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Abstract Using the idea of upper convexificators, we propose constraint qualifi-
cations and study existence and boundedness of the Kuhn-Tucker multipliers for a
nonsmooth multiobjective optimization problem with inequality constraints and an
arbitrary set constraint. We show that, at locally weak efficient solutions where the
objective and constraint functions are locally Lipschitz, the constraint qualifications
are necessary and sufficient conditions for the Kuhn-Tucker multiplier sets to be non-
empty and bounded under certain semiregularity assumptions on the upper convexi-
ficators of the functions.

Keywords Upper convexificators · Constraint qualifications · Existence and
boundedness of Kuhn-Tucker multipliers · Nonsmooth multiobjective optimization

1 Introduction and Preliminaries

Investigating the nonemptiness and boundedness of the Kuhn-Tucker multiplier sets
for optimization problems is not only intrinsically interesting, but also useful in cer-
tain stability and duality studies for nonconvex minimization problems (see for ex-
ample Ref. [1]). For a differentiable scalar optimization problem with equality and
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inequality constraints, Gauvin (Ref. [2]) showed that the Mangasarian-Fromovitz
constraint qualification (Ref. [3]) is a necessary and sufficient condition for the set
of Kuhn-Tucker multipliers to be nonempty and bounded. Later, by means of the
Clarke subdifferentials (Ref. [4]), Nguyen, Strodiot and Mifflin (Ref. [5]) general-
ized Gauvin’s result to the case of a nonsmooth scalar optimization problem with
equality and inequality constraints as well as a proper set constraint, assuming that
the objective function and the functions defining the inequality constraints are lo-
cally Lipschitz. By means of the Clarke subdifferentials, Pappalardo (Ref. [6]) used a
generalized Mangasarian-Fromovitz qualification to establish a result concerning the
bound for the Kuhn-Tucker multipliers for a nonsmooth scalar optimization problem
with equality and inequality constraints, assuming that all the functions involved in
the problem are locally Lipschitz. In the more general setting of Banach spaces, by
means of the Clarke subdifferentials, Jourani (Ref. [7]) introduced several constraint
qualifications that ensure the nonemptiness and boundedness of the Kuhn-Tucker
multiplier sets for a nonsmooth scalar optimization problem with equality and in-
equality constraints as well as a closed set constraint, under the assumption that all
the functions involved in the problem are locally Lipschitz.

Recently, the concept of convexificators of real-valued functions and its exten-
sion, approximate Jacobians, to vector-valued maps have been used to extend and
sharpen various results in nonsmooth analysis and optimization (Refs. [8–17]). As
has been noted in Ref. [11] (see also Refs. [9] and [15]), the Clarke subdifferen-
tial, the Michel-Penot subdifferential and some other well-known subdifferentials of
a locally Lipschitz function are examples of convexificators and these subdifferen-
tials may contain the convex hull of a convexificator. Therefore, the descriptions of
the optimality conditions, mean-value theorems, and calculus rules in terms of con-
vexificators provide sharper results. For optimization problems involving nonsmooth
functions, various results concerning necessary optimality conditions that use con-
vexificators or approximate Jacobians have been established in Refs. [10, 12, 15–17],
and [18–20].

In this paper, by using the idea of upper convexificators, we study the nonempti-
ness and boundedness of the Kuhn-Tucker multiplier sets for a nonsmooth multi-
objective optimization problem with inequality constraints and an arbitrary set con-
straint. We propose constraint qualifications and show (Theorems 2.1 and 3.1) that,
at locally weak efficient solutions where the objective and constraint functions are
locally Lipschitz, the qualifications are necessary and sufficient conditions for the
Kuhn-Tucker multiplier set to be nonempty and bounded, provided that the upper
convexificators of the functions satisfy certain semiregularity conditions. We give ex-
amples to show that the semiregularity conditions on the upper convexificators are
necessary for our qualifications to guarantee nonemptiness of the Kuhn-Tucker mul-
tiplier sets.

Since the Clarke subdifferentials and the Michel-Penot subdifferentials of a lo-
cally Lipschitz function are convexificators, the results in this work are valid with
the convexificators being replaced respectively by the Clarke subdifferentials and the
Michel-Penot subdifferentials. However, by an example given in this paper (see Ex-
ample 3.2), we show that, while the constraint qualifications considered in this paper
hold at a locally weak efficient solution, they may fail to hold when the convexifica-
tors in the constraint qualifications are replaced by the Clarke subdifferentials or the
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Michel-Penot subdifferentials. By the same example, we also show that, at a locally
weak efficient solution, while the set of all Kuhn-Tucker multiplier vectors associated
with the Kuhn-Tucker type necessary optimality conditions in terms of convexifica-
tors is bounded, it may not necessarily be bounded when the convexificators in the
Kuhn-Tucker type necessary optimality conditions are replaced by the Clarke subd-
ifferentials or the Michel-Penot subdifferentials.

The constraint qualifications proposed in this paper are of the Mangasarian-
Fromovitz type in the case of optimization problems without equality constraints.
We derive the Kuhn-Tucker type necessary optimality conditions (nonemptiness of
the Kuhn-Tucker multiplier sets) in a direct way, which is different from the method
that derives the Fritz-John type necessary conditions first and then imposes some
constraint qualifications to obtain Kuhn-Tucker type necessary conditions.

We conclude this section by providing some notations that will be used in the
sequel. Throughout the paper, let R

n be the usual n-dimensional Euclidean space and
let R

n+ be its nonnegative orthant, namely,

R
n+ = {(x1, . . . , xn) ∈ R

n | xi ≥ 0, ∀i = 1, . . . , n}.
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in R

n. Then,

x � y, iff xi ≤ yi, i = 1, . . . , n,

x ≤ y, iff xi � yi and x �= y,

x < y, iff xi < yi, i = 1, . . . , n.

Let S be a nonempty subset of R
n. The closure of S, the convex hull of S, and the

convex cone (containing the origin of R
n) generated by S are denoted respectively by

cl S, co S, and cone S. The negative polar cone S−, the strictly negative polar cone Ss ,
and the positive polar cone S+ of S are defined respectively by

S− = {v ∈ R
n | 〈x, v〉 � 0, ∀x ∈ S},

Ss = {v ∈ R
n | 〈x, v〉 < 0, ∀x ∈ S},

S+ = −S−.

The adjacent cone A(S,x) and the contingent cone T (S, x) to S at x ∈ clS are de-
fined respectively by

A(S,x) = {v ∈ R
n | ∀tn ↓ 0, ∃vn → v such that x + tnvn ∈ S},

T (S, x) = {v ∈ R
n | ∃tn ↓ 0 and vn → v such that x + tnvn ∈ S}.

It is well known that A(S,x) and T (S, x) are always closed, but not necessarily
convex, and that, if S is a convex set, then A(S,x) and T (S, x) coincide and are
convex. Moreover, in general, A(S,x) ⊆ T (S, x). For more information on adjacent
and contingent cones, the readers may consult Refs. [4] and [21–24].

Let f : R
n → R =: R ∪ {±∞} be an extended real-valued function. Let x ∈ R

n

where f is finite. The lower and upper Dini derivatives of f at x in the direction
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v ∈ R
n are defined, respectively, by

f −(x;v) = lim inf
t↓0

t−1[f (x + tv) − f (x)],

f +(x;v) = lim sup
t↓0

t−1[f (x + tv) − f (x)].

The notion of the convexificators was introduced in Ref. [8] and studied in Refs. [9,
11, 15], and [18]. On the lines of Ref. [11] (see also Ref. [15]), we now give the
definitions of the upper convexificators.

Definition 1.1 Let the function f : R
n → R be finite at x ∈ R

n.

(a) The function f is said to admit an upper convexificator ∂∗f (x) at x if ∂∗f (x) ⊂
R

n is closed and, for every v ∈ R
n,

f −(x;v) � sup
ξ∈∂∗f (x)

〈v, ξ 〉.

(b) The function f is said to admit an upper semiregular convexificator ∂∗f (x) at x

if ∂∗f (x) ⊂ R
n is closed and, for every v ∈ R

n,

f +(x;v) � sup
ξ∈∂∗f (x)

〈v, ξ 〉.

Obviously, an upper semiregular convexificator of f at a point is an upper con-
vexificator of f at the point. However, the converse does not necessarily hold. As
has been noted in Refs. [9] and [11], if f is locally Lipschitz at x, then the Clarke
subdifferential ∂cf (x) (see Ref. [4]) and the Michel-Penot subdifferential ∂mpf (x)

of f at x (see Ref. [25]) are upper semiregular convexificators of f at x. The two
subdifferentials are given respectively by

∂mpf (x) = {ξ ∈ R
n | f +

mp(x;v) ≥ 〈ξ, v〉, ∀ v ∈ R
n},

∂cf (x) = {ξ ∈ R
n | f +

c (x;v) ≥ 〈ξ, v〉, ∀ v ∈ R
n},

where f +
mp(x;v) and f +

c (x;v) are respectively the Clarke and Michel-Penot upper
generalized directional derivatives of f at x in the direction v defined by

f +
mp(x;v) = sup

z∈Rn

lim inf
t↓0

t−1[f (x + tz + tv) − f (x + tz)],

f +
c (x;v) = lim sup

x′→x, t↓0
t−1[f (x′ + tv) − f (x′)].

Moreover, for locally Lipschitz functions, one may generate upper semiregular con-
vexificators which are smaller than the Michel-Penot subdifferential and the Clarke
subdifferential as an example given in Ref. [11] shows (see also Example 3.2 in this
paper). The readers may consult Refs. [8, 9, 11, 15, 18] and references therein for
more information on the definitions and properties of convexificators as well as the
relationship of convexificators and some other well-known subdifferentials including
the Michel-Penot and Clarke subdifferentials.



J Optim Theory Appl (2010) 145: 373–386 377

2 Existence and Boundedness

Consider the following nonsmooth multiobjective optimization problem with in-
equality and an arbitrary set constraints:

(MPIS) Min f (x) = (f1(x), . . . , fp(x)),

s.t. g(x) = (g1(x), . . . , gq(x)) � 0,

x ∈ S,

where fi and gj : R
n→ R are extended real-valued functions for all i ∈ I :=

{1,2, . . . , p} and j ∈ J := {1,2, . . . , q} and where S is an arbitrary subset of R
n.

Denote by X the feasible region of problem (MPIS), namely,

X = {x ∈ R
n | x ∈ S and g(x) � 0}.

A feasible point x ∈ X is said to be a locally weak efficient solution to problem
(MPIS) if there is a real number δ > 0 such that there is no y ∈ X ∩B(x, δ) satisfying
f (y) < f (x), where B(x, δ) is the open unit ball centered at x with radius δ. For
the sake of simplicity in our presentation, in the sequel we assume without loss of
generality that all the inequality constraints are binding at the feasible point x ∈ X,
namely, gj (x) = 0 for all j ∈ J .

Let x be a feasible point for problem (MPIS) at which fi and gj admit, respec-
tively, upper convexificators ∂∗fi(x) and ∂∗gj (x) for each i ∈ I and j ∈ J . The
constraint qualifications considered in this paper are

(CQ1) ∃v ∈ T (S, x) such that v ∈ (
⋃

j∈J ∂∗gj (x))s ,
(CQ2) ∃v ∈ A(S,x) such that v ∈ (

⋃
j∈J ∂∗gj (x))s .

Let K be a closed convex subcone of T (S, x) or A(S,x). Denote by �(K,x) the set
of all Kuhn-Tucker multiplier vectors (α1, . . . , αp,β1, . . . , βq) in R

p
+ × R

q
+ associ-

ated with the Kuhn-Tucker type necessary optimality conditions with respect to K ,
namely, (α1, . . . , αp,β1, . . . , βq) ∈ �(K,x) if and only if

(α1, . . . , αp,β1, . . . , βq) ∈ R
p
+ × R

q
+,

∑

i∈I

αi = 1,

0 ∈
∑

i∈I

αi co ∂∗fi(x) +
∑

j∈J

βj co ∂∗gj (x) + K−.

The aim of this paper is to show that, under some conditions, the constraint qualifi-
cations (CQ1) and (CQ2) are necessary and sufficient conditions for the set of Kuhn-
Tucker multipliers to be nonempty and bounded at locally weak efficient solutions.
In this section, we show that, at a locally weak efficient solution x, the qualifica-
tion (CQ1) is a necessary and sufficient condition for the Kuhn-Tucker multiplier set
�(K,x) with respect to the closed convex subcone K of the contingent cone T (S, x)

to be nonempty and bounded at a locally weak efficient solution x under certain con-
ditions.
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Theorem 2.1 Let x be a locally weak efficient solution to problem (MPIS). Suppose
that, at x, fi and gj admit bounded upper convexificators ∂∗fi(x) and ∂∗gj (x) for
each i ∈ I and j ∈ J .

(a) Assume that fi and gj are locally Lipschitz at x and that ∂∗fi(x) and ∂∗gj (x)

are upper semiregular for all i ∈ I and j ∈ J . If (CQ1) holds at x, then for
every closed convex cone Kv which is included in T (S, x) and contains v, the set
�(Kv,x) is nonempty.

(b) If (CQ1) holds at x, and if, for every closed convex cone Kv which is included in
T (S, x) and contains v, the set �(Kv,x) is nonempty, then �(Kv,x) is bounded.

(c) If for some closed convex subcone K of T (S, x), the Kuhn-Tucker multiplier set
�(K,x) with respect to K is nonempty and bounded, then (CQ1) holds at x.

Proof (a) We prove that, at the locally weak efficient solution x, (CQ1) ensures the
nonemptiness of the set �(Kv,x) for every closed convex cone Kv which is included
in T (S, x) and contains v. Assume that (CQ1) holds at x. Suppose on the contrary that
�(Kv,x) = ∅ for some Kv such that v ∈ Kv ⊆ T (S, x). Then, by the definition of the
set �(Kv,x), it follows that, for every vector (α1, . . . , αp,β1, . . . , βq) in R

p
+ × R

q
+

satisfying
∑

i∈I αi = 1,

0 /∈
∑

i∈I

αi co ∂∗fi(x) +
∑

j∈J

βj co ∂∗gj (x) + K−
v . (1)

For notational simplicity, we denote

F =
⋃

i∈I

co ∂∗fi(x) and G =
⋃

j∈J

co ∂∗gj (x).

We assert that

0 /∈ co(F ∪ G) + K−
v . (2)

Indeed, if the assertion is not true, then ∃(ᾱ1, . . . , ᾱp, β̄1, . . . , β̄q) in R
p
+ × R

q
+, with∑

i∈I ᾱi + ∑
j∈J β̄j = 1, ξi ∈ co ∂∗fi(x), ηj ∈ co ∂∗gj (x), and γ ∈ K−

v such that

∑

i∈I

ᾱiξi +
∑

j∈J

β̄j ηj + γ = 0. (3)

In view of (CQ1) and hypothesis (a), we have that 〈ηj , v〉 < 0 for all j ∈ J and that
〈γ, v〉 ≤ 0. Hence, (ᾱ1, . . . , ᾱp) �= 0. By dividing both sides of (3) by

∑
i∈I ᾱi , we

obtain a contradiction to (1). Thus, the assertion (2) is true.
We now show that assertion (2) implies

(F ∪ G)s ∩ Kv �= ∅. (4)

Since ∂∗fi(x) and ∂∗gj (x), i ∈ I and j ∈ J, are closed by definition and bounded
by hypothesis, the set F ∪ G is compact; hence, the convex set on the right-hand side
of (2) is closed. By separating this convex set from the origin, we find some vector
w ∈ R

n such that 〈a + γ,w〉 < 0 for all a ∈ F ∪ G and γ ∈ K−
v . Since Kv is a closed
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convex cone, we deduce that w ∈ (K−
v )− = Kv and 〈a,w〉 < 0 for all a ∈ F ∪ G.

This shows that (4) is true. This also gives

f +
i (x,w) < 0, ∀i ∈ I, (5)

g+
j (x,w) < 0, ∀j ∈ J, (6)

by noting that ∂∗fi(x) and ∂∗gj (x), i ∈ I and j ∈ J, are upper semiregular by hy-
pothesis.

Since w ∈ Kv ⊆ T (S, x), by the definition of contingent cones it follows that there
exists (wn, tn) → (w,0+) such that x + tnwn ∈ S. For each i ∈ I , since fi is locally
Lipschitz near x, we have

lim
tn↓0

t−1
n |fi(x + tnwn) − fi(x + tnw)| � lim

n→+∞Li |wn − w| → 0, (7)

where Li is the Lipschitz constant for fi near x. Therefore, for each i ∈ I , writing

t−1
n [fi(x + tnwn) − fi(x)] = t−1

n [fi(x + tnwn) − fi(x + tnw)]
+ t−1

n [fi(x + tnw) − fi(x)]
and noting (5) and (7), we have

lim sup
tn↓0

t−1
n [fi(x + tnwn) − fi(x)] � 0 + f +

i (x,w) < 0.

It then follows that, for all sufficiently large n,

fi(x + tnwn) < fi(x), ∀i ∈ I. (8)

Similarly, in view of inequalities (6), we have that, for all sufficiently large n,

gj (x + tnwn) < gj (x), ∀j ∈ J, (9)

which together with the fact that x + tnwn ∈ S imply that x + tnwn are feasible points
for problem (MPIS) for all sufficiently large n. But now inequalities (8) contradict the
assumption that x is a locally weak efficient solution to the problem. This completes
the proof of (a).

(b) We show that (CQ1) ensures the boundedness of �(Kv,x) for every closed
convex cone Kv which is included in T (S, x) and contains v. Suppose on the contrary
that �(K̂v, x) is not bounded for a cone K̂v of this kind. Then, there exist ξ

(n)
i ∈

co ∂∗fi(x), i ∈ I, η
(n)
j ∈ co ∂∗gj (x), j ∈ J, γ (n) ∈ K̂−

v , and

(α
(n)
1 , . . . , α(n)

p ,β
(n)
1 , . . . , β(n)

q ) ∈ �(K̂v, x)

satisfying β
(n)
j0

→ +∞ (as n → +∞) for some j0 ∈ J , such that

∑

i∈I

α
(n)
i ξ

(n)
i +

∑

j∈J

β
(n)
j η

(n)
j + γ (n) = 0, ∀n = 1,2, . . . .
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It follows that
∑

i∈I

α
(n)
i 〈ξ (n)

i , v〉 +
∑

j∈J

β
(n)
j 〈η(n)

j , v〉 + 〈γ (n), v〉 = 0, ∀n = 1,2, . . . , (10)

from which and by noting that v ∈ (
⋃

j∈J ∂∗gj (x))s ∩ K̂v in view of (CQ1), we have

∑

i∈I

α
(n)
i 〈ξ (n)

i , v〉 + β
(n)
j0

〈η(n)
j0

, v〉 � 0, ∀n = 1,2, . . . . (11)

Since ∂∗fi(x) (i ∈ I ) and ∂∗gj0(x) are closed by the definition of convexificators
and bounded by hypothesis, so are their convex hulls co ∂∗fi(x) and co ∂∗gj0(x).

Without loss of generality, we may assume that, as n → +∞, ξ
(n)
i → ξi (i ∈ I ) and

η
(n)
j0

→ ηj0 . Note that ξi is in co ∂∗fi(x) and ηj0 in co ∂∗gj0(x). Now, by dividing the

left-hand side of (11) by β
(n)
j0

and passing to the limit as n → +∞, we derive that

(∑

i∈I

α
(n)
i 〈ξ (n)

i , v〉 + β
(n)
j0

〈η(n)
j0

, v〉
)

/β
(n)
j0

→
∑

i∈I

0 · 〈ξi, v〉 + 〈ηj0 , v〉 < 0,

contradicting inequality (11). This proves (b).
(c) We now prove that the nonemptiness and boundedness of the set �(K,x) en-

sure that (CQ1) holds at x. Suppose on the contrary that this is not true. Then, in view
of (CQ1), (

⋃
j∈J ∂∗gj (x))s ∩ T (S, x) = ∅. It follows that

(⋃

j∈J

co ∂∗gj (x)

)s

∩ K = ∅. (12)

By a similar argument to that used in showing that assertion (2) implies (4), we know
that (12) implies

0 ∈ co
⋃

j∈J

co ∂∗gj (x) + K−. (13)

Thus, there exist (β̂1, . . . , β̂q) ∈ R
q
+ with

∑
j∈J β̂j = 1 such that

0 ∈
∑

j∈J

β̂j co ∂∗gj (x) + K−. (14)

Now, since the Kuhn-Tucker multiplier set �(K,x) with respect to K is non-
empty by hypothesis (c), there exist (α1, . . . , αp) ∈ R

p
+ and (β1, . . . , βq) ∈ R

q
+ with∑

i∈I αi = 1 such that

0 ∈
∑

i∈I

αi co ∂∗fi(x) +
∑

j∈J

βj co ∂∗gj (x) + K−. (15)

From relations (14) and (15), we know that, for any λ > 0,

0 ∈
∑

i∈I

αi co ∂∗fi(x) +
∑

j∈J

βj co ∂∗gj (x) + K− +
∑

j∈J

λβ̂j co ∂∗gj (x) + λK−,
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which implies that, for any λ > 0,

0 ∈
∑

i∈I

αi co ∂∗fi(x) +
∑

j∈J

(βj + λβ̂j ) co ∂∗gj (x) + K−, (16)

since K− + λK− = K− and since

βj co ∂∗gj (x) + λβ̂j co ∂∗gj (x) = (βj + λβ̂j ) co ∂∗gj (x).

From the relation (16), we obtain

(α1, . . . , αp,β1 + λβ̂1, . . . , βq + λβ̂q) ∈ �(K,x), ∀λ > 0,

which, by noting that β̂j > 0 for at least one j ∈ J , contradicts the hypothesis that
�(K,x) is bounded. �

The example below illustrates that hypothesis of (a) in Theorem 2.1, that ∂∗fi(x)

and ∂∗gj (x) are upper semiregular for all i ∈ I and j ∈ J, is necessary for the Kuhn-
Tucker multiplier set �(Kv,x) to be nonempty.

Example 2.1 Consider the nonsmooth scalar optimization problem

(SPIS1) Min{f (x) | g(x) � 0, x ∈ S},
where the functions f, g : R → R and the subset S of R are defined as

f (x) =
{|x| sin ln |x|, x �= 0,

0, x = 0,

g(x) = −x,

S = {e−[(2n+1)π+2−1π] | n = 1,2, . . .}.
Then, x̄ = 0 is a locally weak efficient solution and f, g are globally Lipschitz. More-
over,

f +(x̄;v) = 1 and f −(x̄;v) = −1, ∀v ∈ R\{0},
g+(x̄;v) = g−(x̄;v) = −1, ∀v ∈ R\R+,

g+(x̄;v) = g−(x̄;v) = 1, ∀v ∈ R+\{0},
∂∗f (x̄) = [−1,−2−1] is an upper convexificator of f at x̄, and ∂∗g(x̄) = {−1} is an
upper semiregular convexificator of g at x̄. Obviously, T (S, x̄) = R+. So,

v = 1 ∈ T (S, x̄) ∩ (∂∗g(x̄))s,

and hence (CQ1) holds at x̄. Now, let Kv be an arbitrary nonempty closed con-
vex cone such that v ∈ Kv and Kv ⊆ T (S, x̄). Then, Kv = T (S, x̄) = R+; hence,
(Kv)

− = {x ∈ R | x � 0}. Therefore, for any β � 0,

0 /∈ co ∂∗f (x̄) + β co ∂∗g(x̄) + (Kv)
−,
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which implies that �(Kv, x̄) = ∅. We observe that ∂∗f (x̄) = [−1,−2−1] is not an
upper semiregular convexificator of f at x̄.

3 Existence and Boundedness under (CQ2)

In this section, we show that, under some conditions, at a locally weak efficient so-
lution x to problem (MPIS), the constraint qualification (CQ2) is a necessary and
sufficient condition for the Kuhn-Tucker multiplier set �(K,x) with respect to the
closed convex subcone K of the adjacent cone A(S,x) to be nonempty and bounded.

Theorem 3.1 Let x be a locally weak efficient solution to problem (MPIS). Suppose
that, at x, fi and gj admit bounded upper convexificators ∂∗fi(x) and ∂∗gj (x) for
each i ∈ I and j ∈ J .

(a) Assume that fi and gj are locally Lipschitz at x for all i ∈ I and j ∈ J and that
there is an i0 ∈ I (or j0 ∈ J ) such that ∂∗fi(x) and ∂∗gj (x) are semiregular for
all i ∈ I\{i0} and j ∈ J (or i ∈ I and j ∈ J\{j0}). If (CQ2) holds at x, then for
every closed convex cone Kv which is included in A(S,x) and contains v, the set
�(Kv,x) is nonempty.

(b) If (CQ2) holds at x, and if, for every closed convex cone Kv which is included in
A(S,x) and contains v, the set �(Kv,x) is nonempty, then �(Kv,x) is bounded.

(c) For some closed convex subcone K of A(S,x), if the Kuhn-Tucker multiplier set
�(K,x) with respect to K is nonempty and bounded, then (CQ2) holds at x.

Proof (a) We show that, if there is an i0 ∈ I such that ∂∗fi(x) and ∂∗gj (x) are
semiregular for all i ∈ I\{i0} and j ∈ J , then (CQ2) ensures the nonemptiness of
�(Kv,x) for every closed convex cone Kv which is included in A(S,x) and con-
tains v. The proof for the case when there is a j0 ∈ J such that ∂∗fi(x) and ∂∗gj (x)

are semiregular for all i ∈ I and j ∈ J\{j0} is similar. Suppose on the contrary that
there is a closed convex cone Kv which is included in A(S,x) and contains v such
that �(Kv,x) = ∅. Then, in view of the proof of (a) of Theorem 2.1, there exists a
vector w in R

n such that

w ∈
(⋃

i∈I

∂∗fi(x)

)s

, (17)

w ∈
(⋃

j∈J

∂∗gj (x)

)s

, (18)

w ∈ Kv. (19)

In view of the definitions of upper (semiregular) convexificators, it follows respec-
tively from relations (17) and (18) that

f −
i0

(x,w) < 0, (20)

f +
i (x,w) < 0, ∀i ∈ I\{i0}, (21)
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g+
j (x,w) < 0, ∀j ∈ J. (22)

By the definition of the lower Dini derivatives, it follows from inequality (20) that
there exist tn → 0+ such that

lim
tn↓0

t−1
n [fi0(x + tnw) − fi0(x)] = f −

i0
(x,w) < 0. (23)

By the definition of adjacent cones, for tn → 0+, there exists wn → w such that

x + tnwn ∈ S. (24)

Since fi0 is locally Lipschitz near x,

lim
tn↓0

t−1
n |fi0(x + tnwn) − fi0(x + tnw)| � lim

n→+∞Li0 |wn − w| → 0, (25)

where Li0 is a Lipschitz constant for fi0 near x. Therefore, writing

t−1
n [fi0(x + tnwn) − fi0(x)] = t−1

n [fi0(x + tnwn) − fi0(x + tnw)]
+ t−1

n [fi0(x + tnw) − fi0(x)]
and noting (23) and (25), we get

lim
tn↓0

t−1
n [fi0(x + tnwn) − fi0(x)] = 0 + f −

i0
(x,w) < 0.

It then follows that, for all sufficiently large n,

fi0(x + tnwn) < fi0(x). (26)

Moreover, in view of the proof of inequalities (8) and (9), it follows respectively from
inequalities (21) and (22) that, for all sufficiently large n,

fi(x + tnwn) < fi(x), ∀ i ∈ I\{i0}. (27)

gj (x + tnwn) < gj (x), ∀j ∈ J. (28)

Relation (24) and inequalities (28) imply that x+ tnwn are feasible points for problem
(MPIS), which together with inequalities (26) and (27) contradicts that x is a locally
weak efficient solution to the problem.

The proof of (b) and that of (c) are, respectively, similar to their counterparts in
Theorem 2.1. �

The following example illustrates that the semiregularity hypothesis of (a) of The-
orem 3.1 on ∂∗fi(x) and ∂∗gj (x), i ∈ I and j ∈ J , is necessary for the Kuhn-Tucker
multiplier set �(Kv,x) to be nonempty.

Example 3.1 Consider nonsmooth scalar optimization problem

(SPIS2) Min{f (x) | g(x) � 0, x ∈ S},
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where the functions f, g : R → R are defined respectively by

f (x) =
{|x| sin ln |x|, x �= 0;

0, x = 0,

g(x) = −f (x), and where the subset S of R is defined by S = R+. Then, x̄ = 0 is a
locally weak efficient solution, and f and g are globally Lipschitz. Moreover,

f +(x̄;v) = g+(x̄;v) = 1, ∀v ∈ R\{0},
f −(x̄;v) = g−(x̄;v) = −1, ∀v ∈ R\{0},

∂∗f (x̄) = ∂∗g(x̄) = [−1,−2−1] is an upper convexificator of both f and g at x̄.
Obviously, A(S, x̄) = R+. So, v = 1 is in A(S, x̄) ∩ (∂∗g(x̄))s; hence, (CQ2) holds
at x̄. Now, let Kv be an arbitrary nonempty closed convex cone such that v ∈ Kv

and Kv ⊆ A(S, x̄). Then, Kv = A(S, x̄) = R+; hence, (Kv)
− = {x ∈ R | x � 0}.

Therefore, for any β � 0,

0 /∈ co ∂∗f (x̄) + β co ∂∗g(x̄) + (Kv)
−,

which implies that �(Kv, x̄) = ∅. We note that neither the upper convexificator
∂∗f (x̄) nor the upper convexificator ∂∗g(x̄) is semiregular.

To end our presentation, we make some remarks on the results that we obtained.
Since the Clarke subdifferential and Michel-Penot subdifferential of a locally Lip-
schitz function are upper semiregular convexificators, the results of Theorems 2.1
and 3.1 in this work are valid with the convexificators being replaced respectively
by the Clarke subdifferentials and the Michel-Penot subdifferentials. On the other
hand, it has been known that a locally Lipschitz function may have a convexifica-
tor at a point which is strictly contained in the two subdifferentials. Therefore, for
an optimization problem with Lipschitz data, although the constraint qualifications
(CQ1) and (CQ2) in terms of convexificators hold, they may fail to hold when the
convexificators are replaced respectively by the Clarke and Michel-Penot subdiffer-
entials. Moreover, although the set of Kuhn-Tucker multipliers associated with the
Kuhn-Tucker type necessary optimality conditions in terms of some convexificators
is nonempty and bounded and hence, with the convexificators replaced respectively
by the Clarke and Michel-Penot subdifferentials, the set of multipliers is also non-
empty, it may fail to be bounded. The following example makes these points.

Example 3.2 Consider the nonsmooth scalar optimization problem

(SPI) Min{f (x) | g(x) � 0, x ∈ S = R
2},

where f, g : R
2 → R are defined by f (x) = x2 and g(x) = |x1|− |x2|+x1/2, where

x = (x1, x2). The point x̄ = (0,0) ∈ R
2 is a locally weak efficient solution to (SPI).

At x̄, f is locally Lipschitz, the Clarke subdifferential and the Michel-Penot subdif-
ferential of f are

∂cf (x̄) = ∂mpf (x̄) = {(0,0)},
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and f admits an upper semiregular convexificator ∂∗f (x̄) = {(0,0)}.
According to Example 9.1 in Ref. [9], the function g is directionally differentiable

and locally Lipschitz on R
2, the directional derivative of g at x̄ in direction v =

(v1, v2) is

g′(x̄, v) = |v1| − |v2| + v1/2,

the Clarke subdifferential and the Michel-Penot subdifferential of g at x̄ are

∂cg(x̄) = ∂mpg(x̄) = co{(−1/2,1), (−1/2,−1), (3/2,1), (−3/2,−1)},

and

∂∗g(x̄) = co{(−1/2,−1), (3/2,1)}
is an upper semiregular convexificator of g at x̄.

Since S = R
2, we have

T (S, x̄) = A(S, x̄) = R
2.

Note that v̄ = (−1,1) ∈ (∂∗g(x̄))s . Thus, we have

v̄ ∈ T (S, x̄) ∩ (∂∗g(x̄))s = A(S, x̄) ∩ (∂∗g(x̄))s,

from which we know that (CQ1) and (CQ2) hold at x̄. Therefore, for any fixed upper
semiregular convexificator of f at x̄ and any fixed closed convex cone Kv̄ contain-
ing v̄, by Theorem 2.1 the set �(Kv̄, x) of Kuhn-Tucker multipliers is nonempty and
bounded.

However, since (0,0) is contained in ∂cg(x̄) and ∂mpg(x̄), it follows that

(∂cg(x̄))s = (∂mpg(x̄))s = ∅.

Thus, with the convexificator ∂∗g(x̄) in (CQ1) and (CQ2) replaced by the Clarke or
Michel-Penot subdifferential, (CQ1) or (CQ2) does not hold. Moreover, since

0 ∈ ∂cf (x̄) ∩ ∂cg(x̄) ∩ K− = ∂mpf (x̄) ∩ ∂mpg(x̄) ∩ K−

for arbitrary closed convex cone K in R
2, it follows that

0 ∈ ∂cf (x̄) + β∂cg(x̄) + K− = ∂mpf (x̄) + β∂mpg(x̄) + K−,

for any real number β ≥ 0. So, the set of all Kuhn-Tucker multiplier vectors associ-
ated with the Kuhn-Tucker type necessary optimality conditions expressed in terms
of the Clarke or Michel-Penot subdifferentials is nonempty but not bounded.
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