
J Optim Theory Appl (2010) 146: 267–303
DOI 10.1007/s10957-010-9667-4

Hybrid Approximate Proximal Method with Auxiliary
Variational Inequality for Vector Optimization

L.C. Ceng · B.S. Mordukhovich · J.C. Yao

Published online: 18 February 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper studies a general vector optimization problem of finding weakly
efficient points for mappings from Hilbert spaces to arbitrary Banach spaces, where
the latter are partially ordered by some closed, convex, and pointed cones with non-
empty interiors. To find solutions of this vector optimization problem, we introduce
an auxiliary variational inequality problem for a monotone and Lipschitz continuous
mapping. The approximate proximal method in vector optimization is extended to
develop a hybrid approximate proximal method for the general vector optimization
problem under consideration by combining an extragradient method to find a solution
of the variational inequality problem and an approximate proximal point method for
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finding a root of a maximal monotone operator. In this hybrid approximate proximal
method, the subproblems consist of finding approximate solutions to the variational
inequality problem for monotone and Lipschitz continuous mapping, and then find-
ing weakly efficient points for a suitable regularization of the original mapping. We
present both absolute and relative versions of our hybrid algorithm in which the sub-
problems are solved only approximately. The weak convergence of the generated
sequence to a weak efficient point is established under quite mild assumptions. In ad-
dition, we develop some extensions of our hybrid algorithms for vector optimization
by using Bregman-type functions.

Keywords Vector optimization · Proximal points · Hybrid inexact algorithms ·
Auxiliary variational inequalities · Banach spacies

1 Introduction and Overview

In this introductory section we first discuss recent extensions of the proximal point
method to solve problems of vector optimization, and then overview some develop-
ments on extragradient methods of solving variational inequalities. The main contri-
butions of this paper involve developing efficient hybrid algorithms to solve vector
optimization problems in infinite dimensions that combine and unify some construc-
tions for finding roots of maximal monotone operators used in proximal point meth-
ods with those employed in iterative extragradient schemes of finding approximate
solutions to auxiliary variational inequalities associated with the vector optimization
problems under consideration.

We start with an overview of recently developed iterative algorithms to solve vec-
tor optimization and related problems. In their paper [1], Bonnel, Iusem and Svaiter
introduced and studied some extensions to vector-valued optimization of several it-
erative methods for scalar-valued functions. In those extensions, they defined iterates
in the vector-valued case by considering the order �C on a Banach space Y , mim-
icking whenever it is possible a role of the usual order on the real line R in the
corresponding algorithms for scalar-valued optimization. Meantime, they admitted
the possibility that mappings F : X → Y take the value ∞C (this is made precise in
Sect. 2), where X is a Hilbert space, and where C is a closed, convex, and pointed
cone in Y with intC �= ∅; intC denotes as usual the interior of the set C. Such ex-
tensions can be traced back to the fashion of extensions, which always exist in the
finite-dimensional setting; compare in Rm, e.g., the steepest descent method for mul-
tiobjective optimization [2], the same method for general finite-dimensional vector
optimization [3], and the projected gradient method for convexly constrained vector
optimization [4].

Let us recall some basic versions of the proximal point method in scalar-valued
convex optimization, which are strongly related to finding zeros of maximal monotone
operators. Given a Hilbert space X and a set-valued operator T : X → 2X , the clas-
sical proximal point method, in its so-called exact version, is an iterative procedure
for finding a zero of T , i.e., a point z ∈ X such that 0 ∈ T (z). The method gen-
erates a sequence {xn} ⊂ X, starting with an arbitrary x0 ∈ X through the follow-
ing iteration: given a bounded exogenous sequence of positive real numbers {αn}
(called regularization parameters) and the current iterate xn, the next iterate xn+1
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is a unique vector in X such that 0 ∈ Tn(xn+1), where Tn : X → 2X is defined as
Tn(x) := T (x) + αn(x − xn). In other words, whenever T is a maximal monotone
operator, the proximal point method means that, starting with any vector x0 ∈ X,
iteratively updates xn+1 conforming to the following recursion:

xn+1 + cnT (xn+1) 	 xn, (1)

where {cn} ⊂ [c,∞), c > 0, is a sequence of scalars. However, as pointed out in
[5], the ideal form of this method is often impractical, since in many cases solving
problem (1) exactly is either impossible or as difficult as solving the original problem
0 ∈ T (x). On the other hand, there seems to be little justification of the effort required
to solve the problem accurately when the iterate is far from the solution point.

In [6], Rockafellar developed an inexact variant of the method:

xn+1 + cnT (xn+1) 	 xn + θn+1, (2)

where θn+1 is regarded as an error sequence. This method is called the inexact prox-
imal point algorithm. It is proved in [6], in the finite-dimensional setting, that if
θn → 0 sufficiently fast so that

∑∞
n=1 ‖θn‖ < ∞, then xn → z ∈ Rm with 0 ∈ T (z).

Because of its relaxed requirement, the inexact proximal point algorithm is more
practical than the exact one. Thus it has been studied widely, and various forms of the
method have been developed; see, e.g., [4, 7–12]. In most of these papers, conditions
ensuring that the error term being summable are essential requirements for the con-
vergence of the method. In [6] and some subsequent papers (e.g., [13]), a criterion
for this is as follows:

‖θn+1‖ ≤ σn‖xn+1 − xn‖, with
∞∑

n=0

σn < ∞. (3)

In the further development, Eckstein [5] extended the inexact proximal point
method by Rockafellar to the corresponding algorithm based on Bregman functions;
see more references in [5]. It is proved therein that the sequence {xn} generated by
the latter algorithm converges to a root of T under the conditions

∞∑

n=1

‖θn‖ < ∞ and
∞∑

n=1

〈θn, xn〉 exists and is finite (4)

(see (18) and (19) in [5]). Conditions (4) involve assumptions on the whole generated
sequence {xn} and the error term sequence {θn}, but nevertheless they can be checked
and enforced in practice more easily than those existed earlier. Subsequently Solodov
and Svaiter [15–17] proposed more accurate criteria for proximal point algorithms.
Their criteria are different from (3) requiring that

sup
n≥0

σn < 1. (5)

However, in [15–17] this comes at the cost of involving an additional projection or
“extragradient” step in the algorithm, and it turns out that the applicable portion of
[14] is efficient mainly for problems of convex minimization.
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Note also that He [9] proposed a different inexact criterion for the study of
monotone variational inequalities, which involves relationships between the error
term and the residual function. In particular, the restriction

∑∞
n=0 σn < ∞ in (3) is

replaced in [9] by

∞∑

n=0

σ 2
n < ∞. (6)

The main attention in what follows is paid to the following problem of constrained
vector optimization. Let � be a nonempty, closed, and convex subset of a Hilbert
space X, and let F : � → Y ∪{∞C}. Utilizing the ordering cone C, we have a partial
order �C on Y given by y �C y′ if and only if y′ − y ∈ C and the associate relation
≺C given by y ≺C y′ if and only if y′ − y ∈ intC. It is said as usual that x̄ ∈ � is a
weakly efficient minimizer of F with respect to �C if there exists no x ∈ � satisfying
F(x) ≺C F(x̄).

Considering a closed and convex set K ⊂ X and an extended-real-valued convex
function f : X → R ∪ {∞}, recall that the indicator function of K is defined by

IK(x) :=
{

0, if x ∈ K,

∞, otherwise
(7)

and the (approximate) ε-subdifferential of f at x is defined, for any ε ≥ 0, by

∂εf (x) := {u ∈ X| f (y) − f (x) − 〈u,x − y〉 ≥ −ε, for all y ∈ X}. (8)

When ε = 0, the set ∂εf (x) reduces to the classical subdifferential of convex analysis
∂f (x).

Employing constructions (7) and (8), the authors of [1] developed extensions of
both the exact proximal method (1) and its inexact counterpart to the vector-valued
optimization problem formulated above. Basically, in the exact case the nth subprob-
lem consists of finding weakly efficient minimizers of Fn : X → Y with

Fn(x) := F(x) + αn‖x − xn‖2en (9)

restricted to the set �n := {x ∈ X| F(x) �C F(xn)}, where en is an exogenously
selected vector belonging to intC and such that ‖en‖ = 1. On the other hand, for
their inexact version they considered the topological dual space Y ∗ of Y , the positive
polar cone

C+ := {z ∈ Y ∗| 〈y, z〉 ≥ 0, for all y ∈ C}
with 〈·, ·〉 : Y × Y ∗ → R standing for the usual duality pairing, and the indicator
function I�n of the set �n. To describe the latter version, consider an exogenous
sequence {�n} ⊂ C+ with ‖�n‖ = 1 for all n ≥ 0 and define, at iteration n, a function
fn : X → R ∪ {∞} by

fn(x) := 〈F(x),�n〉 + I�n(x). (10)
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Then take as xn+1 any vector x ∈ X such that there exists εn ∈ R+ satisfying

0 ∈ ∂εnfn(x) + αn〈en,�n〉(x − xn), (11)

εn ≤ σ
αn

2
〈en,�n〉‖xn − x‖2, (12)

where σ ∈ [0,1) is again a measure of the relative error.
It is proved in [1] that any sequence of iterates generated by either the exact or

inexact version converge in the weak topology of X to a weakly efficient minimizer
of F under the following two assumptions:

(i) F is C-convex, i.e., F(λx +(1−λ)x′) �C λF(x)+(1−λ)F (x′) for all x, x′ ∈ X

and all λ ∈ [0,1];
(ii) the set (F (x0)−C)∩F(X) is C-complete; i.e., for every sequence {an} ⊂ X with

a0 = x0 such that F(an+1) �C F(an) there is a ∈ X such that F(a) �C F(an)

for all n ≥ 0.

Note that a vectorial proximal method is also discussed in Sect. 4.2 of [18]. It is a
generalization of algorithms for specific classes of problems in vector optimization:
a particular control approximation problem in [19] and certain location problems in
[20]. In fact, the authors of [18] dealt with a problem more general than the vector
optimization problem formulated above; namely, with some vector equilibrium prob-
lem (VEP). It can be seen that solutions to the scalarized equilibrium problem for a
real bifunction f defined on M × M (i.e., points x̄ ∈ M such that f (x̄, x) ≥ 0 for
all x ∈ M) are solutions to VEP provided that M is a closed and convex subset of
X = Rm. We refrain here from making explicit the iterative formula of the scalarized
method proposed in [18] for solving VEP, since in the case of vector optimization
of our interest it ends up as the standard scalar proximal point method applied to the
scalarized function 〈F(x),�n〉 with �n ∈ C+ and ‖�n‖ = 1. The convergence analy-
sis in [18] is restricted to the finite-dimensional case. The fact that the method in [18]
is essentially a scalar proximal method is a crucial difference from the algorithms of
[1], which essentially exploit some characteristic features of vector optimization.

Motivated by [1], Ceng and Yao [22] have recently introduced and studied new
versions of the proximal point method in vector optimization called the absolute ap-
proximate proximal method and the relative approximate proximal method. To de-
scribe these methods, we take a bounded sequence of positive numbers {αn}. In the
absolute case the nth subproblem consists of finding first weakly efficient minimizer
x̃n for the problem

F̃n(x) := F(x) + αn‖x − xn − θn‖2en,

s.t. �n := {x ∈ X|F(x) �C F(xn)}

and then computing the (n + 1)th iterate by

xn+1 = βnxn + (1 − βn)x̃n, (13)
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where βn is a relaxation parameter in [0,1], θn is an error term in X satisfying

‖θn‖ ≤ σn‖x̃n − xn‖, with
∞∑

n=0

σ 2
n < ∞, (14)

and en is an exogenously selected vector belonging to intC and such that ‖en‖ = 1.
The relative version of [22] deals with the positive polar cone C+ ⊂ Y ∗ of the topo-
logically dual space Y ∗ of Y and the indicator function I�n of the set �n defined
above. Taking an exogenous sequence {�n} ⊂ C+ with ‖�n‖ = 1 for all n ≥ 0, the
function

fn(x) := 〈F(x),�n〉 + I�n(x) (15)

is defined at iteration n. Then the next iterate xn+1 is selected as a vector x ∈ X such
that there exists εn ∈ R+ satisfying the conditions

0 ∈ ∂εnfn(x) + αn〈en,�n〉(x − xn − θn), (16)

εn ≤ σ
αn

2
〈en,�n〉‖xn + θn − x‖2, (17)

where {θn} ⊂ X is an error sequence given in (14), and where σ ∈ [0,1) is again a
measure of the relative error. It is proved in [22] that any sequence generated by either
absolute or relative approximate proximal method converges in the weak topology of
X to a weakly efficient minimizer of F under the two assumptions from [1] presented
above.

It is worth reminding that the exact version of the proximal method in [1] is in-
deed a particular case of the aforementioned absolute approximate proximal method
corresponding to the choice of θn = 0 and βn = 0 for all n. Furthermore, the inex-
act version of the proximal method in [1] is actually a particular case of the relative
approximate proximal method corresponding to the choice of θn = 0 and βn = 0 for
all n. Observe also that the absolute version of the proximal algorithm is a partic-
ular case of the relative one corresponding to the choice of σ = 0, or equivalently
εn = 0 for all n, in the sense that any vector xn+1 satisfying relationship (15)–(17)
with σ = 0 is a weakly efficient minimizer of F̃n as defined in (12). Thus a separate
analysis of the absolute version might seem superfluous. However, both versions are
presented somewhat differently and deserve a special attention from the viewpoint of
subsequent implementations; namely, the subproblems of the absolute one are vector-
valued optimization problems while in each subproblem of the relative version the
focus is on finding zeros of approximate subdifferentials for scalar-valued convex
functions.

Next we discuss the other lines of development related to numerical algorithms
of solving a special class of variational inequalities. Let � be a nonempty, closed,
and convex subset of a Hilbert space X, and let P� be the metric projection from X

onto �. Given x ∈ X a sequence {xn} ⊂ X, the symbols xn → x and xn ⇀ x indicate
the strong convergence in X and the weak convergence in X, respectively. Recall that
a mapping A:� → X is called monotone if

〈Ax − Ay,x − y〉 ≥ 0, for all x, y ∈ �.
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Given k > 0, such a mapping is called k-Lipschitz continuous if

‖Ax − Ay‖ ≤ k‖x − y‖ for all x, y ∈ �.

Recall finally that A:� → X is α-inverse-strongly monotone with modulus α > 0
(cf. [23]) if

〈Ax − Ay,x − y〉 ≥ α‖Ax − Ay‖2, for all x, y ∈ �.

It is easy to see that every α-inverse-strongly monotone mapping under consideration
is monotone and k-Lipschitz continuous with some modulus k = 1

α
.

Given � and A:� → X as above, we define the variational inequality problem as
follows: find a x ∈ � such that

〈Ax,y − x〉 ≥ 0, for all y ∈ �

and denote the set of its solutions by VI(�,A).
In 1976, Korpelevich [24] introduced the following extragradient method for solv-

ing the above variational inequality generated by a closed and convex set � ⊂ Rm

and a monotone, k-Lipschitz continuous mapping A:� → Rm:

choose x0 ∈ � arbitrarily,

x̄n = P�(xn − λAxn),

xn+1 = P�(xn − λAx̄n), n ≥ 0,

where λ ∈ (0,1/k). She proved that if VI(�,A) �= ∅, then the sequence {xn} gener-
ated by her iterative scheme converges to an element of VI(�,A).

Developing Korpelevich’s extragradient ideas and combining them with the outer
approximation method by Burachik, Lopez and Svaiter [25] for solving variational in-
equalities, Nadezhkina and Takahashi [23] introduced an iterative process for finding
a common element of the fixed-point set for nonexpansive self-mappings on � and
the set of solutions to variational inequalities generated by monotone, k-Lipschitz
continuous operators. Subsequently Ceng, Cubiotti and Yao [26] developed another
iterative process for solving the aforementioned fixed-point problem for variational
inequalities by some combination of extragradient and approximate proximal meth-
ods.

The main objective of this paper is to introduce and develop both absolute and
relative versions the hybrid approximate proximal method (HAPM) for solving the
general vector-valued optimization problem formulated above. Let {αn} be a bounded
sequence of positive numbers, and let {γn} ⊂ (0,1). In the absolute version of HAPM
the nth subproblem consists of finding first an approximate solution zn of the varia-
tional inequality problem for a monotone, k-Lipschitz continuous mapping A via

yn = P�(xn − λnAxn),

zn = γnxn + (1 − γn)P�(xn − λnAyn)

with some {λn} ⊂ (0,1/k). Then we find a weakly efficient minimizer x̃n of the
mapping F̃n : � → Y given by

F̃n(x) := F(x) + αn‖x − xn − θn‖2en
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restricted to �n := {x ∈ �|F(x) �C F(xn)} and finally compute the (n + 1)th iterate
by

xn+1 = βnxn + (1 − βn)x̃n,

where βn is a relaxation parameter in [0,1], θn is an error term in X satisfying

‖θn‖ ≤ σn‖x̃n − zn‖, with
∞∑

n=0

σ 2
n < ∞,

and where en is an exogenously selected vector belonging to intC and such that
‖en‖ = 1.

In the relative version of HAPM we first construct zn as in the absolute version
described above. Picking then an exogenous sequence {�n} ⊂ C+ with ‖�n‖ = 1,
define the scalarized function fn : � → R ∪ {∞} by (15) and take as xn+1 any vector
x ∈ � such that there exists εn ∈ R+ satisfying the conditions

0 ∈ ∂εnfn(x) + αn〈en,�n〉(x − zn − θn),

εn ≤ σ
αn

2
〈en,�n〉‖zn + θn − x‖2,

where {θn} ⊂ � is an error sequence yielding some requirements similar to (14), and
where σ ∈ [0,1) is a measure of the relative error.

It is shown in what follows that any sequence generated by either the absolute or
relative algorithm of HAPM converges in the weak topology of X to a weakly efficient
minimizer of F on � and simultaneously to a solution of an auxiliary variational
inequality under rather mild assumptions imposed on the initial data.

Considering in this paper weakly efficient solutions to the vector optimization
problem, we have to require the nonempty interior of the ordering cone in Y . This
assumption conventional in vector optimization theory is satisfied, in particular, for
positive cones in finite dimensions as well as in Banach spaces of continuous func-
tions and of the L∞ type. However, it is generally restrictive and never holds, e.g.,
for positive cones in Lp , 1 ≤ p < ∞. We draw the reader’s attention that the non-
empty interior of ordering cones is not required in the approach to vector and set-
valued optimization problems developed by Mordukhovich [27] that is mainly based
on the extremal principle. Furthermore, the recent paper by Bao and Mordukhovich
[28] studies certain notions of relative Pareto minimizers, which are close in spirit
to weak minimizers while do not require the nonempty interior of the ordering cone.
In our subsequent publications, we are going to extend and develop the numerical
algorithms of the present paper to broad classes of vector optimization problems with
possibly empty interiors of ordering cones.

The rest of paper is organized as follows. In Sect. 2 we formulate the underlying
vector optimization problem and present some required preliminary material. The
absolute version of our HARP algorithm is developed in Sect. 3. The subsequent
Sect. 4 is devoted to an appropriate extension of the absolute version of HARP to the
case of generated Bregman functions. Finally, Sect. 5 develops the relative version of
HARP. The notation used in this paper is basically standard; see, e.g., [1, 23, 28].
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2 Problem Formulation and Preliminaries

Let X be a Hilbert space, Y be a Banach space, and 〈·, ·〉 signify the scalar product
in X as well as the standard canonical pairing between Y and its topological dual Y ∗.
For simplicity, any norm is denoted by ‖ · ‖. We usually denote by F an extended-
valued mapping from X to Y ∪ {∞C}. The extended space Y := Y ∪ {−∞C,∞C} is
introduced in [29], where a neighborhood of ∞C is defined as a set N ⊂ Y containing
a + C ∪ {∞C} for some a ∈ Y ; its opposite −N is a neighborhood of −∞C . The
binary relations �C and ≺C , defined in the previous section, are extended to Y by

∀y ∈ Y, −∞C ≺C y ≺C ∞C, −∞C �C y �C ∞C.

Observe that the embedding Y ⊂ Y is continuous and dense.
Mappings F are assumed to be proper, i.e., not identically equal to ∞C . The

effective domain of F is denoted by domF := {x ∈ X|F(x) �= ∞C}. By putting
〈±∞C, z〉 := ±∞ (see [29, 30] for more details), we extend by continuity every
z ∈ C+ \ {0} to Y . Given a set U ⊂ Y , denote its topological closure in Y by U .
Let us further associate with a given set U ⊂ Y the following three collections of
minimizers:

• the infimal set C-INF(U) := {y ∈ U | � ∃z ∈ U \ {y} : z �C y};
• the weakly infimal set C-INFw(U) := {y ∈ U | � ∃z ∈ U : z ≺C y};
• the properly infimal set

C-INFp(U) := {y ∈ U |∃K ⊂ Y pointed closed convex cone such that

C \ {0} ⊂ intK, y ∈ K-INF(U)}.
For the vector optimization problem

C-Min G(x), s.t. x ∈ S,

where G : S → Y ∪ {∞C} and S ⊂ X, a point x̄ ∈ X is called:

• efficient (or Pareto) if x̄ ∈ S and G(x̄) ∈ C-INF(G(S)),
• weakly efficient if x̄ ∈ S and G(x̄) ∈ C-INFw(G(S)),
• properly efficient if x̄ ∈ S and G(x̄) ∈ C-INFp(G(S)).

Thus the sets of efficient (resp., weakly efficient and properly efficient) solutions,
which are denoted by C-ArgMin{G(x)|x ∈ S} (resp., C-ArgMinw{G(x)|x ∈ S} and
C-ArgMinp{G(x)|x ∈ S}), we have the following relations:

C-ArgMin{G(x)|(x) ∈ S} = S ∩ G−1(C-INF(G(S))),

C-ArgMinw{G(x)|x ∈ S} = S ∩ G−1(C-INFw(G(S))),

C-ArgMinp{G(x)|x ∈ S} = S ∩ G−1(C-INFp(G(S))).

It is easy to check that

C-ArgMinp{G(x)|x ∈ S} ⊂ C-ArgMin{G(x)|x ∈ S}
⊂ C-ArgMinw{G(x)|x ∈ S}.
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For y ∈ Y, U ⊂ Y ∪ {∞C}, U �= {∞C}, we denote d(y,U) := inf{‖y − z‖|z ∈
U ∩ Y }.

In this paper we pay the main attention to the following vector optimization prob-
lem

(VOP) C-Min{F(x)|x ∈ �},
where � is a nonempty, closed, and convex subset of X. The set of weakly efficient
solutions of this VOP is denoted by VO(�,F ). Throughout this paper we assume
that the defined VOP is C-convex, i.e., the cost mapping F is C-convex on the convex
constraint set �.

Recall that a map G : X → Y ∪ {∞C} is positively lower semicontinuous if for
each z ∈ C+ the scalarized extended-real-valued function x �→ 〈G(x), z〉 is lower
semicontinuous.

In the sequel we need following scalarization result (cf. [22, 31]), where

C+
s := {z ∈ Y ∗|〈y, z〉 > 0, for all y ∈ C \ {0}}.

Proposition 2.1 (Argminimum Sets under Scalarization) Let S ⊂ X be a convex set,
and let G : S → Y ∪{∞C} be a C-convex proper map. Then we have the relationships

C-ArgMinw{G(x)|x ∈ S} =
⋃

z∈C+\{0}
argmin{〈G(x), z〉|x ∈ S},

C-ArgMinp{G(x)|x ∈ S} =
⋃

z∈C+
s

argmin{〈G(x), z〉|x ∈ S}.

It is worth mentioning that, as observed in [4], the set argmin{〈G(x), z〉|x ∈ S} in
Proposition 2.1 may be empty for some z ∈ C+ \ {0}.

We also need the following convergence property established in [32].

Proposition 2.2 (Convergence Property) Let X be a Hilbert space, let {αn}
be a sequence of real numbers such that 0 < a ≤ αn ≤ b < 1 for every n =
0,1,2, . . . , and let {vn} and {wn} be sequences in X such that lim supn→∞ ‖vn‖ ≤
c, lim supn→∞ ‖wn‖ ≤ c, and limn→∞ ‖αnvn + (1 − αn)wn‖ = c for some c ≥ 0.
Then limn→∞ ‖vn − wn‖ = 0.

Recall that if � is a nonempty, closed, and convex subset of a Hilbert space X,
then for every point x ∈ X there exists a unique nearest point in �, denoted by P�x,
such that ‖x − P�x‖ ≤ ‖x − y‖ for all y ∈ �. It is known that P� is a nonexpansive
mapping from H onto �. It is also known that P�x ∈ � and

〈x − P�x,P�x − y〉 ≥ 0, ∀x ∈ H, y ∈ �; (18)

see [12, 32] for more details. It is easy to see that (18) is equivalent to

‖x − y‖2 ≥ ‖x − P�x‖2 + ‖y − P�x‖2, ∀x ∈ H, y ∈ �. (19)
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Consider further a monotone mapping A : � → X, which generates the variational
inequality problem formulated above. In the context of the latter problem the charac-
terization of projection (18) implies that

u ∈ VI(�,A) ⇐⇒ u = P�(u − λAu), ∀λ > 0.

Recall that a mapping T : � → � is pseudocontractive if for all x, y ∈ � we have

‖T x − Ty‖2 ≤ ‖x − y‖2 + ‖(I − T )x − (I − T )y‖2.

Observe that, if T : � → � is pseudocontractive and k-Lipschitz continuous, then
the mapping A = I − T is monotone and (k + 1)-Lipschitz continuous; moreover,
Fix(T ) = VI(�,A), where Fix(T ) is the fixed-point set of T ; see, e.g., [23, proof of
Theorem 4.5].

Recall also that a set-valued mapping T : X → 2X monotone if

〈x − y,u − v〉 ≥ 0, for all x, y ∈ X and u ∈ T (x), v ∈ T (y).

A monotone mapping T : X → 2X is maximal if its graph gphT is not properly con-
tained in the graph of any other monotone mapping. It is well known that a monotone
mapping T is maximal if and only if we have the implication

[
(x,u) ∈ X × X, 〈x − y,u − v〉 ≥ 0, ∀(y, v) ∈ gphT

] �⇒ u ∈ T x.

Finally in this section, define a set-valued mapping T : X → 2X on a Hilbert space
X by

T v :=
{
Av + N�v, if v ∈ �,

∅, if v �∈ �,

where A is a monotone and k-Lipschitz continuous mapping of � into X, where
� ⊂ X is a closed and convex set, and where N�v is the normal cone to � at v ∈ �

given by

N�v := {w ∈ X| 〈w,u − v〉 ≤ 0, for all u ∈ �}.
It is well known from Rockafellar [33] that the set-valued mapping T defined above
is maximal monotone and that 0 ∈ T v if and only if v ∈ VI(�,A).

3 Absolute Hybrid Approximate Proximal Algorithm

In this section we introduce and develop the aforementioned absolute version of
HAPM called for simplicity Algorithm 1. Our main goal is to find a weakly efficient
solution to the underlying vector optimization problem, i.e., an element of VO(�,F ),
which we find by solving an auxiliary variational inequality. Algorithm 1 requires
some exogenous sequences: an error sequence {θn} ⊂ X, two relaxation sequences
{βn} and {γn} in [0,1], two bounded sequences of positive numbers {αn} and {σn},
and a sequence {en} ⊂ intC such that ‖en‖ = 1 for all n. We always assume that
� ∩ domF �= ∅. Algorithm 1 generates an iterative sequence {xn} ⊂ � in the follow-
ing way:
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Algorithm 1

Initialization: Choose x0 ∈ � ∩ domF .
Stopping Rule: Given xn, if xn ∈ C-ArgMinw{F(x)|x ∈ �} (= VO(�,F )), then we

let xn+p := xn for all p ≥ 1.
Iterative Step: Given xn, whenever xn �∈ C-ArgMinw{F(x)|x ∈ �}, we first compute

yn = P�(xn − λnAxn),

zn = γnxn + (1 − γn)P�(xn − λnAyn)
(20)

for every n = 0,1,2, . . . , where {λn} ⊂ (0,1) and {γn} ⊂ [0,1], and then take as x̃n

any vector u ∈ � satisfying the condition

u ∈ C-ArgMinw

{

F(x) + αn

2
‖x − zn − θn‖2en|x ∈ �n

}

(21)

with �n := {x ∈ �|F(x) �C F(xn)}. Finally, the next iterate xn+1 ∈ � is computed
by

xn+1 = βnxn + (1 − βn)x̃n. (22)

To justify the well-posedness and convergence of Algorithm 1, we impose the
following assumptions on the initial data (F,�) of VOP and the starting point x0 of
the algorithm:

(A) The set (F (x0) − C) ∩ F(�) is C-quasicomplete for �, which means that for
each sequences {an} ⊂ � with a0 = x0 and F(an+1) �C F(an) as n ≥ 0, we
have F(u) �C F(an) for all u ∈ VO(�,F ) ∩ VI(�,A) and n ≥ 0.

(B) The map F is C+-uniformly semicontinuous on �, which means that for every
sequence {xn} ⊂ � converging weakly to some x̂ ∈ � and for every sequence
{�n} ⊂ C+ converging weakly to some � ∈ C+, we have the implication

‖xn − yn‖ → 0 �⇒ |〈F(xn) − F(yn),�n〉 − 〈F(x̂) − F(yn),�〉| → 0

whenever a sequence {yn} ⊂ � is selected.

Now we are ready to establish the well-posedness and convergence of Algorithm 1
under condition (14) and the imposed assumptions (A) and (B) on the initial data.

Theorem 3.1 (Well-Posedness and Convergence of the Absolute Version of HAPM)
Let F : X → Y ∪ {∞C} be a proper, C-convex, and positively lower semicontinuous
mapping with � ∩ domF �= ∅, and let A : � → X be a monotone and k-Lipschitz
continuous mapping such that VO(�,F ) ∩ VI(�,A) �= ∅. Suppose also that condi-
tion (14), that assumptions (A) and (B) are satisfied, and that the exogenous sequence
in Algorithm 1 are selected as follows:

(i) {βn} ⊂ [ε,1 − δ] for some ε, δ ∈ (0,1);
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0,1/k);

(iii) {γn} ⊂ [0, c] for some c ∈ [0,1).
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Then Algorithm 1 is well defined, and the sequence of iterates {xn} weakly
converges in X to some element of VO(�,F ) ∩ VI(�,A) provided that xn �∈
C-ArgMinw{F(x)|x ∈ �} whenever n ≥ 0.

Prior to proving Theorem 3.1, we present two examples that illustrate the fulfill-
ment of all the assumptions of this theorem including the “joint solvability condition”

VO(�,F ) ∩ VI(�,A) �= ∅.

For simplicity we consider the cases of vector cost mappings F defined on R and
R2, respectively, with values in R2.

Example 3.2 (Algorithm 1 for One-Dimensional Vector Problems) Let X = R with
inner product 〈·, ·〉, let Y = R2 with the Euclidean norm, and let

C := R2+ = {
(a, b)

∣
∣ a, b ∈ [0,∞)

}
.

Utilizing C, we have a partial order �C in Y given by y �C y′ if and only if y′ − y ∈
C with the associate relation ≺C given by y ≺C y′ if and only if y′ − y ∈ intC.
Moreover, F : X → Y ∪ {∞C}, � ⊂ X, and A : � → X are defined by

F(a) := (a, a), for all a ∈ X,

� := [0,∞),

A(a) := a − sina, for all a ∈ �.

Then we have the following required properties:

(i) F is a proper, C-convex, and positively lower semicontinuous map with � ∩
dom F �= ∅;

(ii) A : � → X is a monotone and 2-Lipschitz continuous map such that the inter-
section VO(�,F ) ∩ VI(�,A) is nonempty, since it contains zero.

Example 3.3 (Algorithm 1 for Multidimensional Vector Problems) LetX = Y = R2

with the inner product 〈·, ·〉 and the norm ‖ · ‖ defined by

〈x, y〉 := ac + bd and ‖x‖ :=
√

a2 + b2

for all x, y ∈ R2 with x = (a, b) and y = (c, d). Utilizing C := R2+ = {(a, b)| a, b ∈
[0,∞)}, we have the same partial order �C in Y as in Example 3.2. Furthermore,
define F : X → Y ∪ {∞C}, � ⊂ X, and A : � → X by

F(x) :=
(

2

3
a + 1

3
b,

1

3
a + 2

3
b

)

, for all x = (a, b) ∈ X,

� := {(a, a)|a ∈ [0,∞)},

Ax :=
(

a − 1

2
sina, a − 1

2
sina

)

, for all x = (a, a) ∈ �.

Then the following required properties hold:
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(i) F is a proper, C-convex, and positively lower semicontinuous map with � ∩
domF �= ∅;

(ii) A : � → X is a monotone and 3
2 -Lipschitz continuous map for which we have

the inclusion 0 ∈ VO(�,F ) ∩ VI(�,A).

Let us now proceed with a detailed proof of Theorem 3.1.

Proof of Theorem 3.1 We split the proof into several steps.
Step 1: For every u ∈ VO(�,F ) ∩ VI(�,A), we get

‖zn − u‖2 ≤ ‖xn − u‖2 + (1 − γn)(λ
2
n − 1)‖xn − yn‖2, ∀n ≥ 0.

Indeed, put tn := P�(xn − λnAyn) for every n = 0,1,2, . . . . It follows from (19),
monotonicity of A, and u ∈ VI(�,A) that

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn,u − tn〉
= ‖xn − u‖2 − ‖xn − tn‖2

+ 2λn(〈Ayn − Au,u − yn〉 + 〈Au,u − yn〉 + 〈Ayn, yn − tn〉)
≤ ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − tn〉

− ‖yn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈xn − λnAyn − yn, tn − yn〉.

Further, since yn = P�(xn − λnAxn) and A is k-Lipschitz continuous, we have

〈xn − λnAyn − yn, tn − yn〉
= 〈xn − λnAxn − yn, tn − yn〉 + 〈λnAxn − λnAyn, tn − yn〉
≤ 〈λnAxn − λnAyn, tn − yn〉
≤ λnk‖xn − yn‖‖tn − yn‖.

The latter implies the estimates

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + λ2

nk
2‖xn − yn‖2 + ‖yn − tn‖2

≤ ‖xn − u‖2 + (λ2
nk

2 − 1)‖xn − yn‖2 ≤ ‖xn − u‖2. (23)

Therefore, it follows from (23) and zn = γnxn + (1 − γn)tn that

‖zn − u‖2 = ‖γnxn + (1 − γn)tn − u‖2

= ‖γn(xn − u) + (1 − γn)(tn − u)‖2
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≤ γn‖xn − u‖2 + (1 − γn)‖tn − u‖2

≤ γn‖xn − u‖2 + (1 − γn)(‖xn − u‖2 + (λ2
nk

2 − 1)‖xn − yn‖2)

= ‖xn − u‖2 + (1 − γn)(λ
2
nk

2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2, for every n = 0,1,2, . . . . (24)

Step 2: Existence of iterates. Choosing x0 as in the initialization step and assuming
that the algorithm reaches iteration n, let us show that the next iterate xn+1 indeed
exists in Algorithm 1. By the stopping rule this is certainly the case if xn ∈ VO(�,F ).
Otherwise, take any z ∈ C+ \ {0} and by en ∈ intC get from the definition of C+ that
〈en, z〉 > 0. Define ϕn : X → R ∪ {∞} by

ϕn(x) := 〈F(x), z〉 + I�n(x) + αn

2
〈en, z〉‖x − zn − θn‖2. (25)

Observe that the C-convexity of F implies the convexity of 〈F(·), z〉 and of �n. Fur-
ther, the lower semicontinuity of F implies the closedness of �n. Thus 〈F(·), z〉+I�n

is convex and lower semicontinuous. Since 〈en, z〉 > 0, we have that ϕn is strongly
convex. Hence the existence of minimizers for ϕn follows from the standard argu-
ments ensuring the existence of iterates in the scalar-valued proximal method; see,
e.g., [20]: the subdifferential of ϕn is maximal monotone and strongly monotone, and
so it is onto by Minty’s theorem. Therefore this subdifferential has some zero, which
is a minimizer for ϕn. By Theorem 2.1 such a minimizer satisfies (21) and can be
taken as x̃n. By (22) we thus compute the next iterate xn+1.

Step 3: Fejér convergence to the set of lower bounds of the initial section. Observe
first that if the stopping rule applies at some iteration, then the sequence remains con-
stant thereafter. Thus it is strongly convergent to the stopping iterate, which is an el-
ement of VO(�,F ). So we assume from now on that the stopping rule never applies.
Therefore, since x̃n solves the vector optimization problem in (21), by Proposition 2.1
there exists �n ∈ C+ \ {0} such that x̃n solves also the problem

min ηn(x), (26)

s.t. x ∈ �n, (27)

where ηn : X → R ∪ {∞} is defined by

ηn(x) := 〈F(x),�n〉 + αn

2
〈en,�n〉‖x − zn − θn‖2.

Since furthermore the solution to (26) and (27) is not altered through multiplication
of �n by positive scalars, we can assume without loss of generality that ‖�n‖ = 1
for all n ≥ 0. Note that by definition we have �n ⊂ dom(ηn) = domF , and thus
∅ �= dom(I�n) ⊂ dom(ηn). It follows from [34, Theorem 3.23] that x̃n satisfies the
first-order optimality conditions for problem (26) and (27); i.e., there exists un ∈ X

such that

un ∈ ∂ηn(x̃n), (28)

0 ≤ 〈un, x − x̃n〉, for all x ∈ �n. (29)
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Define next ψn : X → R ∪ {∞} by

ψn(x) := 〈F(x),�n〉. (30)

In view of (25) and (28) we have

un = vn + αn〈en,�n〉(x̃n − zn − θn), (31)

for some

vn ∈ ∂ψn(x̃n). (32)

Fixing an arbitrary element u ∈ VO(�,F ) ∩ VI(�,A), we get by condition (A) that
u ∈ �n for all n ≥ 0. Combining (29) with x = u and (31) gives us

0 ≤ 〈vn,u − x̃n〉 + αn〈en,�n〉〈x̃n − zn − θn,u − x̃n〉
≤ 〈F(u) − F(x̃n),�n〉 + αn〈en,�n〉〈x̃n − zn − θn,u − x̃n〉
≤ αn〈en,�n〉〈x̃n − zn − θn,u − x̃n〉, (33)

by using (30) and (32) in the second inequality and the fact that �n ∈ C+ \ {0} in the
third; it is clear that F(u) − F(x̃n) �C 0 and therefore 〈F(u) − F(x̃n),�n〉 ≤ 0.

Now define νn := αn〈en,�n〉 and note that νn > 0 due to αn > 0, en ∈ intC, and
�n ∈ C+ \ {0}. From (33), we obtain

〈zn − x̃n + θn, x̃n − u〉 ≥ 0. (34)

Moreover, the identity

‖x + y‖2 = ‖x‖2 − ‖y‖2 + 2〈y, x + y〉, for all x, y ∈ X

allows us to derive from (34) the relationships

‖x̃n − u‖2 = ‖zn − u‖2 − ‖x̃n − zn‖2 + 2〈x̃n − zn, x̃n − u〉
= ‖zn − u‖2 − ‖x̃n − zn‖2 + 2〈θn, x̃n − u〉 − 2〈zn − x̃n + θn, x̃n − u〉
≤ ‖zn − u‖2 − ‖x̃n − zn‖2 + 2〈θn, x̃n − u〉. (35)

Taking further σn > 0, observe that

2〈θn, x̃n − u〉 ≤ 1

2σ 2
n

‖θn‖2 + 2σ 2
n‖x̃n − u‖2. (36)

Since σn → 0 as n → ∞, there exists an integer N0 ≥ 0 such that 1 − 2σ 2
n > 0 for all

n ≥ N0. Substituting (36) in (34), we get therefore

‖x̃n − u‖2 ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖zn − u‖2 − 1

2(1 − 2σ 2
n )

‖x̃n − zn‖2

≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖zn − u‖2 − 1

2
‖x̃n − zn‖2. (37)
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Note that for all x, y ∈ X and 0 ≤ λ ≤ 1 the following identity holds:

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

Thus it follows from (22), (24), and (37) that

‖xn+1 − u‖2

= ‖βn(xn − u) + (1 − βn)(x̃n − u)‖2

≤ βn‖xn − u‖2 + (1 − βn)‖x̃n − u‖2

≤ βn‖xn − u‖2 + (1 − βn)

{(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖zn − u‖2 − 1

2
‖x̃n − zn‖2

}

≤ βn‖xn − u‖2 + (1 − βn)

{(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2 − 1

2
‖x̃n − zn‖2

}

≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2 − 1

2
(1 − βn)‖x̃n − zn‖2.

Since 0 ≤ βn ≤ 1 − δ for some δ ∈ (0,1), it follows that 1
2 (1 − βn) ≥ 1

2δ. Hence, we
get

‖xn+1 − u‖2 ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2 − δ

2
‖x̃n − zn‖2, for all n ≥ N0. (38)

Finally, from (22) we derive the relationships

xn+1 − xn = (1 − βn)(x̃n − xn),

‖x̃n − xn‖ = 1

1 − βn

‖xn+1 − xn‖ ≥ 1

1 − ε
‖xn+1 − xn‖, (39)

which justify the claimed Fejér-type convergence.
Step 4: Boundedness of the sequence and proximity of consecutive iterates. Next

we claim that for every u ∈ VO(�,F ) ∩ VI(�,A) the sequence {‖xn − u‖2} is con-
vergent. To proceed, observe from (38) that

‖xn+1 − u‖2 ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2, for all n ≥ N0. (40)

Since
∑∞

n=0 σ 2
n < ∞, it follows that

K0 :=
∞∑

n=N0

2σ 2
n

1 − 2σ 2
n

< ∞ and K1 :=
∞∏

n=N0

(

1 + 2σ 2
n

1 − 2σ 2
n

)

< ∞.

Observe further that for all n ≥ N0 we have

‖xn+1 − u‖2 ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2
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≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)(

1 + 2σ 2
n−1

1 − 2σ 2
n−1

)

‖xn−1 − u‖2

...

≤
n∏

j=N0

(

1 + 2σ 2
j

1 − 2σ 2
j

)

‖xN0 − u‖2

≤
∞∏

j=N0

(

1 + 2σ 2
j

1 − 2σ 2
j

)

‖xN0 − u‖2

= K1‖xN0 − u‖2.

This shows that {xn} is bounded. Thus it follows from (23) and (24) that both {tn} and
{zn} are bounded. Letting M := supn≥0 ‖xn − u‖, we get from (40) that

‖xn+1 − u‖2 ≤ ‖xn − u‖2 + 2σ 2
n

1 − 2σ 2
n

M2, ∀n ≥ N0,

which implies that, for all n,m ≥ N0, the following inequalities hold:

‖xn+m − u‖2 ≤ ‖xn+m−1 − u‖2 + 2σ 2
n+m−1

1 − 2σ 2
n+m−1

M2

≤ ‖xn+m−2 − u‖2 + 2σ 2
n+m−2

1 − 2σ 2
n+m−2

M2 + 2σ 2
n+m−1

1 − 2σ 2
n+m−1

M2

...

≤ ‖xn − u‖2 +
n+m−1∑

j=n

2σ 2
j

1 − 2σ 2
j

M2.

Since
∑∞

n=0
2σ 2

n

1−2σ 2
n

< ∞, we have the estimate

lim sup
m→∞

‖xm − u‖2 ≤ ‖xn − u‖2 +
∞∑

j=n

2σ 2
j

1 − 2σ 2
j

M2,

and hence the limit limn→∞ ‖xn −u‖2 exists for every u ∈ VO(�,F )∩ VI(�,A). In
addition, rewriting (38) as

δ

2
‖x̃n − zn‖2 ≤

(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2 − ‖xn+1 − u‖2 (41)

and observing that the right-hand side of (41) converges to 0 as n → ∞ because the
sequence {‖xn − u‖2} is convergent, we conclude that

lim
n→∞‖x̃n − zn‖ = 0. (42)
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Let now d := limn→∞ ‖xn − u‖ and derive from (24) and (37) that

lim sup
n→∞

‖x̃n − u‖2 ≤ lim sup
n→∞

{(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖zn − u‖2 − 1

2
‖x̃n − zn‖2

}

= lim sup
n→∞

(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖zn − u‖2 − 1

2
lim

n→∞‖x̃n − zn‖2

≤ lim sup
n→∞

(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2 = d2.

Observe also the relationships

lim
n→∞‖βn(xn − u) + (1 − βn)(x̃n − u)‖ = lim

n→∞‖xn+1 − u‖ = d.

Since {βn} ⊂ [ε,1 − δ] for some ε, δ ∈ (0,1), we deduce from Proposition 2.2 that

lim
n→∞‖xn − x̃n‖ = 0 (43)

and therefore arrive at

lim
n→∞‖xn+1 − xn‖ = 0. (44)

Noting that ‖xn − zn‖ ≤ ‖xn − x̃n‖ + ‖x̃n − zn‖ allows us to conclude from (43) that

lim
n→∞‖xn − zn‖ = 0. (45)

Furthermore, it follows from (24) that

‖zn − u‖2 ≤ ‖xn − u‖2 + (1 − γn)(λ
2
nk

2 − 1)‖xn − yn‖2

for every u ∈ VO(�,F ) ∩ VI(�,A). This gives

‖xn − yn‖2 ≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖2 − ‖zn − u‖2)

= 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖ − ‖zn − u‖)(‖xn − u‖ + ‖zn − u‖)

≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖ + ‖zn − u‖)‖xn − zn‖. (46)

Since limn→∞ ‖xn −zn‖ = 0 and the sequences {xn} and {zn} are bounded, we obtain
limn→∞ ‖xn − yn‖ = 0. Arguing similarly to the proof of (23) yields

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + ‖xn − yn‖2 + λ2

nk
2‖yn − tn‖2

≤ ‖xn − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖2,
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which implies the relationships

‖zn − u‖2 = ‖γnxn + (1 − γn)tn − u‖2

= ‖γn(xn − u) + (1 − γn)(tn − u)‖2

≤ γn‖xn − u‖2 + (1 − γn)‖tn − u‖2

≤ γn‖xn − u‖2 + (1 − γn)(‖xn − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖2)

= ‖xn − u‖2 + (1 − γn)(λ
2
nk

2 − 1)‖yn − tn‖2 ≤ ‖xn − u‖2.

Rearranging the latter as in (46) gives us

‖tn − yn‖2 ≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖2 − ‖zn − u‖2)

= 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖ − ‖zn − u‖)(‖xn − u‖ + ‖zn − u‖)

≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.

Since limn→∞ ‖xn −zn‖ = 0 and the sequences {xn} and {zn} are bounded, we obtain
limn→∞ ‖tn − yn‖ = 0. It gives, by taking into account the k-Lipschitz continuity
of the operator A, that limn→∞ ‖Ayn − Atn‖ = 0. Noting finally that ‖xn − tn‖ ≤
‖xn − yn‖+‖yn − tn‖, we arrive at limn→∞ ‖xn − tn‖ = 0 and conclude the proof of
the claim in Step 4.

Step 5: Optimality of weak cluster points of {xn}. Observe first that the bounded
sequence of iterates {xn} has weak cluster points in the Hilbert space X under con-
sideration. We intend to justify that all of them lie in VO(�,F ) ∩ VI(�,A).

To proceed, let x̂ ∈ X be a weak cluster point of {xn}, and let {xkn} be a sub-
sequence weakly convergent to it. Having in mind to prove that x̂ ∈ VO(�,F ) ∩
VI(�,A), we show first that x̂ ∈ VI(�,A). It follows from limn→∞ ‖xn − tn‖ = 0
and limn→∞ ‖xn − yn‖ = 0 that tkn ⇀ x̂ and ykn ⇀ x̂. Consider next the set-valued
mapping

T v :=
{
Av + N�v, if v ∈ �,

∅, if v �∈ �,

where N�v is the normal cone to � at v ∈ �. As already mentioned, the mapping
T is maximal monotone and so 0 ∈ T v if and only if v ∈ VI(�,A); see [15]. Taking
a pair (v,w) ∈ gphT from the graph of F , we have w ∈ v = Av + N�v and hence
w − Av ∈ N�v. This gives 〈v − t,w − Av〉 ≥ 0 for all t ∈ �. On the other hand, for
tn := P�(xn −λnAyn) and every v ∈ � we get 〈xn −λnAyn − tn, tn −v〉 ≥ 0 and thus

〈

v − tn,
tn − xn

λn

+ Ayn

〉

≥ 0.

It follows from 〈v − t,w − Av〉 ≥ 0 that

〈v − tkn ,w〉 ≥ 〈v − tkn ,Av〉
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≥ 〈v − tkn ,Av〉 −
〈

v − tkn ,
tkn − xkn

λkn

+ Aykn

〉

= 〈v − tkn ,Av − Atkn〉 + 〈v − tkn ,Atkn − Aykn〉 −
〈

v − tkn ,
tkn − xkn

λkn

〉

≥ 〈v − tkn ,Atkn − Aykn〉 −
〈

v − tkn ,
tkn − xkn

λkn

〉

,

whenever t ∈ � and tkn ∈ �, which implies 〈v − x̂,w〉 ≥ 0 as n → ∞. Since T is
maximal monotone, we have x̂ ∈ T −10 and hence x̂ ∈ VI(�,A).

Define further ψz : X → R by ψz(x) := 〈F(x), z〉 and show that

ψz(x̂) ≤ ψz(xn) (47)

for all z ∈ C+ and all n ≥ 0. Indeed, it follows from the positive lower semicontinuity
and C-convexity of F that the scalar function ψz is lower semicontinuous and convex,
and therefore ψz(x̂) ≤ limn→∞ ψz(xkn). Note that (22) implies that

F(xn+1) = F(βnxn + (1 − βn)x̃n)

�C βnF (xn) + (1 − βn)F (x̃n)

�C βnF (xn) + (1 − βn)F (xn) = F(xn).

Thus F(xn+1) �C F(xn) and xn+1 ∈ �n for all n. Consequently we have ψz(xn+1) ≤
ψz(xn) for all n, and hence limn→∞ ψz(xkn) = inf{ψz(xn)}. This shows that ψz(x̂) ≤
inf{ψz(xn)}, and so (47) holds. It follows easily from (47) that

F(x̂) �C F(xn) for all n ≥ 0. (48)

Suppose now that x̂ is not weakly efficient for VOP, i.e., there exists x̄ ∈ � such
that F(x̄) ≺C F(x̂). Take �n as chosen right before (26). Since ‖�n‖ = 1 for all n, by
the classical Bourbaki-Alaoglu theorem there exists a weak∗ cluster point of {�kn},
say � ∈ Y ∗, which is a weak∗ limit of some subnet {�jn} of {�kn}. We claim now
that the positive polar cone C+ is weak∗ closed. Observing that C+ = ⋂

y∈C{z ∈
Y ∗|〈y, z〉 ≥ 0} and taking into account that the linear forms z �→ 〈y, z〉 are weak∗
continuous for all y ∈ Y , we represent C+ as an intersection of weak∗ closed sets
and thus justify the claim. It follows therefore that � ∈ C+. Note further that ψz is
convex for each z ∈ C+. Hence from (22) we get

〈F(xjn+1),�jn〉 = ψjn(xjn+1) = ψjn(βjnxjn + (1 − βjn)x̃jn)

≤ βjnψjn(xjn) + (1 − βjn)ψjn(x̃jn)

= βjn(ψjn(xjn) − ψjn(x̃jn)) + ψjn(x̃jn)

= βjn〈F(xjn) − F(x̃jn),�jn〉 + ψjn(x̃jn)

= βjn(〈F(xjn) − F(x̃jn),�jn〉 − 〈F(x̂) − F(x̃jn),�〉)
− βjn(ψ�(x̃jn) − ψ�(x̂)) + ψjn(x̃jn). (49)
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Observe also that limn→∞ ψ�(xjn) = inf{ψ�(xn)} ≥ ψ�(x̂) and that
lim infn→∞ ψ�(x̃jn) ≥ ψ�(x̂), since ‖x̃jn − xjn‖ → 0 and ψ� is weakly lower semi-
continuous. Moreover, we get

ψjn(x̄) − ψjn(x̃jn) ≥ 〈vjn, x̄ − x̃jn〉
= 〈ujn, x̄ − x̃jn〉 − νjn〈x̃jn − zjn − θjn, x̄ − x̃jn〉
≥ −νjn〈x̃jn − zjn − θjn, x̄ − x̃jn〉
≥ −νjn‖x̃jn − zjn − θjn‖‖x̄ − x̃jn‖ (50)

by using (32) in the first inequality, (31) in the second equality, and (29) in the third
inequality together with the fact that x̄ ∈ �n for all n ≥ 0 due to F(x̄) ≺C F(x̂) �C

F(xn) by (48). Employing consequently (47), we conclude from (49) and (50) that

〈F(x̄) − F(x̂),�jn〉 ≥ 〈F(x̄) − F(xjn+1),�jn〉 = ψjn(x̄) − ψjn(xjn+1)

≥ ψjn(x̄) − ψjn(x̃jn) − βjn(〈F(xjn) − F(x̃jn),�jn〉
− 〈F(x̂) − F(x̃jn),�〉) + βjn(ψ�(x̃jn) − ψ�(x̂))

≥ −νjn‖x̃jn − zjn − θjn‖‖x̄ − x̃jn‖ − βjn(〈F(xjn) − F(x̃jn),�jn〉
− 〈F(x̂) − F(x̃jn),�〉) + βjn(ψ�(x̃jn) − ψ�(x̂)). (51)

Note further that limn→∞ ‖x̃jn − zjn‖ = 0 by (42), limn→∞ ‖xjn − x̃jn‖ = 0 by (51),
and ‖θjn‖ ≤ σjn‖x̃jn − zjn‖ by (14). Now we take the lower limits in the first and last
expressions of (51). Regarding the first term of the rightmost expression in (51), since
{αn} is bounded and ‖�n‖ = ‖en‖ = 1, we have that {νn} is bounded as well. Note
again that {xn} is bounded, and so {‖x̄ − x̃jn‖} is also bounded. Finally, it is easy to
see that limn→∞ ‖x̃jn − zjn − θjn‖ = 0, which allows us to conclude that

lim
n→∞|〈F(xjn) − F(x̃jn),�jn〉 − 〈F(x̂) − F(x̃jn),�〉| = 0

according to assumption (B). Since the function ψ� is convex and lower semicontin-
uous, it is weakly lower semicontinuous. Thus we get lim infn→∞ ψ�(x̃jn) ≥ ψ�(x̂);
i.e., lim infn→∞(ψ�(x̃jn) − ψ�(x̂)) ≥ 0. The latter yields that for any given ε > 0
there is an integer N0 ≥ 1 such that

ψ�(x̃jn) − ψ�(x̂) ≥ −ε, whenever n ≥ N0.

Using this with together {βn} ⊂ [ε,1 − δ] implies that

βjn(ψ�(x̃jn) − ψ�(x̂)) ≥ −εβjn ≥ −ε(1 − δ), n ≥ N0.

Consequently we have

lim inf
n→∞ βjn(ψ�(x̃jn) − ψ�(x̂)) ≥ −ε(1 − δ)

and, by an arbitrary choice of ε > 0, arrive at

lim inf
n→∞ βjn(ψ�(x̃jn) − ψ�(x̂)) ≥ 0.
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Thus the lower limit of the rightmost expression in (51) as n → ∞ is not less than
zero. Since � is the weak∗ limit of {�jn}, we get from (51) that

〈F(x̄) − F(x̃),�〉 ≥ 0. (52)

Next we claim that � �= 0. Indeed, taking e ∈ intC and using Lemma 2.2 from
[29] implies that 〈e,�n〉 ≥ d(e,Y \ C) > 0 for all n ≥ 0. Since � is the weak∗ limit
of {�jn}, we get that 〈e,�〉 > 0, which thus yields � �= 0. The latter shows that (52)
contradicts the fact that � belongs to C+ and so the assumption that F(x̄) ≺C F(x̂).
Thus this assumption is false, and so x̂ is indeed weakly efficient for VOP.

Step 6: Uniqueness of the weak cluster point of iterates. This part of the proof,
presented for the sake of completeness, is rather similar to the scalar-valued case
in [6] using Brézis’ uniqueness arguments. Take two limiting points x̂ and x̃ of the
sequence {xn}. As shown above, both limiting points x̂ and x̃ belong to VO(�,F ) ∩
VI(�,A) and both sequences {‖x̂ − xn‖} and {‖x̃ − xn‖} converge. This means that
there are β̂, β̃ ∈ R+ such that

lim
n→∞‖xn − x̂‖ = β̂ and lim

n→∞‖xn − x̃‖ = β̃. (53)

By the Hilbert space identity,

‖xn − x̂‖2 = ‖xn − x̃‖2 + 2〈xn − x̃, x̃ − x̂〉 + ‖x̃ − x̂‖2,

we conclude from (53) that

lim
n→∞〈xn − x̃, x̃ − x̂〉 = 1

2
(β̂2 − β̃2 − ‖x̃ − x̂‖2). (54)

The left-hand side of (54) vanishes because x̃ is a weak cluster point of {xn}, and thus

β̂2 − β̃2 = ‖x̃ − x̂‖2. (55)

Reversing the roles of x̂ and x̃, we get β̃2 − β̂2 = ‖x̃ − x̂‖2. Combining the latter with
(55) allows us to conclude that ‖x̃ − x̂‖ = 0, i.e., x̃ = x̂. This justifies the uniqueness
of the weak cluster point of {xn} and thus shows that the sequence {xn} weakly con-
verges to an element of VO(�,F ) ∩ VI(�,A), which completes the proof of the
theorem. �

Remark 3.4 (Stopping Rule for Vectorial Algorithms) Observe that the “stopping
rule” in the above Algorithm 1 (resp. Algorithms 2 and 3 in Sects. 4 and 5) requires
that xnp = xp for all p ≥ 1 if for given xn we have xn ∈ C-Min{F(x)|x ∈ �}. In
general, the requirement xn+1 = xn is sufficient as the usual stopping rule in scalar
proximal point method. But, for the above vectorial Algorithm 1 (resp. Algorithms 2
and 3 in Sects. 4 and 5) we specifically indicate and emphasize that “the method
generates a sequence {xn}”, i.e., an infinite sequence {xn}.

Indeed, the goal of this paper is to solve the VOP: C-Min{F(x)|x ∈ �}. In the
proceeding of iterations we meet the two possible cases.
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Case I. At each iteration step we have xn �∈ C-Min{F(x)|x ∈ �}. Hence the
process of iterations continues infinitely producing an infinite sequence {xn}. Un-
der the conditions of Theorem 3.1 (resp. Theorems 4.3 and 5.1 in Sects. 4 and 5),
{xn} converges weakly to a solution of the VOP. This achieves our aim.

Case II. There exists some iteration step such that we have xn ∈ C-Min{F(x)|
x ∈ �}. This actually achieves our aim. However, in order to obtain an infinite se-
quence {xn}, we take xn+p = xn for all p ≥ 1. In this case there is no doubt that the
sequence {xn} converges weakly to a solution of the VOP under consideration.

4 Extension to Bregman-Function-Based Hybrid Approximate Proximal
Algorithms

A number of research during recent years has focused on nonlinear generations of
recursion (1) based on Bregman functions, which are discussed, e.g., in [5]; see also
the references therein. In this section we continue these lines of research concerning
an appropriate extension of the absolute version of HAPM developed in Sect. 3.

Let h : � → R be a strictly convex function, which is Gâteaux differentiable on
�. The Bregman distance between x and y is defined via the “D-function”

Dh(x, y) = h(x) − h(y) − 〈∇h(y), x − y〉, (56)

where x, y ∈ �. It follows from the strict convexity of h that Dh(x, y) ≥ 0 and that
Dh(x, y) = 0 if and only if x = y. We refer the reader to [17] as to a good source
of information on Bregman functions, their properties, and some applications. It is
worth reminding here the basis definition taken from [17].

Definition 4.1 (Bregman Functions) Let � be a nonempty closed convex subset of
X such that the convex open subset int� ⊂ X satisfies the property � = cl(int�),
where the cl denotes as usual the closure of a set. We say that h : � → R is a Bregman
function if the following hold:

(i) h is strictly convex and continuous on �;
(ii) h is continuously differentiable on int�;

(iii) the partial sublevel set

L(x, a) = {y ∈ int�|Dh(x, y) ≤ α}
is bounded for any x ∈ � and α ∈ R;

(iv) if {yn} is a sequence in int� converging to y, then limn→∞ Dh(y, yn) = 0.

Note that Dh(x, y) = 1
2‖x −y‖2 for h(x) = 1

2‖x‖2. In what follows we use a class
of functions that are represented as

h(x) = h0(x) + 1

2
‖x‖2,

where h0 is a Bregman function. It is easy to see that h satisfies the conditions of
Definition 4.1, and thus h is also a Bregman function. Furthermore, for all x, y ∈ �
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we have

Dh(x, y) = h(x) − h(y) − 〈∇h(y), x − y〉
= h0(x) − h0(y) − 〈∇h0(y), x − y〉 + 1

2
‖x‖2 − 1

2
‖y‖2 − 〈y, x − y〉

= Dh0(x, y) + 1

2
‖x − y‖2 ≥ 1

2
‖x − y‖2. (57)

Let us next describe a Bregman-function extension of the absolute version of
HARM (Algorithm 1) from Sect. 3, which we call for brevity Algorithm 2. It requires
some exogenous sequences: an error sequence {θn} ⊂ X, two bounded sequences of
positive real numbers {αn} and {σn}, a relaxation sequence {γn} ⊂ [0,1], and a se-
quence {en} ⊂ intC such that ‖en‖ = 1 for all n. Assume that � ∩ domF �= ∅. Algo-
rithm 2 generates a sequence of iterates {xn} ⊂ � in the following way:

Algorithm 2

Initialization: Choose x0 ∈ � ∩ domF .
Stopping Rule: Given xn, if xn ∈ C-ArgMinw{F(x)|x ∈ �} (= VO(�,F )), then we

let xn+p := xn for all p ≥ 1.
Iterative Step: Given xn, if xn �∈ C-ArgMinw{F(x)|x ∈ �}, we first compute

{
yn = P�(xn − λnAxn),

zn = γnxn + (1 − γn)P�(xn − λnAyn)
(58)

for every n = 0,1,2, . . . , where {λn} ⊂ (0,1) and {γn} ⊂ [0,1], and then take as the
next iterate any xn+1 ∈ � satisfying

xn+1 ∈ C-ArgMinw

{

F(x) + αn

2
(2h(x) + ‖x − ∇h(zn) − θn‖2 − ‖x‖2)en|x ∈ �n

}

(59)
with �n := {x ∈ �|F(x) �C F(xn)}.

In Algorithm 2, instead of condition (14) imposed in Algorithm 1, for every u ∈
VO(�,F ) ∩ VI(�,A) we take the condition

〈∇h(zn) − ∇h(xn+1) + θn, xn+1 − u〉 ≥ 0

⇒ 〈∇h(xn) − ∇h(xn+1) + θn, xn+1 − u〉 ≥ 0,

Dh(u, zn) − 1

2
‖u − zn‖2 ≤ ‖θn‖2 ≤ 2σ 2

nDh(xn+1, xn), with
∞∑

n=0

σn < ∞

(60)

as the approximate criterion corresponding to recursion (59).
Assume the following for the initial data of the VOP under consideration and the

initial iterate x0 in Algorithm 2:
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(A) The set (F (x0)−C)∩F(�) is C-quasicomplete for �, which means that for all
sequences {an} ⊂ � with a0 = x0 such that F(an+1) �C F(an) for all n ≥ 0, it
holds that F(u) �C F(an) for all u ∈ VO(�,F ) ∩ VI(�,A) and all n ≥ 0.

To establish the convergence of iterates in Algorithm 2, we need some properties
of Bregman functions that are derived in [13].

Proposition 4.2 (Properties of Bregman Functions) The following hold for the Breg-
man functions under consideration:

(i) For any x, y, z ∈ X, we have

Dh(y, x) = Dh(z, x) + Dh(y, z) + 〈∇h(x) − ∇h(z), z − y〉.

(ii) For any x, y, z, s ∈ X, we have

Dh(s, z) = Dh(s, x) + 〈∇h(x) − ∇h(z), s − y〉 + Dh(y, z) − Dh(y, x).

Now we are ready to prove the convergence of Algorithm 2 under condition (60)
and the assumptions imposed in (A).

Theorem 4.3 (Well-Posedness and Convergence of the Bregman-Function Version of
HAPM) Let F : � → Y ∪ {∞C} be a proper, C-convex, and positively lower semi-
continuous mapping with � ∩ domF �= ∅, let h : � → R be the Bregman function
defined above and such that ∇h(·) is uniformly continuous from the strong topology
of X to the strong topology of X, and let A : � → X be a monotone and k-Lipschitz
continuous mapping such that VO(�,F ) ∩ VI(�,A) �= ∅. Assume the fulfillment of
the assumptions imposed in (A), the implication in (60), and the following conditions
on the exogenous sequences:

(i) {λn} ⊂ [a, b] for some a, b ∈ (0,1/k);
(ii) {γn} ⊂ [c, d] for some c, d ∈ (0,1).

Then the sequence of iterates {xn} generated by Algorithm 2 is well defined and has
the convergence properties:

(I) {xn} converges with respect to the weak topology of X to a weakly efficient solu-
tion of the vector optimization problems VOP;

(II) {xn} converges with respect to the weak topology of X to an element of the
set VO(�,F ) ∩ VI(�,A) provided that xn �∈ C-ArgMinw{F(x)|x ∈ �} for all
n ≥ 0.

Proof We split the proof into the following steps.
Step 1: For every u ∈ VO(�,F ) ∩ VI(�,A) we have

‖zn − u‖2 ≤ ‖xn − u‖2 + (1 − γn)(λ
2
nk

2 − 1)‖xn − yn‖2, whenever n ≥ 0.

The proof of this assertion is similar to Step 1 in Theorem 3.1 and is omitted here.
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Step 2: Existence of iterates. This assertion can be proved by using the same argu-
ments as in Step 2 of Theorem 3.1 with ϕn : X → R ∪ {∞} defined now by

ϕn(x) := 〈F(x), z〉+I�n(x)+ αn

2
〈en, z〉(2h(x)+‖x−∇h(zn)−θn‖2 −‖x‖2). (61)

Step 3: Fejér convergence to the set of lower bounds of the initial section. If the
stopping rule applies at some iteration, then the sequence remains constant thereafter,
and thus it is strongly convergent to the stopping iterate, which is an element of
VO(�,F ). We assume from now on that the stopping rule never applies. Since xn+1
solves the vector optimization problem in (59), by Proposition 2.1 there is �n ∈ C+ \
{0} such that xn+1 solves the problem:

min ηn(x), (62)

s.t. x ∈ �n, (63)

where ηn : X → R ∪ {+∞} is defined by

ηn(x) := 〈F(x),�n〉 + αn

2
〈en,�n〉(2h(x) + ‖x − ∇h(zn) − θn‖2 − ‖x‖2).

Since the solution of (62) and (63) is not altered through multiplication of �n by
positive scalars, we can assume without loss of generality that ‖�n‖ = 1 for all n ≥ 0.
Note that by definition we have �n ⊂ dom(ηn) = domF , so that ∅ �= dom(I�n) ⊂
dom(ηn). According to [20, Theorem 3.23], it follows that xn+1 satisfies the first-
order optimality conditions for problem (62) and (63), i.e., there exists un ∈ X such
that

un ∈ ∂ηn(xn+1), (64)

0 ≤ 〈un, x − xn+1〉, for all x ∈ �n. (65)

Define now ψn : X → R ∪ {∞} by

ψn(x) := 〈F(x),�n〉. (66)

In view of (61) and (64) we have

un = vn + αn〈en,�n〉(∇h(xn+1) − ∇h(zn) − θn) (67)

for some subgradient

vn ∈ ∂ψn(xn+1). (68)

Next fix an arbitrary element u ∈ VO(�,F ) ∩ VI(�,A) and get by (A) that u ∈ �n

for all n ≥ 0. Combining (65) with x = u and (67), we have

0 ≤ 〈vn,u − xn+1〉 + αn〈en,�n〉〈∇h(xn+1) − ∇h(zn) − θn,u − xn+1〉
≤ 〈F(u) − F(xn+1),�n〉 + αn〈en,�n〉〈∇h(xn+1) − ∇h(zn) − θn,u − xn+1〉
≤ αn〈en,�n〉〈∇h(xn+1) − ∇h(zn) − θn,u − xn+1〉, (69)
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by using (66) and (68) in the second inequality and the fact that �n ∈ C+ \ {0} in the
third; it is clear that F(u) − F(xn+1) �C 0 and therefore 〈F(u) − F(xn+1),�n〉 ≤ 0.

Letting νn := αn〈en,�n〉, note that νn > 0 by αn > 0, en ∈ intC, and �n ∈ C+ \
{0}. From (69) we obtain the inequality

〈∇h(zn) − ∇h(xn+1) + θn, xn+1 − u〉 ≥ 0, (70)

which together with (60) imply that

〈∇h(xn) − ∇h(xn+1) + θn, xn+1 − u〉 ≥ 0. (71)

Furthermore, by Proposition 4.2 we derive from (71) that

Dh(u,xn+1) = Dh(u, zn) + 〈∇h(zn) − ∇h(xn+1), u − xn+1〉
+ Dh(xn+1, xn+1) − Dh(xn+1, zn)

= Dh(u, zn) − Dh(xn+1, zn) − 〈∇h(zn) − ∇h(xn+1), xn+1 − u〉.
(72)

Observe that putting x = xn, y = u, z = zn and s = xn+1 in Proposition 4.2 gives us

Dh(xn+1, zn) = Dh(xn+1, xn) + 〈∇h(xn) − ∇h(zn), xn+1 − u〉
+ Dh(u, zn) − Dh(u,xn).

Substituting the last equality in (72), we get from (71) that

Dh(u,xn+1) = Dh(u, zn) − Dh(xn+1, xn) − 〈∇h(xn) − ∇h(zn), xn+1 − u〉
− Dh(u, zn) + Dh(u,xn) − 〈∇h(zn) − ∇h(xn+1), xn+1 − u〉

= Dh(u,xn) − Dh(xn+1, xn) + 〈∇h(xn+1) − ∇h(xn), xn+1 − u〉
= Dh(u,xn) − Dh(xn+1, xn) − 〈∇h(xn) − ∇h(xn+1) + θn, xn+1 − u〉

+ 〈θn, xn+1 − u〉
≤ Dh(u,xn) − Dh(xn+1, xn) + 〈θn, xn+1 − u〉. (73)

Taking next an arbitrary sequence of σn > 0 and using (57) and (60), we obtain

〈θn, xn+1 − u〉 ≤ 1

4σ 2
n

‖θn‖2 + σ 2
n‖xn+1 − u‖2

≤ 1

2
Dh(xn+1, xn) + 2σ 2

nDh(u, xn+1). (74)

Since σn → 0 as n → ∞, there exists an integer N0 ≥ 0 such that 1 − 2σ 2
n > 0 for all

n ≥ N0. Substituting (74) in (72) and (73) gives us
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Dh(u,xn+1) ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

Dh(u,xn) − 1

2(1 − 2σ 2
n )

Dh(xn+1, xn)

≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

Dh(u,xn) − 1

2
Dh(xn+1, xn). (75)

On the other hand, it follows from (24), (70), (72), and (60) that

1

2
‖u − xn+1‖2 ≤ Dh(u,xn+1)

= Dh(u, zn) − Dh(xn+1, zn) − 〈∇h(zn) − ∇h(xn+1), xn+1 − u〉
= Dh(u, zn) − Dh(xn+1, zn) − 〈∇h(zn) − ∇h(xn+1) + θn, xn+1 − u〉

+ 〈θn, xn+1 − u〉
≤ Dh(u, zn) − Dh(xn+1, zn) + 〈θn, xn+1 − u〉
≤ Dh(u, zn) + ‖θn‖‖xn+1 − u‖
≤ 1

2
‖u − zn‖2 + ‖θn‖2 + ‖θn‖‖xn+1 − u‖

≤ 1

2
‖u − xn‖2 + 2σ 2

nDh(xn+1, xn)

+ √
2σnD

1/2
h (xn+1, xn)‖xn+1 − u‖, (76)

which justify the assertion of Step 3.
Step 4: Boundedness of the sequence and proximity of consecutive iterates. Let

us prove first that for every u ∈ VO(�,F ) ∩ VI(�,A) the sequence {Dh(u,xn)} is
convergent. Indeed, we have in terms of (76) that

Dh(u,xn+1) ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

Dh(u,xn), whenever n ≥ N0. (77)

Since
∑∞

n=0 σ 2
n < ∞, it follows that

K0 :=
∞∑

n=N0

2σ 2
n

1 − 2σ 2
n

< ∞ and K1 :=
∞∏

n=N0

(

1 + 2σ 2
n

1 − 2σ 2
n

)

< ∞.

Observe further that for all n ≥ N0 we have the estimates

Dh(u,xn+1) ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

Dh(u,xn)

≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)(

1 + 2σ 2
n−1

1 − 2σ 2
n−1

)

Dh(u,xn−1)

...
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≤
n∏

j=N0

(

1 + 2σ 2
j

1 − 2σ 2
j

)

Dh(u,xN0)

≤
∞∏

j=N0

(

1 + 2σ 2
j

1 − 2σ 2
j

)

Dh(u,xN0)

= K1Dh(u,xN0).

Consequently, {Dh(u,xn)} is bounded and so is {xn} due to (57). Hence it fol-
lows from (23) and (24) that both sequences {tn} and {zn} are bounded. Set M̃ :=
supn≥0 Dh(u,xn) and get from (77) the inequality

Dh(u,xn+1) ≤ Dh(u,xn) + 2σ 2
n

1 − 2σ 2
n

M̃, n ≥ N0,

which implies that for all n,m ≥ N0 the following hold:

Dh(u,xn+m) ≤ Dh(u,xn+m−1) + 2σ 2
n+m−1

1 − 2σ 2
n+m−1

M̃

≤ Dh(u,xn+m−2) + 2σ 2
n+m−2

1 − 2σ 2
n+m−2

M̃ + 2σ 2
n+m−1

1 − 2σ 2
n+m−1

M̃

...

≤ Dh(u,xn) +
n+m−1∑

j=n

2σ 2
j

1 − 2σ 2
j

M̃.

Since
∑∞

n=0
2σ 2

n

1−2σ 2
n

< ∞, we further have

lim sup
m→∞

Dh(u,xm) ≤ Dh(u,xn) +
∞∑

j=n

2σ 2
j

1 − 2σ 2
j

M̃,

and hence limn→∞ Dh(u,xn) exists for every element u ∈ VO(�,F ) ∩ VI(�,A). In
addition, rewriting (75) as

1

2
Dh(xn+1, xn) ≤

(

1 + 2σ 2
n

1 − 2σ 2
n

)

Dh(u,xn) − Dh(u,xn+1) (78)

and observing that the right-hand side of (78) converges to 0 as n → ∞ due to the
convergence of {Dh(u,xn)}, we conclude that

lim
n→∞Dh(xn+1, xn) = 0 (79)

and therefore arrive at limn→∞ ‖xn+1 − xn‖ = 0 by (57).
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On the other hand, since
∑∞

n=0 σn < ∞, both sequences {Dh(xn+1, xn)} and
{‖xn − u‖} are bounded, and hence we have

∞∑

n=0

(2σ 2
nDh(xn+1, xn) + √

2σnD
1/2
h (xn+1, xn)‖xn+1 − u‖) < ∞.

Thus it follows from (76) that limn→∞ 1
2‖u − xn‖2 exists and so limn→∞ ‖u − xn‖

exists as well. We put τ := limn→∞ ‖xn − u‖, and letting n → ∞, obtain from (76)
that

lim
n→∞

1

2
‖u − zn‖2 = lim

n→∞
1

2
τ 2,

which gives the limiting relationship

lim
n→∞‖γn(u − xn) + (1 − γn)(u − tn)‖ = lim

n→∞‖u − zn‖ = τ.

Note that (23) implies that lim supn→∞ ‖u − tn‖ ≤ τ . Utilizing Proposition 2.2, we
have

lim
n→∞‖xn − tn‖ = 0,

which together with (58) imply that

lim
n→∞‖zn − xn‖ = lim

n→∞(1 − γn)‖tn − xn‖ = 0.

Picking any u ∈ VO(�,F ) ∩ VI(�,A) allows us to derive from (24) that

‖xn − yn‖2 ≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖2 − ‖zn − u‖2)

≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.

Since limn→∞ ‖xn − zn‖ = 0 and the sequences {xn} and {zn} are bounded, we get
that limn→∞ ‖xn − yn‖ = 0. By the same process as in (23) we also have

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 + (λ2

nk
2 − 1)‖yn − tn‖2.

Then the following relationships hold:

‖zn − u‖2 ≤ γn‖xn − u‖2 + (1 − γn)‖tn − u‖2

≤ γn‖xn − u‖2 + (1 − γn)(‖xn − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖2)

= ‖xn − u‖2 + (1 − γn)(λ
2
nk

2 − 1)‖yn − tn‖2

≤ ‖xn − u‖2. (80)
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Rearranging the terms in (80), we arrive at

‖tn − yn‖2 ≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖2 − ‖zn − u‖2)

≤ 1

(1 − γn)(1 − λ2
nk

2)
(‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.

Since limn→∞ ‖xn − zn‖ = 0 and the sequences {xn} and {zn} are bounded, we get
limn→∞ ‖tn − yn‖ = 0. Finally, it follows from the k-Lipschitz continuity of the op-
erator A that limn→∞ ‖Ayn − Atn‖ = 0, which completes the proof of the assertions
in Step 4.

Step 5: Optimality of weak cluster points of {xn}. Since the sequence {xn} is
bounded, it has weak cluster points. Let us prove that all of them lie in VO(�,F ) ∩
VI(�,A). Pick a weak cluster point x̂ of {xn} and let {xkn} be a subsequence weakly
convergent to it. We are going to justify that x̂ ∈ VO(�,F ) ∩ VI(�,A). First, simi-
larly to Step 5 in the proof of Theorem 3.1, we have x̂ ∈ VI(�,A).

Second, we define ψz : X → R by ψz(x) := 〈F(x), z〉 and claim that

ψz(x̂) ≤ ψz(xn) (81)

for all z ∈ C+ and all n ≥ 0. Indeed, since the cost mapping F is positively lower
semicontinuous and C-convex, the function ψz is lower semicontinuous and convex,
and so we get ψz(x̂) ≤ limn→∞ ψz(xkn). Since F(xn+1) �C F(xn) for all n, we have
ψz(xn+1) ≤ ψz(xn) for all n, and thus limn→∞ ψz(xkn) = inf{ψz(xn)}. This shows
that ψz(x̂) ≤ inf{ψz(xn)}, which gives (81). It easily follows from (81) that

F(x̂) �C F(xn), for all n ≥ 0. (82)

Suppose now that x̂ is not weakly efficient for VOP, i.e., there exists x̄ ∈ � such
that F(x̄) ≺C F(x̂). Then it follows from (82) that F(x̄) ≺C F(x̂) �C F(xn) for all
n ≥ 0. Choose further �n as before (62). Since ‖�n‖ = 1 for all n, by the Bourbaki-
Alaoglu theorem there is a weak∗ cluster point of {�kn}, say �, which is a weak∗ limit
of the subnet {�jn} of {�kn}. We claim that the positive polar cone C+ is weak∗ closed
in Y ∗. To proceed, observe that the latter set admits the representation

C+ =
⋂

y∈C

{
z ∈ Y ∗∣∣ 〈y, z〉 ≥ 0

}
.

Since the linear forms z �→ 〈y, z〉 are weak∗ continuous for all y ∈ Y , we have that
C+ as an intersection of weak∗ closed sets that justifies its weak∗ closedness in Y ∗.
It follows so that � ∈ C+. Thus we have

〈F(x̄) − F(x̂),�jn〉 ≥ 〈F(x̄) − F(xjn+1),�jn〉
= ψjn(x̄) − ψjn(xjn+1)

≥ 〈vjn, x̄ − xjn+1〉
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= 〈ujn, x̄ − xjn+1〉 − νjn〈∇h(xjn+1)

− ∇h(xjn) − θjn, x̄ − xjn+1〉
≥ −νjn〈∇h(xjn+1) − ∇h(xjn) − θjn, x̄ − xjn+1〉. (83)

Note that ‖θn‖ ≤ √
2σnD

1/2
h (xn+1, xn) → 0 by (60). Therefore, utilizing the uniform

continuity of ∇h, we deduce that

|〈∇h(xjn+1) − ∇h(xjn) − θjn, x̄ − xjn+1〉|
≤ ‖∇h(xjn+1) − ∇h(xjn) − θjn‖‖x̄ − xjn+1‖ → 0,

due to ‖xn+1 − xn‖ → 0 and the boundedness of {‖x̄ − xn‖}.
Let us next pass to the limit in the first and last expressions of (83). Regarding

the rightmost one in (83), we get that {νn} is bounded, since {αn} is bounded and
since ‖�n‖ = ‖en‖ = 1. Thus the limit of the rightmost expression in (83) as n → ∞
vanishes, and so we easily get from (83) that

〈F(x̄) − F(x̂),�〉 ≥ 0. (84)

Now we show that � �= 0. Indeed, take e ∈ intC and deduce from [29, Lemma 2.2]
that 〈e,�n〉 ≥ d(e,Y \ C) > 0 for all n ≥ 0. Since � is the weak∗ limit of {�jn},
we get that 〈e,�〉 > 0, which implies that � �= 0. The latter clearly yields that (84)
contradicts the inclusion � ∈ C+ and hence also the assumption of F(x̄) ≺C F(x̂).
Thus this assumption is false, and so the point x̂ is indeed weakly efficient for VOP,
which justifies the claim of Step 5.

Step 6: Uniqueness of the weak cluster point of {xn}. This part of the proof
is closely related to the scalar-valued case, as given in [21], and it uses Brézis’s
uniqueness argument. Taking two cluster points x̂ and x̃ of the sequence {xn}, we
conclude by the same arguments as in Step 5 above that both x̂ and x̃ belong to
VO(�,F ) ∩ VI(�,A). It implies, as in Step 6 of Theorem 3.1, that x̃ = x̂. Thus the
sequence of iterates {xn} weakly converges to an element of VO(�,F ) ∩ VI(�,A),
which completes the proof of the theorem. �

Remark 4.4 (Scalar Counterparts) Let us mention a scalar version of proximal point
method developed in [21, Chap. 3] by using Bregman distances. This method is dif-
ferent from our Algorithm 2 even for scalar minimization problems. A more closely
related version of Algorithm 2 in the scalar case is developed in [7, Chap. 3].

5 Relative Hybrid Approximate Proximal Algorithm

In the concluding section of the paper we present the relative version of our hybrid
approximate proximal method, which is called Algorithm 3. It requires several exoge-
nous sequences: in addition to those in Algorithm 2 (an error sequence {θn} ⊂ �, two
bounded sequences of positive real numbers {αn} and {σn}, a sequence {en} ⊂ int(C)

such that ‖en‖ = 1 for all n), we now include a sequence {�n} ⊂ C+ such that
‖�n‖ = 1 for all n ≥ 0. The method generates a sequence of iterates {xn} ⊂ � in
the following way:
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Algorithm 3

Initialization: Choose x0 ∈ � ∩ domF .
Stopping Rule: Given xn, if xn ∈ C-ArgMinw{F(x)|x ∈ �} (= VO(�,F )), then we

let xn+p := xn for all p ≥ 1.
Iterative Step: Given xn, if xn �∈ C-ArgMinw{F(x)|x ∈ �}, we first compute

yn = P�(xn − λnAxn),

zn = γnxn + (1 − γn)P�(xn − λnAyn),
(85)

for every n = 0,1, . . . , where {λn} ⊂ (0,1) and {γn} ⊂ [0,1]. Also let �n = {x ∈
�|F(x) �C F(xn)} and define fn(x) := 〈F(x),�n〉 + I�n(x). Take as the next iter-
ate xn+1 any vector x ∈ � such that there exists εn ∈ R+ satisfying

0 ∈ ∂εnfn(x) + αn〈en,�n〉(x − zn − θn), (86)

εn ≤ σ
αn

2
〈en,�n〉‖x − zn‖2. (87)

For this algorithm, instead of condition (14), we impose

‖θn‖ ≤ σn‖xn+1 − zn‖, with
∞∑

n=0

σ 2
n < ∞ (88)

as the approximate criterion corresponding to recursion (86).

The following theorem establishes the well-posedness and convergence of Algo-
rithm 3.

Theorem 5.1 (Well-Posedness and Convergence of the Relative Version of HAPM)
Let F : � → Y ∪ {∞C} be a proper, C-convex, and positively lower semicontinuous
mapping with �∩domF �= ∅, and let A : � → X be a monotone and k-Lipschitz con-
tinuous mapping such that VO(�,F ) ∩ VI(�,A) �= ∅. In addition to condition (88)
and assumptions in (A) formulated in Sect. 4, suppose that the exogenous sequences
in Algorithm 3 satisfy the following requirements:

(i) {λn} ⊂ [a, b] for some a, b ∈ (0,1/k);
(ii) {γn} ⊂ [c, d] for some c, d ∈ (0,1).

Then the sequence of iterates {xn} generated by Algorithm 3 is well defined and has
the convergence properties:

(I) {xn} converges with respect to the weak topology of X to a weakly efficient solu-
tion of the vector optimization problem VOP;

(II) {xn} converges with respect to the weak topology of X to an element of the
set VO(�,F ) ∩ VI(�,A) provided that xn �∈ C-ArgMinw{F(x)|x ∈ �} for all
n ≥ 0.

Proof Similarly to the proofs of Theorems 3.1 and 4.3, we split the proof of this
theorem into the following steps.
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Step 1: For every u ∈ VO(�,F ) ∩ VI(�,A), we have

‖zn − u‖2 ≤ ‖xn − u‖2 + (1 − γn)(λ
2
nk

2 − 1)‖xn − yn‖2 whenever n ≥ 0.

The proof of this claim is similar to the one in Step 1 of Theorem 3.1.
Step 2: Existence of the iterates. By the subdifferential definition given in (8) we

have

∂f (x) := ∂0f (x) ⊂ ∂εf (x),

for any convex function f : X → R ∪ {∞}, any x ∈ X, and any ε ∈ R+. By the
classical Minty theorem, the strongly convex function

f̄n(x) := fn(x) + αn

2
〈en,�n〉‖x − zn − θn‖2

admits a zero subgradient at some point xn+1. It is obvious that such a point xn+1

satisfies the inclusion in (86) with εn = 0 satisfying (87).
Step 3: Fejér convergence to the set of lower bounds of the initial section. For any

n ≥ 0 denote νn := αn〈en,�n〉 and conclude by (86) that

νn(zn − xn+1 + θn) ∈ ∂εnfn(xn+1). (89)

Pick any u ∈ VO(�,F ) ∩ VI(�,A) and get by (89) and the definition of ∂εn that

−εn + νn〈zn − xn+1 + θn,u − xn+1〉 ≤ fn(u) − fn(xn+1). (90)

Since u ∈ VO(�,F ) ∩ VI(�,A) ⊂ �n, we have u ∈ �n so that

fn(u) = 〈F(u),�n〉 (91)

and also, by F(u) �C F(xn+1) and �n ∈ C+, that

〈F(u) − F(xn+1),�n〉 ≤ 0. (92)

It follows from the definitions of fn and I�n that ∂εnfn(x) = ∅ for all x �∈ �n. Thus
xn+1 ∈ �n, which justifies the relationship

fn(xn+1) = 〈F(xn+1),�n〉. (93)

Combining (90)–(93), we arrive at the inequalities

−εn + νn〈zn − xn+1 + θn,u − xn+1〉 ≤ 〈F(u) − F(xn+1),�n〉 ≤ 0. (94)

Further, it follows from (94) that

0 ≤ εn + νn〈xn+1 − zn − θn,u − xn+1〉
= εn + νn(‖zn − u‖2 − ‖xn+1 − u‖2 − ‖zn − xn+1‖2) + νn〈θn, xn+1 − u〉. (95)
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Now for σn > 0 we get from (88) that

〈θn, xn+1 − u〉 ≤ 1

4σ 2
n

‖θn‖2 + σ 2
n‖xn+1 − u‖2 ≤ 1

2
‖xn+1 − zn‖2 + 2σ 2

n‖xn+1 − u‖2.

(96)
Combining (87), (95), and (96) allows us to deduce that

0 ≤ νn

(

‖zn − u‖2 − (1 − 2σ 2
n )‖xn+1 − u‖2 − 1 − σ

2
‖zn − xn+1‖2

)

. (97)

Since σn → 0, there exists N0 ≥ 0 such that for all n ≥ N0 we have 1 − 2σ 2
n > 0.

Hence it follows from (97) and (24) that

‖xn+1 − u‖2 ≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖zn − u‖2 − 1 − σ

2(1 − 2σ 2
n )

‖zn − xn+1‖2

≤
(

1 + 2σ 2
n

1 − 2σ 2
n

)

‖xn − u‖2 − 1 − σ

2
‖zn − xn+1‖2 (98)

for all n ≥ N0, which justifies the assertion of Step 3.
Step 4: Boundedness of {xn} and proximity of consecutive iterates. Similarly to the

proof of Step 4 in Theorem 4.3, we can show that the limit limn→∞ ‖xn − u‖ exists
and that

lim
n→∞‖zn − u‖ = lim

n→∞‖xn − u‖.
Then Proposition 2.2 ensures that limn→∞ ‖xn− tn‖ = 0, and so limn→∞ ‖zn−xn‖ =
0 due to (85). The further arguments follow the lines in the proof of Step 4 of Theo-
rem 4.3.

Steps 5–6: Optimality of the weak cluster points and the existence of the weak
limit of iterates. These steps are similar to the proofs of the corresponding steps of
Theorem 4.3, and thus they are omitted here. The proof of the theorem is complete. �
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