − γ T v(x, y)} = max
y

Li (x, y, γ ). (20)

The following sub-optimality estimate has been used in [30, pp. 510–513] in the
formulation of the primal-dual path-following algorithm for linear programs. The
validity of the result in the non-linear convex case has been shown, for example, in
[31, 32]. We give a short proof in our notation for the sake of completeness.

Lemma 3.1 For τ > 0 and i ∈ I , let yi
τ (x) be a solution of Qi

τ (x). Then,

ϕi(x) = max
y∈Y(x)

gi(x, y) ≤ gi(x, yi
τ (x)) + sτ 2, (21)

where s = |L| denotes the number of lower level constraints vl, l ∈ L.

Proof Let yi be a solution of Qi
τ (x). By Lemma 2.1, (yi, γ i) with

γ i
l = − τ 2

vl(x, yi)
, l ∈ L, (22)

solves (13), (14). Since γ i ≥ 0, Li (x, ·, γ i) is concave and we can conclude from
(13) that yi is a global maximizer of Li (x, ·, γ i). By (20), this means

θi(x, γ i) = Li (x, yi, γ i). (23)

Inserting (22) into the definition of Li yields

Li (x, yi, γ i) = gi(x, yi) + sτ 2. (24)

From Theorem 3.1, (23) and (24), it follows that
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ϕi(x) ≤ θi(x, γ i) = Li (x, yi, γ i) = g(x, yi) + sτ 2

for all i ∈ I . �

Applying Lemma 3.1 to each lower level problem and using (12) yields the fol-
lowing result.

Theorem 3.2 Regularization Error. Let (x, y1, γ 1, . . . , yr , γ r) be feasible for Pτ .
Then x is sτ 2-feasible for GSIP.

Note that the approximation error in Theorem 3.2 only depends on τ and the
number s of lower level constraints, but not on any entry of the variable vector
(x, y1, γ 1, . . . , yr , γ r ). Thus the approximation error is a-priori known.

4 Inner Approximation of the Feasible Set

In this section, we use the upper bound derived in Lemma 3.1 to formulate a para-
metric inner approximation of M . This will significantly improve the original method
described in Sect. 2 which, as discussed, only exhibits an outer approximation prop-
erty.

Lemma 3.1 gives over-estimates of the optimal objective values ϕi(x), i ∈ I ,
which are easy to compute for each lower level problem Qi(x). Also, the duality
gap is a-priori known and neither depends on x nor on the auxiliary variables yi ,
γ i , i ∈ I . It is therefore natural to replace the original upper level constraints by the
over-estimates in the definition of M . Recall that, for each τ > 0, Lemma 3.1 yields

ϕi(x) ≤ gi(x, yi
τ (x)) + sτ 2, i ∈ I, (25)

whenever yi
τ (x) solves Qi

τ (x). This leads to the following definition of a parametric
approximation of M .

Definition 4.1 We call

M feas
τ =

{

x ∈ R
n

∣∣
∣∣∣
gi(x, yi

τ (x)) + sτ 2 ≤ 0,

yi
τ (x) solves Qi

τ (x), i ∈ I

}

(26)

the regularized inner approximation of M .

Following the lines of the proof of [3, Lemma 5.2.7], it is easily seen that M feas
τ is

a closed set under our regularity assumptions. The following result shows that M feas
τ

is in fact an inner approximation of M for all τ > 0.

Theorem 4.1 Inner Approximation Property. For all τ > 0,

M feas
τ ⊂ M. (27)
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Proof If M feas
τ = ∅, the statement is trivial. Let x ∈ M feas

τ . Then, there exist solutions
yi
τ (x) of Qi

τ (x), i ∈ I . Now, by Lemma 3.1,

ϕi(x) = max
y∈Y(x)

gi(x, y) ≤ gi(x, yi
τ (x)) + sτ 2 ≤ 0

for all i ∈ I . Hence x ∈ M . �

The statement of Theorem 4.1 also includes the case M feas
τ = ∅, leading to the nat-

ural question under which conditions M feas
τ is nonempty. The subsequent Lemma 4.1

provides a sufficient condition as well as a threshold value of τ . For its proof recall
the definition of C(x) from Sect. 1 and let

C(x)τ = {y ∈ R
m| gi(x, y) + sτ 2 ≤ 0, i ∈ I }

be the subset defined by the strengthened constraints. It is clear that for 0 ≤ τ1 ≤ τ2
the inclusion

C(x)τ2 ⊆ C(x)τ1 (28)

holds. Now M feas
τ = ∅ may hold, for instance, if C(x)τ is void due to a large value

of τ .

Lemma 4.1 Let x be a Slater point of GSIP, that is, let

ϕi(x) < 0, i ∈ I. (29)

Then, there exists a τ0 > 0, depending on x, such that x ∈ M feas
τ for all τ ≤ τ0.

Proof Let x be a Slater point of M . Let

σ = max
i∈I

ϕi(x) < 0

denote the minimal feasibility of x. Define

τ0 =
√

−σ

s
> 0. (30)

Then, from

ϕi(x) + sτ 2
0 ≤ σ + sτ 2

0 = 0, i ∈ I,

it follows that Y(x) ⊆ C(x)τ0 . Now let τ ≤ τ0. By (28) we have

Y(x) ⊆ C(x)τ0 ⊆ C(x)τ . (31)

For any solution yi
τ (x) of Qi

τ (x), we know that

yi
τ (x) ∈ Y(x) ⊆ C(x)τ , (32)

and thus x ∈ M feas
τ . �
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A combination of the inner approximation property from Theorem 4.1 with the
outer approximation property from [3, Proposition 5.2.9] has the following conse-
quence.

Corollary 4.1 Let τ > 0. Then

M feas
τ ⊂ M ⊂ Mτ . (33)

Taking the limits in (33) yields a ‘sandwiching’ result.

Corollary 4.2 Let {τk}k be a zero sequence, τk > 0, k ∈ N. Let SlGSIP denote the set
of Slater points of GSIP. Then,

SlGSIP ⊆
∞⋃

k=1

M feas
τk

⊆ M ⊆
∞⋂

k=1

Mτk
. (34)

Proof The first inclusion follows from Lemma 4.1, the second from Theorem 4.1,
and the third is given in [3, Corollary 5.2.10]. �

Example 4.1 We consider the following disjunctive programming problem taken
from [3]:

(DP) min
x∈R2

f (x),

s.t. y ≤ 0, y ∈ Y(x),

Y (x) =
{

y ∈ R

∣∣∣
∣∣

y − (x1 − 1)2 − x2
2 + 1 ≤ 0,

y − x2
1 − (x2 − 1)2 + 1 ≤ 0

}

.

The feasible set MDP is easily seen to be the union of two unit circles centered at
(1,0) and (0,1), respectively, as depicted in Fig. 1. Figures 2 and 3 illustrate the
sandwiching property stated in Corollary 4.2.

Note that the ‘most interior’ points in MDP are x1 = (0,1)T , x2 = (1,0)T with
maxy∈Y(x1) g(x1, y) = maxy∈Y(x2) g(x2, y) = −1. The threshold value of τ0 com-

puted according to (30) is 1/
√

2 < 1. However, as can be seen from Fig. 2, also M feas
1

is non-void, and M feas
1 contains both x1 and x2. This shows that the threshold value

for τ from Lemma 4.1 is not necessarily best possible.

We remark that the sandwiching result in (33) may significantly improve termina-
tion criteria, depending on the problem structure. In fact, for given τ > 0 the objective
value of any point in M feas

τ is an upper bound for the optimal value of GSIP, while
the globally minimal value of f on Mτ is a corresponding lower bound. Hence, in
cases where the latter globally minimal value is numerically available, the gap be-
tween the bounds may enter a termination criterion. Alternatively, in such cases the
optimal value computed by the inner approximation may a-posteriori be endowed
with a certificate for global optimality (up to some tolerance).
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Fig. 1 The original feasible set
MDP

Fig. 2 Sandwiching of MDP

between Mfeas
1 and M1

5 A Two-Phase Algorithm for Generalized Semi-Infinite Programming

In this section, we algorithmically exploit the inner approximation of M introduced in
Sect. 4. The result is a two-phase feasible numerical GSIP solver. First, we replace the
feasible set of Pτ according to (26) and obtain a parameterized family of regularized
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Fig. 3 Mfeas
0.3 ⊂ MDP ⊂ M0.3

feasible problems Pfeas
τ .

(Pfeas
τ ) min

x,y1,γ 1,...,yr ,γ r
f (x),

s.t. gi(x, yi) + sτ 2 ≤ 0,

Dy Li (x, yi, γ i) = 0,

�τ (γ
i,−v(x, yi)) = 0, i ∈ I.

Analogously to Algorithm 1, we want to obtain an optimal solution of GSIP by solv-
ing Pfeas

τk
for a zero sequence {τk}k∈N. Unfortunately, for large values of τ , Pfeas

τ might
not possess a feasible point. We thus formulate a parameterized family of Phase-1
problems P1feas

τ to determine a suitable value of τ together with a Slater point of
GSIP, whenever such a point exists. For this purpose, we introduce an auxiliary vari-
able z and consider the problem

(P1feas
τ ) min

x,y1,γ 1,...,yr ,γ r ,z
z,

s.t. z ≥ −ε, (35)

gi(x, yi) − z + 2sτ 2 ≤ 0, (36)

Dy Li (x, yi, γ i) = 0, (37)

�τ (γ
i,−v(x, yi)) = 0, i ∈ I, (38)

where the parameter ε > 0 is used to avoid unboundedness of P1feas
τ . It is clear that

P1feas
τ can be initialized in a feasible manner for any τ0 > 0 and for any x0 ∈ R

n by
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solving the log-barrier problems Qi
τ0

(x0) and by setting

z = max{−ε, 2sτ 2
0 + max

i∈I
gi(x, yi

τ0
(x0))}.

Let z(τ ) denote the optimal value of P1feas
τ . Moreover, let MP 1feas

τ
denote the feasible

set of P1feas
τ . We now establish a connection between the set of Slater points of GSIP

and MP 1feas
τ

.

Lemma 5.1 The following statements are equivalent:

(i) x is a Slater point of GSIP.
(ii) There exist τ0 > 0, z ≤ 0 and y1, . . . , yr , γ 1, . . . , γ r such that

(x, y1, . . . , yr , γ 1, . . . , γ r , z) ∈ MP 1feas
τ

for all τ ≤ τ0.

Proof Let x be a Slater point of GSIP. Define

τ0 =
√

−maxi∈I ϕi(x)

2s
> 0. (39)

Let τ ≤ τ0. Then the solutions yi of Qi
τ (x) and the corresponding multipliers γ i

satisfy (37) and (38). Furthermore, set z = 0. Then,

gi(x, yi) − z + 2sτ 2 ≤ gi(x, yi) − z + 2sτ 2
0 (40)

= gi(x, yi) + 2sτ 2
0 (41)

= gi(x, yi) − max
i∈I

ϕi(x) (42)

≤ 0, i ∈ I. (43)

Thus also (35) and (36) are satisfied by (x, y1, γ 1, . . . , yr , γ r , z).
For the opposite direction, let (x, y1, . . . , yr , γ 1, . . . , γ r , z) with z ≤ 0 be in

MP 1feas
τ

for all τ ≤ τ0. By Lemma 3.1, ϕi(x) ≤ gi(x, yi) + sτ 2
0 , i ∈ I . By (36), this

implies

ϕi(x) ≤ z − sτ 2
0 ≤ −sτ 2

0 < 0,

for all i ∈ I , which shows that x is a Slater point of GSIP. �

Corollary 5.1 Let {τk}k∈N be a sequence with τk > 0, k ∈ N and limk→∞ τk = 0. If
SlGSIP �= ∅, then there exists a k0 ∈ N such that the following assertions hold for all
k ≥ k0:

(i) z(τk) ≤ 0.
(ii) The x-component of any optimal solution of P feas

τk
is a Slater point of GSIP.
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Proof Let x ∈ SlGSIP. By Lemma 5.1 there is a τ0 > 0, z ≤ 0 and yi, γ i, i ∈ I such
that for all τ ≤ τ0 (x, y1, γ 1, . . . , yr , γ r , z) ∈ MP 1feas

τ
. Since limk→∞ τk = 0, we can

choose an index k0 such that 0 < τk ≤ τ0 for all k ≥ k0. Now the first assertion
follows from z(τk) ≤ z ≤ 0. The second assertion also immediately follows from
Lemma 5.1. �

The transition from Corollary 5.1 to a Phase-1 method is straightforward and sum-
marized in Algorithm 2.

Algorithm 2 (Phase-1 Method)
Step 1. Choose a sequence {τk}k∈N, τk > 0, limk→∞ τk = 0, a starting

point x0 ∈ R
n and a tolerance ε > 0. Compute a starting point

(x0,0, y1,0,0, γ 1,0,0, . . . , yr,0,0, γ r,0,0, z0,0) of P1feas
τ0

and set k = 0.
Step 2. Find an optimal solution (xk,∗, y1,k,∗, γ 1,k,∗, . . . , yr,k,∗, γ r,k,∗, zk,∗) of

P1feas
τk

using (xk,0, y1,k,0, γ 1,k,0, . . . , yr,k,0, γ r,k,0, zk,0) as the starting
point.

Step 3. If zk,0 > 0 and τk > ε, then set (xk+1,0, y1,k+1,0, . . . , γ r,k+1,0, zk+1,0) =
(xk,∗, y1,k,∗, . . . , γ l,k,∗, zk,∗), replace k by k + 1 and go to step 2.

Step 4. If zk,0 ≤ 0, then terminate with k0 = k and (xk,0, y1,k,0,

γ 1,k,0, . . . , yr,k,0, γ r,k,0, zk0,0). Else terminate with failure, GSIP does not
possess Slater points, or ε is too large.

Let (xk0,0, y1,k0,0, γ 1,k0,0, . . . , yr,k0,0, γ r,k0,0, zk0,0) be the solution of P1feas
τk0

re-
turned by Algorithm 2. Then

gi(x, yi,k0,0) + sτ 2
k0

< gi(x, yi,k0,0) + 2sτ 2
k0

(44)

≤ zk0,0 (45)

≤ 0, i ∈ I. (46)

Thus, (xk0,0, y1,k0,0, γ 1,k0,0, . . . , yr,k0,0, γ r,k0,0) ∈ M feas
τk0

is a feasible starting point

for Pfeas
τk0

. The Phase-2 method (Algorithm 3) continues by solving Pfeas
τk

for k ≥ k0.
We emphasize that, by Theorem 4.1, all iterates in Phase 2 are feasible with respect to
the original problem GSIP. This essentially simplifies the termination criteria, since,
in contrast to Algorithm 1, driving τ to zero is not necessary for feasibility any-
more.

On the other hand, a straightforward analysis shows that the convergence re-
sults for Fritz John and Karush-Kuhn-Tucker points known for the outer approxi-
mation method described in Sect. 2 also hold for the present inner approximation
approach.
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Algorithm 3 (Feasible Method for GSIP)
Step 1. Choose a sequence {τk}k∈N, τk > 0, limk→∞ τk = 0. Find an initial index

k0 and (xk0,0, y1,k0,0, γ 1,k0,0, . . . , yr,k0,0, γ r,k0,0) ∈ M feas
τk0

by running Algo-
rithm 2. Set k = k0.

Step 2. Find an optimal solution (xk,∗, y1,k,∗, γ 1,k,∗, . . . , yr,k,∗, γ r,k,∗) of Pfeas
τk

us-
ing (xk,0, y1,k,0, γ 1,k,0, . . . , yr,k,0, γ r,k,0) as the starting point.

Step 3. If some termination criterion is satisfied, terminate with the optimal solu-
tion of GSIP xk,0.

Step 4. Set (xk+1,0, y1,k+1,0, . . . , γ r,k+1,0) = (xk,∗, y1,k,∗, . . . , γ r,k,∗), replace k

by k + 1 and go to step 2.

Example 5.1 We illustrate the two-phase approach with a design centering problem
discussed in [3, Sect. 6.1]. The container C is defined by

C =

⎧
⎪⎨

⎪⎩
y ∈ R

2

∣
∣∣∣∣∣∣

⎛

⎜
⎝

−y1 − y2
2

0.25y1 + y2 − 0.75

−y2

⎞

⎟
⎠ ≤

⎛

⎝
0
0
0

⎞

⎠

⎫
⎪⎬

⎪⎭
, (47)

and shown in Fig. 4. As a design, an ellipse

Y(A,v) =
{
y ∈ R

2
∣∣ 1

2
(y − v)T (AAT )−1(y − v) − 1 ≤ 0

}

is taken, where the parameters are the center v and the matrix A ∈ R
2×2. The area

of Y(A,v) is easily seen to be π(det(A)), and the area is chosen as the objective
function to be maximized. Summarizing, the corresponding GSIP has the form

(EL) minA,v −π(det(A)),

s.t. Y (A,v) ⊆ C.

The optimal value of EL is known to be approximately −3.7234. We solved EL by
the two-phase approach (Algorithms 2 and 3) as well as by the classical approach
(Algorithm 1) in order to compare the intermediate solutions. The sequence {τk}k
used to generate the results is τk = 1.001 − k

50 , and we aborted the method after 50
iterations, that is, at τ = 0.001.

Fig. 4 The two-dimensional test container
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Fig. 5 Optimal value of Pτ for
different values of τ

Fig. 6 Optimal value of Pfeas
τ

for different values of τ

Figure 5 shows the optimal value of Pτ as a function of τ . As expected [3, Propo-
sition 5.2.6], it converges quadratically to the optimal objective value of EL. For the
two-phase approach, the optimal value z(τ ) of P1feas

τ and, in Phase 2, the optimal
value of Pfeas

τ are shown in Fig. 6.
Algorithm 2 terminates after 21 iterations (with τ21 ≈ 0.58) with a Slater point of

EL. From this point, Algorithm 3 continues the iterations, and the optimal value of
Pfeas

τ is strictly decreasing as τ is decreasing. This is a strong indicator that, despite
the problematic discussed below in Sect. 7, for τ1 ≤ τ2, M feas

τ2
⊆ M feas

τ1
holds for this

problem.
Let us now compare some solutions of the regularized problems Pτ with those of

Pfeas
τ . Figures 7 and 8 show the solutions of P0.5 and Pfeas

0.5 respectively. The optimal
solutions of P0.2 and Pfeas

0.2 are shown in Figs. 9 and 10. We note that, besides the
advantage of being feasible for EL, the solution generated by Algorithm 3 in both
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Fig. 7 Solution of P0.5, objective value: −6.02

Fig. 8 Solution of Pfeas
0.5 , objective value: −3.26

Fig. 9 Solution of P0.2, objective value: −4.1

cases yields a better estimate of the optimal value of EL than the iterate generated by
Algorithm 1.

6 Consequence for Standard Semi-Infinite Programming

Whereas in generalized semi-infinite optimization a number of real-life applications
with convex lower level problems exist, the convexity assumption on the lower level
problem fails for most applications of standard semi-infinite optimization. The recent
article [2], however, presents the so-called Adaptive Convexification Algorithm which
solves a sequence of auxiliary semi-infinite problems with convex lower levels, using
the previously discussed techniques from [1, 3], to approximate a stationary point
of the original problem. The convexifications are produced using the ideas of the
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Fig. 10 Solution of Pfeas
0.2 , objective value: −3.71

αBB method for global optimization [33–36]. As αBB allows to construct concave
overestimators of g, all iterates of this method are feasible for the original standard
semi-infinite problem.

To briefly review the main idea, for simplicity consider the standard semi-infinite
problem

(SIP) minx∈X f (x),

s.t. g(x, y) ≤ 0, y ∈ Y = [0,1]

with objective function f ∈ C2(Rn,R) and constraint function g ∈ C2(Rn × R,R).
For a convex lower level problem

(Q(x)) maxy g(x, y),

s.t. y ∈ [0,1],

that is, if g(x, ·) is concave on Y for all x, the ideas of Sect. 2 lead to the equivalent
reformulation of SIP as the MPEC

(P) min
x,y,γ�,γu

f (x),

s.t. g(x, y) ≤ 0,

∇yg(x, y) + γ� − γu = 0,

ψ(γ�, y) = 0,

ψ(γu,1 − y) = 0,

where the straightforward description Y = {y ∈ R|y ≥ 0, y ≤ 1} is used, and ψ

denotes some NCP function.
If the lower level problem is not convex, one may convexify it with ideas from

the αBB method. In fact, [2] suggests to replace g(x, y) by a function g̃(x, y) =
g(x, y) + α

2 y(1 − y) where α ≥ 0 is chosen so large that g̃(x, ·) is a concave overes-
timator of g(x, ·) on the interval Y = [0,1]. The latter choice of α can be performed
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via techniques of interval analysis. The problem P is then replaced by

(P̃) min
x,y,γ�,γu

f (x),

s.t. g̃(x, y) ≤ 0,

∇y g̃(x, y) + γ� − γu = 0,

ψ(γ�, y) = 0,

ψ(γu,1 − y) = 0.

The crucial idea of this approach is the fact that for any feasible point (x, y, γ�, γu)

of (P̃) the variable x is feasible for SIP.
The lower level overestimators are subsequently tightened by an adaptive refine-

ment of Y which guarantees convergence of stationary points of the approximating
problems to a stationary point of SIP under mild assumptions (cf. [2] for details). As
the above arguments also hold for all iterates of the method, these iterates are feasible
for SIP.

Although the numerical results for the adaptive convexification algorithm in [2] are
very promising, one may well argue that a feasible point of (P̃) has to be determined
to a certain accuracy to guarantee feasibility of its x-part for SIP. Taking the presence
of NCP functions into account, this may be a non-trivial task. In fact, the solution
approach presented in [2] approximates (P̃) with the techniques of Sect. 2, that is, the
NCP functions are regularized, and a sequence of smooth problems

(P̃τ ) min
x,y,γ�,γu

f (x),

s.t. g̃(x, y) ≤ 0,

∇y g̃(x, y) + γ� − γu = 0,

ψτ (γ�, y) = 0,

ψτ (γu,1 − y) = 0,

with τ ↘ 0 is solved. However, for the lower level optimal values this approach has
a serious drawback. Let ϕ̃(x) denote the optimal value of the lower level problem

(Q̃(x)) maxy g̃(x, y),

s.t. y ∈ [0,1],

and ϕ̃τ (x) the optimal value of the corresponding log-barrier problem for τ > 0 as
discussed in Sect. 2. Then the optimal value ϕ(x) of the original lower level problem
Q(x) is first overestimated by ϕ̃(x), but the approximation of ϕ̃(x) by ϕ̃τ (x) is an
underestimation, that is, we have ϕ(x) ≤ ϕ̃(x) ≥ ϕ̃τ (x). This is due to the outer ap-
proximation property of the regularization approach from Sect. 2. Consequently, to
guarantee feasible iterates for SIP, the approximating problems P̃τ have to be solved
for τ very close to zero.
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If, on the other hand, the inner approximation ideas of the present paper are em-
ployed, instead of P̃τ one may solve the slightly modified problems

(P̃feas
τ ) min

x,y,γ�,γu

f (x),

s.t. g̃(x, y) + 2τ 2 ≤ 0,

∇yg̃(x, y) + γ� − γu = 0,

ψτ (γ�, y) = 0,

ψτ (γu,1 − y) = 0,

with τ ↘ 0. The corresponding approximation ϕ̃feas
τ (x) of the lower level optimal

value then satisfies ϕ(x) ≤ ϕτ (x) ≤ ϕ̃feas
τ (x), so that feasibility of x for a feasible

point (x, y, γ�, γu) of P̃feas
τ is guaranteed for positive values of τ . The following ex-

ample from Chebyshev approximation illustrates this effect.

Example 6.1 [2] Let the function sin(πy) be approximated by a quadratic function
on the interval Y = [0,1] in the Chebyshev norm, that is, we wish to solve

(CA) minx∈R3 ‖ sin(πy) − (x3y
2 + x2y + x1)‖∞,[0,1]

with

‖e(x, y)‖∞,[0,1] = maxy∈[0,1] |e(x, y)|,

where e(x, y) = sin(πy) − (x3y
2 + x2y + x1) denotes the so-called error function.

The semi-infinite reformulation of CA is

(SIPCA) min(x,z)∈R3×R z,

s.t. −z ≤ e(x, y) ≤ z, y ∈ [0,1].

Figure 11 illustrates the error function e(x, y) in some (suboptimal) iterate x, to-
gether with the convex relaxations on certain refinements of Y . Note that the ap-
proximations of e(x, y) are depicted for both semi-infinite constraints, where in the
figure one approximation appears as piecewise concave and the other as piecewise
convex. Here feasibility means that the graph of the error function is contained in the
rectangle [0,1] × [−z, z], meaning that z is a valid upper bound for the Chebyshev
approximation error in the solution point.

The value of the regularization parameter τ is below machine precision so that the
Fig. 11 may be interpreted as a solution of P̃ = P̃0 (with a slight abuse of notation
as P̃0 does not take the adaptive refinements of Y = [0,1] into account). Figure 12
shows the corresponding result for the positive value τ = 0.1 under the outer approxi-
mation approach from [2]. Clearly, the graph of the error function leaves the rectangle
[0,1] × [−z, z] at the right endpoint of Y , so that the corresponding point (x, z) is
infeasible for SIPCA. On the other hand, Fig. 13 illustrates that for τ = 0.1 the inner
approximation approach yields feasibility of (x, z).
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Fig. 11 Solution of P̃

Fig. 12 Solution of P̃0.1

7 Concluding Remarks and Open Questions

Regarding the phase 1 approach in Sect. 5 one might wonder why the inequality
constraints gi, i ∈ I, are strengthened by 2sτ 2 in the definition of MP 1feas

τ
rather than

by sτ 2 as in the case of M feas
τ . In fact, if (x, y1, γ 1, . . . , yr , γ r , z) with z ≤ 0 satisfies

gi(x, yi) − z + sτ 2 ≤ 0,

Dy Li (x, yi, γ i) = 0,

�τ (γ
i,−v(x, yi)) = 0, i ∈ I,

then x trivially belongs to M feas
τ . On the other hand, if z = 0, then we cannot conclude

that x is a Slater point of GSIP, and it is unclear whether x ∈ M feas
τ for all τ ≤
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Fig. 13 Solution of P̃feas
0.1

τ0. In other words, it is unclear whether for τ1 ≤ τ2 the inclusion M feas
τ2

⊆ M feas
τ1

holds. Recall that the converse relationship ‘τ1 ≤ τ2 ⇒ Mτ1 ⊆ Mτ2 ’ is known for the
outer-approximating sets Mτ (Proposition 2.1). The proof of this statement is largely
based on the fact that, for i ∈ I , gi(x, yi(x, τ )) is monotonously decreasing in τ .
Unfortunately, this argument does not hold for the inner-approximating sets M feas

τ .
In fact, for i ∈ I , the inequality constraint gi(x, yi(x, τ )) + sτ 2 ≤ 0 consists of the
decreasing term gi(x, yi(x, τ )), but it also contains the term sτ 2, which is increasing
in τ . It is unclear, which of the two effects dominates, and ‘overtaking’ situations
cannot be a-priori excluded.

As we have seen in the proof of Lemma 4.1, the situation described above cannot
occur if x is a Slater point of GSIP and τ is small enough. In fact, the Slater condition
implies that the design Y(x) is completely contained in the shrunk container C(x)τ0

for some τ0 > 0. Therefore all lower level central paths and, in particular, all log-
barrier maximizers yi(x, τ ), i ∈ I, are contained in C(x)τ for 0 < τ ≤ τ0. Of course,
this is a rather restrictive assumption. A weaker requirement could be, e.g,

gi(x, yi(x, τ0)) + sτ 2
0 ≤ 0, i ∈ I, (48)

and

gi(x, yi(x, τ )) ≤ gi(x, yi(x, τ0)) + s(τ 2
0 − τ 2), i ∈ I, τ ∈ [0; τ0]. (49)

Visually, this means that x ∈ M feas
τ0

, and x remains in M feas
τ for all τ ≤ τ0, since

‘the container boundary moves outwards faster than the log-barrier maximizers’. The
reformulation of (49) in terms of the original problem data requires a deep under-
standing of the structure of the central path, and we leave it as an interesting open
question for future research.

Another important point worth investigation is the question, under which assump-
tions M has a regular structure. For example, it is known [37, Theorem 7.1] that for
a linear semi-infinite program the set of the Slater points and the topological interior
of the feasible set coincide under the so called locally Farkas-Minkowski constraint
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qualification. Generalizations of this result for GSIP, like via the Extended Mangasar-
ian Fromovitz Constraint Qualification [4], are not only of theoretical interest, but
would also have an immediate practical impact in view of the importance of Slater
points for Algorithm 3.
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